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Abstract. There is an increased demand for quantitative high-resolution soil maps that enable within-field man-
agement. Commonly available soil maps are generally not suited for this purpose, but digital soil mapping and
geophysical methods in particular allow soil information to be obtained with an unprecedented level of detail.
However, it is often difficult to quantify the added value of such high-resolution soil information for agricultural
management and agro-ecosystem modelling. In this study, a detailed geophysics-based soil map was compared
to two commonly available general-purpose soil maps. In particular, the three maps were used as input for crop
growth models to simulate leaf area index (LAI) of five crops for an area of ∼ 1 km2. The simulated develop-
ment of LAI for the five crops was evaluated using LAI obtained from multispectral satellite images. Overall,
it was found that the geophysics-based soil map provided better LAI predictions than the two general-purpose
soil maps in terms of correlation coefficient R2, model efficiency (ME), and root mean square error (RMSE).
Improved performance was most apparent in the case of prolonged periods of drought and was strongly related
to the combination of soil characteristics and crop type.

1 Introduction

Detailed soil information on areas within a single field that
require different treatment, so-called management zones, is
key in agricultural management (King et al., 2005; Stafford et
al., 1996; Sylvester-Bradley et al., 1999). An adequate char-
acterization of such management zones can improve agri-
cultural productivity and sustainability (King et al., 2005;
Sylvester-Bradley et al., 1999) and help meet future food
security challenges (Antle et al., 2017; Chartzoulakis and
Bertaki, 2015). Technological advances in georeferencing,
sensing, and computing have led to an increased possibil-
ity to apply within-field management strategies (Sylvester-
Bradley et al., 1999). As a consequence, there is a grow-
ing demand for high-resolution soil maps that can substitute
national- and regional-scale soil maps (Brevik et al., 2006),
which are sometimes not available and often not suitable for
agricultural applications and modelling (Della Chiesa et al.,
2019; Nussbaum et al., 2018; Pätzold et al., 2008). However,
high-resolution soil maps are generally costly to produce,

and the added value of such detailed mapping products is
typically difficult to assess.

Management zones are generally characterized by soils
with relatively uniform characteristics (i.e. a soil unit). These
soil units can potentially be obtained from a variety of com-
monly available thematic maps that provide spatially dis-
tributed soil information (e.g. geological, soil, and yield po-
tential maps). However, these products are often insuffi-
ciently detailed (Franzen et al., 2002; Nawar et al., 2017;
Robert, 1993) since they are discretized in relatively large
polygons and provide qualitative information that might dif-
fer from the inputs that are useful for farmers (Krüger et
al., 2013; Söderström et al., 2016). This is generally a con-
sequence of the sparse point-scale soil sampling on which
most of these maps are based (Gebbers and Adamchuk, 2010;
Heuvelink and Webster, 2001), which is ∼ one point per
hectare for highly detailed products (Rogge et al., 2018).
Maps with higher sampling resolution such as the German
soil taxation maps that were surveyed on a 50 m grid (four
points per hectare) often do not provide improved results
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(Mertens et al., 2008). Denser sampling can be locally ap-
plied in order to obtain a more detailed and reliable soil char-
acterization. However, this is time- and resource-consuming
(King et al., 2005), and it is desirable to find more cost-
effective mapping tools (Brevik et al., 2006).

Geophysical methods such as electromagnetic induction
(EMI) have proven their potential in assisting agricultural
applications (Binley et al., 2015) by providing a suitable
alternative to dense soil sampling (Robinson et al., 2008).
EMI measures the apparent electrical conductivity of the soil
(ECa), which can be used to estimate soil characteristics and
properties such as water content, textural properties, miner-
alization, porosity, and residual pore water content (Corwin
and Lesch, 2005). Due to its high mobility, EMI can provide
maps that range from the field to the catchment scale (Robin-
son et al., 2008). Despite these promising aspects, EMI has
often been credited primarily for qualitative mapping (Binley
et al., 2015). However, there is renewed interest in this tech-
nique because of the development of multi-coil instruments
that allow multiple depths to be investigated simultaneously
(Monteiro Santos et al., 2010; Saey et al., 2012; von Hebel et
al., 2014), thus enabling the inversion of EMI data by com-
bining such depths (Boaga, 2017; Mester et al., 2014; Tan
et al., 2019; Von Hebel et al., 2019). Furthermore, EMI has
already shown high potential for the determination of man-
agement zones in agricultural contexts (Brogi et al., 2019;
Galambošová et al., 2014; King et al., 2005; Moral et al.,
2010; Oldoni and Bassoi, 2016; Taylor et al., 2003; Terrón
et al., 2015). Additional information about soil horizonation
and texture can be added to EMI-derived maps using direct
soil sampling and laboratory analysis (Brogi et al., 2019).

One drawback of EMI-derived soil maps is that they can
only determine the geometry of potential management zones
without directly providing information on the appropriate
management of such areas (King et al., 2005). To increase
their usefulness, geophysics-based soil maps can be used
as input for process-oriented crop growth models (Brogi et
al., 2020; Krüger et al., 2013) that account for factors limit-
ing crop growth, such as water availability (Bonfante et al.,
2015; Paz, 2000). Most process-oriented crop growth mod-
els rely on a 1D description of water flow in the soil col-
umn (Vereecken et al., 2016) and require detailed informa-
tion on soil profile characteristics, including soil hydraulic
properties (Boenecke et al., 2018). Some case studies in
which geophysics-based soil information was successfully
combined with crop growth models are available (Boenecke
et al., 2018; Wong and Asseng, 2006). Recently, Brogi et
al. (2020) successfully used inputs from an EMI-derived soil
map to simulate soil water content dynamics and their effects
on the growth of six crop types for a 90 ha study area. Fur-
thermore, Krüger et al. (2013) showed that the consideration
of soil depth derived from geophysical measurements im-
proved the simulation of biomass production on a 4.4 ha ex-
perimental field compared to simulations based only on com-
monly available soil maps. Despite these promising results,

there is need for further studies that link geophysics-based
soil products and crop growth models. Moreover, the quan-
tification of the added value of geophysics-based soil charac-
terization for agro-ecosystem modelling applications has not
been thoroughly investigated yet (Krüger et al., 2013), espe-
cially in areas larger than the field scale and for multiple crop
and soil types.

The aim of this study is to assess the added value of a
detailed soil map for agricultural applications in compari-
son to the use of commonly available soil maps. For this, a
recently produced geophysics-based soil map (Brogi et al.,
2019), a 1 : 5000 regional soil map (Röhrig, 1996), and a
national soil taxation map (NRW, 1960) were used as in-
put for the agro-ecosystem model AgroC. Simulations were
made for five crops (i.e. silage maize, sugar beet, winter bar-
ley, winter rapeseed, and winter wheat) grown in 2016 on an
area of approximately 1 km× 1 km, where water scarcity is
known to have an effect on crop development (Rudolph et al.,
2015). In a first step, the information provided by the three
soil maps was compared. Next, AgroC simulations of leaf
area index (LAI) based on the three soil maps were evaluated
using LAI observations derived from multispectral satellite
data. Finally, the added value of the geophysics-based soil
map for the simulation of crop growth was investigated and
discussed with a focus on the results for sugar beet.

2 Materials and methods

2.1 Study area

The study site is located within a ∼ 1 km× 1 km area
(Fig. 1a) in the Rur catchment near Selhausen (Germany;
50◦51′56′′ N 6◦27′03′′ E). It is composed of several agricul-
tural fields cultivated in rotation by more than 20 different
land owners, and thus the agricultural management is het-
erogeneous. The mean annual temperature and precipitation
are 10.2 ◦C and 715 mm, respectively (Rudolph et al., 2015).
The area is part of the Terrestrial Environmental Observato-
ries (TERENO) network (Bogena et al., 2018; Schmidt et al.,
2012; Simmer et al., 2015). Within this network, continuous
measurements of meteorological parameters are performed
in the centre of field F11 (Fig. 1a).

In 2016, the 44 investigated fields were cropped with
silage maize, sugar beet, winter barley, winter rapeseed, and
winter wheat. The distribution of these crops in the study
area is shown in Fig. 1b. The total area cultivated with each
crop, as well as their approximate emergence and harvest
date, is listed in Table 1. A more detailed investigation was
performed in fields where sugar beet was grown (fields F01,
F05, F13a, F46, F48, F49, F12, F47, F50, and F51 in Fig. 1a).
For field F01, the sugar beet yield for 2016 was 61.4 t ha−1 of
fresh beet, which is equal to 14.2 t ha−1 of dry beet assuming
an average water content of 76.8 % (FAO, 1999).

Previous studies at this site showed that soil heterogene-
ity has a strong influence on crop performance during long
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Table 1. Range of emergence and harvest dates and total area for the five crops cultivated in the study area in 2016.

Plant Emergence Harvest Area (ha)

Silage maize 2 May 2016 14 November 2016 3.5
Sugar beet 1 to 10 May 2016 20 October 2016 26.5
Winter rapeseed 1 to 10 November 2015 20 July 2016 9.2
Winter barley 1 to 10 December 2015 25 July 2016 18.2
Winter wheat 15 November 2015 29 July 2016 26.2

Figure 1. (a) Satellite image of the study area with the fields used
for comparison and codes of fields where sugar beet was grown in
2016 and (b) crops that were grown in each studied field in 2016
(ESRI, 2016).

periods of water scarcity (Rudolph et al., 2015; von Hebel
et al., 2018). This is most apparent on the upper terrace,
which has an altitude of ∼ 110–113 m a.s.l. and is separated
from the lower terrace (∼ 101–103 m a.s.l.) by a gentle slope
with western exposition (Fig. 1). For both terraces, aeo-
lian Pleistocene sediments and translocated Holocene loess
(Röhrig, 1996) are generally dominant in the topsoil. Within
the top 2 m of soil, sand and gravels from the Pleistocene
and Holocene are consistently found below the aeolian sedi-
ments of the upper terrace and locally below the topsoils of
the lower terrace (Brogi et al., 2019; Klostermann, 1992; Pät-
zold et al., 2008; Röhrig, 1996). The depth to these sand and
gravels is known to be a strong control on crop water avail-
ability (Brogi et al., 2020; Rudolph et al., 2015; von Hebel et
al., 2018).

Information on the spatial and temporal development of
the five crops in 2016 was derived from multispectral satellite
images. In particular, six LAI maps estimated from Level 3A
images recorded by the RapidEye satellite constellation were
available. These images covered the growing season of the
five investigated crops and were acquired on 14 March,
20 April, 28 May, 9 June, 12 August, and 8 September 2016.
In order to generate the LAI maps, the normalized differ-
ence vegetation index (NDVI) of the satellite images was
first calculated using the red (RED; 630–685 nm) and the
near-infrared (NIR; 760–850 nm) bands. In a second step,
NDVI values were used to calculate the fractional vegetation
cover (FVCNDVI) for each image using the NDVI of bare soil
(NDVIS) and the fully vegetated state (NDVIV) (Beck et al.,
2006; Xiao and Moody, 2005; Zeng et al., 2003). Finally,
the LAINDVI was calculated from the FVCNDVI. In this final
stage, the light extinction coefficient k(θ ) of each crop type,
which is a measure of attenuation of radiation in the canopy
(Campbell, 1986; Norman and Campbell, 1989; Ross, 2012;
Propastin and Erasmi, 2010), was calibrated using 45 in situ
destructive LAI measurements that were acquired between
22 March and 7 September 2016. In the case of winter rape-
seed and silage maize, no in situ LAI measurements were
available, and k(θ ) was obtained from literature values (Ali
et al., 2015). A detailed description of the procedure used for
this study area can be found in Brogi et al. (2020), whereas
the general approach is described in more detail in Ali et
al. (2015).
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2.2 Available soil maps

Three different soil maps of the same area were used to in-
form agro-ecosystem simulations. Simulations were first per-
formed using information from a geophysics-based soil map
(Brogi et al., 2019) employing a methodology that was al-
ready successfully applied in this area by Brogi et al. (2020).
In a following step, simulations were performed using infor-
mation derived from two commonly available soil maps: (i) a
regional soil map (Röhrig, 1996) with a scale of 1 : 5000 and
(ii) a national soil and yield potential map (NRW, 1960) used
in agricultural taxation.

The geophysics-based soil map (Fig. 2a) is a high-
resolution product that was obtained by combining multi-
configuration EMI measurements and direct soil sampling
with subsequent laboratory analysis (Brogi et al., 2019). EMI
measurements were performed using a CMD Mini Explorer –
Special Edition (GF Instruments, Brno, Czech Republic) and
resulted in six apparent electrical conductivity (ECa) maps,
each with a different depth of investigation. These maps were
analysed using a supervised classification methodology. This
resulted in a map that showed the spatial distribution of 18
different soil types within the study area. Quantitative soil in-
formation was obtained using 100 augering locations (∼ one
location per hectare) where horizon type and thickness were
recorded. At these locations, soil samples were also collected
to determine the grain size distribution of each soil hori-
zon. Finally, information obtained through direct soil sam-
pling was combined with the spatial distribution of the ECa-
based soil units, which resulted in a soil map with 1 m reso-
lution and quantitative soil information up to 2 m depth. The
geophysics-based soil map consists of four sub-areas (A, B,
C, and D) and a total of 18 soil units with an area between 0.6
and 16.0 ha. As shown in Fig. 2a for the soil units A1a and
C1a, each soil unit of the geophysics-based soil map is pro-
vided with a soil profile that shows the depth of each horizon
as well as the textural information (percentage of clay, silt,
and sand plus gravels). A detailed description of the acqui-
sition, management, and analysis of the geophysical data as
well as the steps used to create this geophysics-based soil
map can be found in Brogi et al. (2019). This geophysics-
based product was recently used in several studies focused
on the Selhausen study area (Brogi et al., 2020; Jakobi et al.,
2020; Reichenau et al., 2020).

The 1 : 5000 regional soil map is shown in Fig. 2b. This
thematic map was first produced in 1984/85 and then revised
in 1996 (Röhrig, 1996). It is commonly used in regional-
scale projects (e.g. sustainable soil protection plans) and is
part of the NRW official soil inventory (Geologischer Dienst
NRW, 2018). The topographic base is the 1 : 5000 German
base map (Deutsche Grundkarte), and soil information is ob-
tained through direct soil sampling (augering). The distance
between auger locations is typically< 100 m (∼ one location
per hectare). For each soil unit, information on soil type, soil
texture (qualitative description), and thickness of the topsoil

horizons is provided. Generally, the depth of the interface be-
tween two soil horizons is represented by a range (e.g. in soil
unit A-1B of Fig. 2b, this interface is found between 0.3 and
0.6 m depth). This information was generalized by averaging
the reported maximum and minimum values. According to
this map, 13 soil units are found in the study area, with an
area between 1.0 and 25.3 ha.

The soil taxation map is shown in Fig. 2c. It is used for the
calculation of tax rates for farmers and land owners based on
estimates of the yield potential (NRW, 1960). The scale of
this map can vary across different regions in Germany and
is 1 : 5000 for the study area. The map is based on the Ger-
man cadastre, and soil information was obtained through di-
rect soil sampling with a separation of 40 to 50 m between
augering locations (∼ four locations per hectare). Each soil
unit is described by a soil profile with 2.0 m depth, which is
divided into up to four horizons. Each horizon carries qual-
itative information on soil texture. In some cases, the inter-
face between two horizons is represented by a range, which
again was generalized by averaging the reported maximum
and minimum values (e.g. soil unit A-01 in Fig. 2c). In total,
10 different soil units were identified in the study area, and
their area ranges between 0.7 and 17.5 ha.

The area covered by the five investigated crops in 2016
(Fig. 1b) and the geometry of the three soil maps (Fig. 3)
were intersected. As a result, a set of unique soil–crop com-
binations was obtained for each soil map: (i) 72 unique soil–
crop combinations for the geophysics-based soil map, (ii) 42
for the 1 : 5000 soil map, and (iii) 35 for the soil taxation
map.

2.3 Similarities between sub-areas of the three soil
maps

According to the geophysics-based soil map, the study area
is divided into four sub-areas (A, B, C, and D) as described
in Brogi et al. (2019). Sub-area A is located on the upper ter-
race, sub-area B is located on the slope between the two ter-
races, and sub-areas C and D are located on the lower terrace.
Crop growth simulations for sub-areas B and C by Brogi et
al. (2020) showed similar results. Thus, they were described
together as a single sub-area BC in this study (Fig. 3). Gen-
erally, the geometry of the soil units described in the com-
monly available soil maps falls within one of the four sub-
areas of the geophysics-based product. Thus, the soil units
of the commonly available maps were matched with one of
the sub-areas A, BC, and D. As a result, a clearer compar-
ison between the simulations and the results obtained with
different maps was possible. The distribution of the soil units
described in the three soil maps is shown in Fig. 3, and the
final unified code of each soil unit is provided in Table 2.
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Figure 2. (a) Geophysics-based soil map of the study area with examples of the quantitative description of the soil characteristics (soil units
A1a and C1a are shown); (b) 1 : 5000 soil map of the study area with examples of the qualitative description of the soil characteristics (soil
units A-1B and A-7L are shown) (Röhrig, 1996); and (c) soil taxation map of the study area and examples of the qualitative description of
the soil characteristics (unit A-01 is shown) (NRW, 1960). The spatial distribution of all soil units within the study area and their codes are
shown in Fig. 3.

Table 2. Unified codes of the soil units for the three soil maps.

Soil map Sub-area A Sub-area BC Sub-area D

Geophysics-based
soil map

A1a, A1b, A1c, A1d B1a, B1b, B2a, B2b, B2c, C1a, C1b,
C2a, C2b

D1a, D1b, D1c, D1d, D2a

1 : 5000 soil map A-1B, A-2B, A-7L BC-5L, BC-8sL, BC-10sL, BC-17lS,
BC-21gS, BC-32U

D-20sG, D-22gS, D-25G, D-27sG

Soil taxation map A-01, A-02, A-03 BC-05, BC-06, BC-07 D-09, D-10, D-14, D-15

2.4 The AgroC model

The AgroC model (Herbst et al., 2008) was used to simu-
late crop growth within each of the soil–crop combinations.
In particular, we were interested in investigating how differ-
ences in soil water content dynamics and water availability
as a consequence of differences in soil layering and soil hy-
draulic parameters affected crop growth. The agro-ecosystem
model AgroC couples three main modules: SOILCO2, SU-

CROS, and RothC. SOILCO2 simulates vertical fluxes of
water, heat, and CO2 for a 1D soil column (Šimůnek et al.,
1996; Šimůnek and Suarez, 1993); SUCROS simulates crop
growth (Spitters et al., 1989); and RothC simulates organic
carbon turnover (Coleman and Jenkinson, 2008).
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Figure 3. Spatial distribution of soil units and of sub-areas A, BC, and D in (a) the geophysics-based soil map, (b) the 1 : 5000 soil map, and
(c) the soil taxation map.

In the SOILCO2 module, water flow in a given soil profile
is described by the 1D Richards equation:

∂θ

∂t
=
∂

∂z

[
K(h)

(
∂h

∂z
− 1

)]
−Q, (1)

where θ (cm3 cm−3) is the volumetric water content, t is
time, z is the vertical coordinate (cm), K(h) (cm h−1) is the
hydraulic conductivity as a function of pressure head h (cm),
and Q (cm3 cm−3 h−1) is the source–sink term accounting
for root water uptake by crops. The hydraulic conductivityK
and the volumetric water content θ as a function of pressure
head are described by the Mualem–van Genuchten model:

K(h)=KsS
1/2
e

[
1−

(
1− S1/m

e

)m]2
(2)

and

θ (h)= θr+
θs− θr(

1+ |αh|n
)m , (3)

where Ks is the saturated hydraulic conductivity (cm h−1),
m is a parameter that is set equal to 1− 1/n, θs and θr
(cm3 cm−3) are the saturated and residual water content, re-
spectively, α is a parameter corresponding approximately to
the inverse of the air entry pressure (cm−1), n (dimension-
less) is a parameter related to the pore size distribution (Van
Genuchten, 1980), and Se is the dimensionless relative satu-
ration defined as

Se =
θ − θr

θs− θr
. (4)

The water demand is calculated in the SUCROS module. For
a crop growing under optimal conditions, the potential evap-
otranspiration is divided between potential transpiration Tp

(cm h−1) and potential soil evaporation Ep (cm h−1). Then,
the potential root water uptake Sp (cm3 cm−3 h−1) is calcu-
lated using

Sp(z)= β(z)Tp, (5)

where β is the depth-dependent root distribution function.
Afterwards, the depth-specific actual root water uptake Q is
obtained from the potential root water uptake Sp using

Q(z,h)= ϕ (h)Sp(z), (6)

where the water uptake is scaled by a water uptake stress
factor ϕ that is dependent on the pressure head. The ϕ(h)
factor is calculated using the Feddes et al. (1978) approach:

ϕ (h)=


h0−h
h0−h1
1

10
h2−h
h3

for
h0 ≤ h≤ h1
h1 ≤ h≤ h2
h2 ≤ h≤ h3

, (7)

where h0–3 (cm) are threshold pressure heads obtained
from literature. These thresholds were set to h0 = 0 cm,
h1 =−20 cm, h2 =−5000 cm, and h3=−16 000 cm (Van-
clooster et al., 1995). The actual root water uptake is inte-
grated over the rooting depth to obtain the actual transpira-
tion. Afterwards, the ratio between actual and potential tran-
spiration is used to simulate carbon assimilation and biomass
production, which are also affected by additional variables
such as temperature and solar radiation. A detailed descrip-
tion of this model and of the effects of simulated water stress
on simulated crop growth can be found in Klosterhalfen et
al. (2017) and in Brogi et al. (2020) for this study area.
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2.5 Estimation of soil hydraulic parameters

Soil hydraulic parameters for each horizon of the soil units
of all three soil maps were estimated from texture and bulk
density using pedotransfer functions (PTFs) and a correction
for gravel content as successfully done by Brogi et al. (2020)
for the same area. Information on bulk density was not avail-
able. Therefore, the bulk density of the fine fraction< 2 mm,
BD<2, of each horizon was assumed to be 1.30 g cm−3 for
the Ap horizon, 1.40 g cm−3 for the AB horizon, 1.50 g cm−3

for deeper horizons with fine sediments, and 1.60 g cm−3 for
deeper horizons with coarse sediments. These estimates were
based on literature values and on results from previous sam-
pling campaigns conducted within the study area (Brogi et
al., 2020; Ehlers et al., 1983; Unger and Jones, 1998). Un-
fortunately, the soil profiles from the 1 : 5000 soil map and
from the soil taxation map are not provided with the depth of
the interface between the Ap and AB. Therefore, in each soil
profile, the first horizon was subdivided at a depth of 0.3 m as
this was generally observed to be the depth of the Ap horizon
in this study area.

The geophysics-based soil map provides quantitative in-
formation on soil texture for each soil unit. In this case, the
percentages of clay, silt, and sand were directly used in the
estimation of the soil hydraulic parameters. In contrast, the
two commonly available soil maps provide a qualitative de-
scription of soil texture (i.e. a soil textural class). Generally,
lookup tables are used in the case of such qualitative descrip-
tions (Van Looy et al., 2017) in order to obtain class-average
soil hydraulic parameters (Baker, 1978; Bouma, 1989). To
obtain a consistent comparison between the three maps, these
qualitative soil textural class descriptions were translated
into quantitative percentages of sand, silt, and clay using the
USDA soil textural classification (USDA, 2019). For this, the
centroid of each soil textural class within the USDA triangle
was calculated to determine the associated soil texture per-
centages (Table 3). In some cases, the presence of gravel was
qualitatively described in the two commonly available soil
maps. In these cases, a 25 % volume of gravel was assumed
when the gravel content was defined as “gravelly” and 10 %
was assumed when the gravel content was defined as “weakly
gravelly” as these percentages matched those observed in the
study area.

The dry bulk density was estimated for each soil horizon
using the equation of Brakensiek and Rawls (1994):

BDt = BD<2+Gv(BD>2−BD<2), (8)

where BDt is the dry bulk density of the soil, BD>2 is the
dry bulk density of gravel material, and Gv is the volume of
gravel calculated from the percentage of weight according to
Flint and Childs (1984). Finally, the soil hydraulic parame-
ters θs, θr, α, n, and Ks were estimated from the dry bulk
density and from clay, silt, and sand percentages by using the
PTFs of Rawls and Brakensiek (1985). In all the soil maps,
the estimatedKs values of the coarse horizons in sub-areas A

Table 3. Percentage (%) of sand, silt, and clay of the centroid of
relevant soil textural classes within the USDA soil texture triangle.

Soil class Clay (%) Silt (%) Sand (%)

Loam 20 40 40
Loamy sand 10 10 80
Loamy silt 15 60 25
Sand 5 5 90
Sandy clay loam 30 10 60
Sandy loam 20 10 70
Silt 5 90 5
Silty loam 8 70 22

and D were corrected for gravel content using the correction
from Brakensiek and Rawls (1994):

Kb =Ks[2(1−Gv)/(2+Gv)], (9)

where Kb is the saturated hydraulic conductivity of the bulk
soil, and Ks is obtained from the PTF of Rawls and Braken-
siek (1985).

As shown in Brogi et al. (2020), the coarse horizon 2C
(sand and gravel) that underlies the fine aeolian sediments
in sub-area A and in parts of sub-area D is of primary im-
portance for a sound simulation of crop performance within
the investigated area. However, the properties of these deeper
soil horizons were not adequately captured in the commonly
available soil maps, and this resulted in simulated water con-
tents that were unrealistically low. To avoid the introduc-
tion of such strong and unrealistic variations in the results
of the agro-ecosystem simulations performed with the three
soil maps, the soil hydraulic parameters obtained for the 2C
horizon in sub-areas A and D of the geophysics-based soil
map were integrated into the two other commonly available
soil maps.

2.6 Setup and evaluation of AgroC simulations

The 1D soil column used in the AgroC simulations was dis-
cretized by using a maximum of 252 nodes with a spacing of
1 mm near the soil surface and a gradual increase with depth
until a maximum of 10 mm. The simulation period extended
from 1 July 2015 to 31 December 2016. The simulation do-
main of the soil units in sub-area BC extended to 2.0 m below
the soil surface for all three soil maps. In these units, a vari-
able pressure head with an annual sinusoidal variation based
on water table depth observations in field F10 (Fig. 1) was
used as the lower boundary condition. The groundwater ta-
ble depth was set to a minimum of −2.0 m on 15 January
and a maximum of −2.6 m on 15 July. The initial pressure
head within the soil profile was defined through a spin-up
simulation. To achieve this, the period from 1 January 2015
to 31 December 2016 was repeatedly run until no change in
pressure head within the soil column was observed between
consecutive model runs.
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The soil units of sub-areas A and D have a coarse sand and
gravel horizon at depth. In these soil units, the simulation do-
main extended 30 mm into the coarse horizon. As a result, the
simulation domain varied in depth between 0.52 and 1.57 m
for the geophysics-based soil map and from 0.33 to 1.43 m
in the two commonly available soil maps. Free drainage was
used as the lower boundary condition for these soil units. The
initial pressure head of the lower coarse horizons was set to
−10 mm, and hydrostatic equilibrium was assumed through-
out the profile (Brogi et al., 2020).

The required crop-specific parameters were mostly ob-
tained from various literature sources (Allen et al., 1998;
Bolinder et al., 1997; Boons-Prins et al., 1993; Borg and
Grimes, 1986; Penning de Vries et al., 1989; Spitters et al.,
1989; Van Heemst, 1988; Vanclooster et al., 1995). Only the
sub-area specific parameterization of the death rate of leaves
for sugar beet, the start of the senescence stage for silage
maize, and the partitioning of aboveground biomass for win-
ter wheat were adapted as described in detail in Brogi et
al. (2020). The crop-specific maximum rooting depth was set
to 1.50 m for sugar beet and silage maize, 1.40 m for win-
ter rapeseed, 1.20 m for winter barley, and 1.00 m for winter
wheat. The method of Rum et al. (1974) was used to calculate
the root distribution above these depths. In the case of the soil
units of sub-areas A and D, rooting depth was reduced using
the depth of the lower coarse horizon as it was assumed that
roots cannot penetrate into such coarse soils (Daddow and
Warrington, 1983).

Three criteria were used to quantify the agreement be-
tween the observed LAINDVI and LAI simulated with AgroC
by using inputs from the three soil maps. The first was the
root mean square error (RMSE):

RMSE=

√√√√1
n

n∑
i=1

(Obsi −Simi)2, (10)

where n represents the number of observations, Obsi is the
observed value, and Simi is the simulated value. A lower
RMSE indicates a better fit. The second criterion was the
model efficiency (ME), which is calculated as

ME=

n∑
i=1

(Obsi −Obs)2
−

n∑
i=1

(Obsi −Simi)2

n∑
i=1

(Obsi −Obs)2
, (11)

where Obs is the observed mean. The ME can vary between
−∞ and 1, and a value higher than 0 indicates that the model
describes the data better than the mean. A ME value of 1 in-
dicates perfect agreement between observations and predic-
tions (Nash and Sutcliffe, 1970). The third and final criterion
was the coefficient of determination R2:

R2
=


n∑
i=1

(Obsi −Obs)(Simi −Sim)√
n∑
i=1

(Obsi −Obs)2
n∑
i=1

(Simi −Sim)2


2

, (12)

where Sim is the simulated mean. The value of R2 ranges be-
tween 0 and 1, and a value of 1 indicates perfect agreement.

3 Results and discussion

3.1 Comparison of the spatial distribution of soil
properties in the three maps

By visually comparing the three soil maps, it is apparent that
the geomorphological border between the upper and lower
terrace is similarly identified (division between sub-area A
and BC in Fig. 3). In the geophysics-based soil map, this
subdivision is based on the measured apparent electrical con-
ductivity (ECa) data (Brogi et al., 2019), whereas the delin-
eation in the commonly available soil maps was mainly based
on coarse soil augering and topography since this limit ap-
proximately coincides with the top of the slope that divides
these two sub-areas. The location of the subdivision between
sub-areas BC and D showed stronger differences between the
three maps. Again, this border is obtained from ECa data in
the geophysics-based soil map. In this case, there is no to-
pographic feature associated with this subdivision, and, in
the other two maps, only the information from augering was
available to determine its position. This likely explains why
the subdivision between the two sub-areas locally coincides
with field boundaries in the 1 : 5000 soil map and in the soil
taxation map.

The geophysics-based soil map generally identifies a
larger number of soil units with more complex polygon
shapes compared to the commonly available soil maps. This
is a consequence of the high resolution of the measured ECa
data. In this study area, a single agricultural field contained
four to nine soil units according to the geophysics-based soil
map. The two commonly available soil maps often integrate
larger areas into one soil unit, and a single field is composed
of a maximum of four soil units. However, many fields con-
tain only one soil unit.

In the 1 : 5000 soil map and in the soil taxation map,
the shallow soils found within the study area are gener-
ally silty loam and loamy silt above coarse sediments. As
shown in Fig. 4, the grain size distribution obtained from
the qualitative descriptions using Table 3 showed minor dif-
ferences compared to the one provided by the soil units
of the geophysics-based soil. For example, the estimated
grain size distribution for loamy silt soil units of the com-
monly available maps was 25 % sand, 60 % silt, and 15 %
clay, whereas the respective range of values found in the
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Figure 4. Percentages of sand (orange colour scale) and silt (brown colour scale) at 0.30 m depth and at 1.50 m depth in the three soil maps.

Figure 5. Depth of the coarse horizon 2C in the three soil maps.

geophysics-based soil map was 13 %–24 % sand, ∼ 56 %–
70 % silt, and ∼ 13 %–23 % clay. The estimated values for
silty loam (22 % sand, 70 % silt, and 8 % clay) differed more
from those of the geophysics-based soil map but still were
in reasonable agreement. The underlying coarse materials
found in sub-areas A and D were identified as loamy sand,
sand, sandy clay loam, or sandy loam in the commonly avail-
able soil maps. In the case of these four soil textural classes,
the sand fraction reported in Table 3 (60 %–90 %) was much
higher than the values reported in the geophysics-based soil
map (∼ 28 %–58 %). At the same time, the percentage of silt
in the commonly available maps (5 %–10 %) was much lower

compared to those of the geophysics-based map (∼ 30 %–
54 %). Figure 4 illustrates these textural differences in sand
and silt percentages between the three soil maps at a depth of
1.50 m.

The description of the topsoil (at 0.3 m depth) in the three
soil maps is rather similar. In contrast, the geophysics-based
soil map provides a different description of the underly-
ing coarse horizons compared to the commonly available
soil maps. It is important to note that the textural compo-
sitions found in the geophysics-based soil map were deter-
mined from laboratory analysis, whereas those provided by
the other two maps were generated from field estimations
(hand texturing). Due to these differences, soil hydraulic
parameters of the coarse sediments vary strongly between
the three maps, with the commonly available maps show-
ing much higher values of Ks and θs. As already mentioned
in the Materials and methods section, this resulted in unre-
alistic simulations with very low soil water content for the
commonly available maps (results not shown). For this rea-
son, the soil hydraulic parameters of the coarse horizons of
sub-areas A and D of the geophysics-based soil map were
integrated into the simulations based on the two commonly
available soil maps.

Differences in the depth to the coarse sand and gravel that
underlie the fine sediments in sub-areas A and D were ob-
served between the three soil maps (Fig. 5). In all three maps,
this depth was obtained from augering information and var-
ied between 0.47 and 1.34 m in the geophysics-based soil
map, between 0.30 and 1.50 m in the 1 : 5000 soil map, and
between 0.40 and 1.40 m in the soil taxation map. Both the
two commonly available soil maps showed a larger depth
range than that of the geophysics-based soil map, with the
1 : 5000 soil map showing the largest depth range.
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3.2 Performance of LAI simulations

Figure 6 shows a comparison between the mean observed
LAINDVI for each soil–crop combination and the LAI simu-
lated with AgroC by using inputs from the three soil maps.
The LAI simulations based on the geophysics-based soil
map (R2

= 0.925, ME= 0.919, and RMSE= 0.604) were
more able to describe LAINDVI compared to the simulations
based on the 1 : 5000 soil map (R2

= 0.887, ME= 0.869,
and RMSE= 0.718) and the soil taxation map (R2

= 0.886,
ME= 0.866, and RMSE= 0.719). However, the results for
all three soil maps could be considered satisfactory as the im-
provement provided by the more detailed geophysics-based
soil map is relatively small. This similarity in model qual-
ity can be explained by the simultaneous use of all simu-
lated crops (silage maize, sugar beet, winter barley, winter
rapeseed, and winter wheat) and all six RapidEye satellite
images. Furthermore, this comparison was performed by us-
ing the mean value for each soil–crop combination, and this
reduced the influence of small-scale variability of LAINDVI.
These aspects will be investigated in more detail in the next
section.

3.3 Pixel-by-pixel comparison of LAI simulations

Figure 7 shows a pixel-by-pixel comparison of observed
LAINDVI and LAI simulated using inputs from the three soil
maps. It is apparent how the highest pixel density (red) is
close to the 1 : 1 line for the geophysics-based soil map, and
more spread is observed for the two commonly available soil
maps. Moreover, the error measures for the geophysics-based
soil map (R2

= 0.884, ME= 0.878, and RMSE= 0.689)
show slightly better results than those of the 1 : 5000 soil map
(R2
= 0.858, ME= 0.847, and RMSE= 0.774) and consid-

erably better results than those of the soil taxation map
(R2
= 0.741, ME= 0.675, and RMSE= 1.126). The values

of LAINDVI occasionally showed a rather strong variabil-
ity within single soil–crop combinations. As a consequence,
lower values of R2 and ME and higher values of RMSE are
found in the pixel-by-pixel analysis compared to the pre-
viously discussed comparison that made use of the mean
LAINDVI for each soil–crop combination.

Table 4 shows the pixel-by-pixel performance of the three
soil maps for each RapidEye satellite image. The geophysics-
based soil map generally showed higher ME and higher R2

and lower RMSE. However, it is apparent that the three soil
maps performed similarly in March, May, and June, when
winter crops were grown (i.e. winter barley, winter rape-
seed, and winter wheat), with the 1 : 5000 soil map showing
marginally higher ME and R2 for individual dates. Given the
sufficient amount of rain during the growth of these crops,
simulations showed little crop water stress. This resulted in
simulations with rather similar LAI despite using informa-
tion from three different soil maps. In the case of the image
from April, the geophysics-based soil map and the 1 : 5000

soil map outperformed the soil taxation map. However, a
general decrease in performance can be observed for all three
maps. This general decrease is likely caused by the high
variability in LAINDVI between different agricultural fields,
which is caused by the uncertainty in seeding and emergence
dates of winter crops. Moreover, the flowering of winter rape-
seed (yellow dots in Fig. 6) affected the estimated LAINDVI
(Brogi et al., 2020). This may have additionally reduced the
performance for all three soil maps in April. A strong drop in
performance for all three soil maps was observed in August
and September. At this stage, the comparison is based solely
on silage maize and sugar beet as the other crop types were
already harvested. Thus, the reduced correlation is likely re-
lated to the appearance of stress in these two crops that in-
creased the spatial variability in LAINDVI. In this situation of
high water stress, the geophysics-based soil map clearly out-
performed the 1 : 5000 soil map and the soil taxation map,
especially towards the end of the growing season.

3.4 Simulation of sugar beet

In a next step, simulations of sugar beet are analysed in more
detail because of the importance of this crop (sugar beet rep-
resents 31.7 % of the investigated area) and because the pre-
viously described analysis showed that the difference in per-
formance between the three soil maps was the greatest when
this crop was still growing (August and September). Fig-
ure 8a–c show the simulated LAI (lines) and the observed
LAINDVI (dots) for sugar beet grown on the soil units of sub-
area A for the three soil maps. Figure 8d–f show the asso-
ciated water stress simulated with AgroC. All these simu-
lations made use of the same crop parameterization. Thus,
the differences in simulated LAI are due to different degrees
of water stress associated with the soil characteristics. As
shown in Fig. 8a, the simulated LAI based on the geophysics-
based soil map matched well with the observations. In fact,
soil units A1a-d showed very similar LAI values for 28 May
and 9 June. Later in the growing season (12 August and
8 September), simulated LAI of soil units A1a-d differed due
to a different magnitude of water stress. The magnitude of
water stress and the consequent reduction of LAI are well
correlated with the depth of the coarse sediments, which was
0.86 m in soil unit A1a, 0.67 m in A1b, 0.58 m in A1c, and
0.49 m in A1d.

In the case of the three soil units of the 1 : 5000 soil map,
the simulated LAI matched well the observations in May and
June, with the only exception of soil unit A-07L, where ob-
served LAINDVI is underestimated. Later in the growing sea-
son (August and September), soil unit A-7L again matched
the observations. This was not the case for soil units A-1B
and A-2B, where LAINDVI was underestimated. The mis-
match between LAI simulations and observations for these
two soil units is due to the assumed shallow depth to the
coarse sediments (0.30 m in soil unit A-2B, 0.45 m in unit
A-1B, and 0.80 m in A-7L). As previously discussed, this
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Figure 6. Simulated LAI and mean observed LAINDVI for each soil–crop combination for simulations based on (a) the geophysics-based
soil map, (b) the 1 : 5000 soil map, and (c) the soil taxation map for all six available RapidEye images.

Figure 7. Pixel-by-pixel comparison between simulated LAI and observed LAINDVI for simulations based on (a) the geophysics-based soil
map, (b) the 1 : 5000 soil map, and (c) the soil taxation map. The colour indicates the density of events, with red representing the highest
density and blue the lowest density.

depth has a strong influence on the intensity and timing of
water stress. Generally, the topsoil and the associated physi-
cal properties described in the 1 : 5000 soil map were rather
similar to those of the geophysics-based soil map. As a con-
sequence, the reduced match between simulated LAI and ob-
served LAINDVI was caused by an underestimation of the
depth to the coarse sediments in soil units A-1B and A-2B,
which resulted in a higher water stress and lower LAI.

In the case of the soil taxation map, the observed LAINDVI
for the two soil units A-01 and A-03 were rather similar and
showed a strong variability within each unit (see dots and
error bars in Fig. 8c). This suggests that the geometry of
the two soil units did not capture the spatial differences in
crop performance present in the LAINDVI. The soil physical
properties of the uppermost horizon in the soil taxation map
were rather different compared to those of the geophysics-

based soil map. In contrast, the soil physical properties of
the coarse sediments were equal to those of the geophysics-
based soil map by design. However, the depth to these coarse
sediments in the two soil units was generally deeper (1.20 m
in A-01 and 0.70 m in A-03) than in the geophysics-based
soil map. Due to these different soil physical properties and
the overestimation of soil depth overestimation, lower water
stress in soil unit A-01 caused a higher simulated LAI com-
pared to the observations. This depth was better captured in
soil unit A-03 that showed better LAI simulations.

Figure 9 shows the spatial distribution of LAINDVI for
12 August and 8 September. On both days, the large-scale
pattern in LAINDVI associated with the differences between
sub-areas A, BC, and D was clearly visible. In August
(Fig. 9a), LAINDVI reached the maximum observed value in
sub-area BC, whereas lower values were observed in sub-
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Table 4. R2, ME, and RMSE of the pixel-by-pixel comparison of the three soil maps performed between simulated LAI and observed
LAINDVI of each soil–crop unit. The highest R2 and ME and the lowest RMSE at each date are marked in bold.

Geophysics-based map 1 : 5000 soil map Soil taxation map

Date R2 ME RMSE R2 ME RMSE R2 ME RMSE

14 Mar 0.84 0.76 0.62 0.83 0.75 0.63 0.72 0.62 0.79
20 Apr 0.72 0.56 1.07 0.72 0.55 1.09 0.45 −0.29 1.84
28 May 0.93 0.93 0.64 0.92 0.92 0.67 0.81 0.36 1.14
9 Jun 0.89 0.89 0.64 0.90 0.90 0.69 0.84 0.80 0.86
12 Aug 0.47 0.47 0.64 0.39 −0.02 0.89 0.38 0.37 0.70
8 Sep 0.78 0.77 0.56 0.65 0.56 0.78 0.50 0.44 0.87

area A due to water stress. In September (Fig. 9b), the de-
velopment of sugar beet was affected by water stress in both
sub-area A and D, as indicated by the lower LAINDVI com-
pared to sub-area BC.

The simulated LAI obtained using the three soil maps cap-
tured the large-scale pattern in LAINDVI associated with the
sub-areas A, BC, and D to some extent. The differences in
crop performance between sub-area A and BC were suffi-
ciently well represented in all three simulations. However,
the border between low LAI in sub-area A and high LAI
in sub-area BC is better represented in the geophysics-based
approach (see field F47 in Fig. 9). The differences between
the high LAI of sub-area BC and the intermediate LAI of
sub-area D were not well represented in the two commonly
available soil maps. In fact, the simulated LAI is very sim-
ilar in the two sub-areas when using the 1 : 5000 soil map
and the soil taxation map. This is related to the generally
low water stress simulated in sub-area D that did not result
in a meaningful reduction of LAI. In contrast, a substantial
reduction of LAI was obtained within the simulations based
on the geophysics-based soil map. The small-scale patterns
in LAINDVI observed within each sub-area were also partly
captured by the geophysics-based soil map for both dates. In
contrast, simulations based on the other two soil maps did not
provide results that represented these patterns. At the same
time, it is clear that the small-scale variability in LAINDVI is
not fully captured in our simulation approach because varia-
tions within individual soil–crop combinations were not con-
sidered.

Table 5 provides the pixel-wise RMSE between simu-
lated LAI and LAINDVI for all 11 fields where sugar beet
was grown. Generally, these fields can be divided into three
groups based on the RMSE of each soil map. The first group
consists of the fields F01, F05, F13, F46, F48, and F49.
In these fields located in sub-area A, the geophysics-based
soil map provided improved simulation results for both dates
compared to the simulations based on the two other soil maps
as indicated by the lower RMSE. Field F46 was the only ex-
ception as the lowest values in August (RMSE= 0.52) were
obtained with inputs from the 1 : 5000 soil map. In some
cases, the difference in RMSE between the simulations based

on the three soil maps was rather small, such as in field F48
and field F49. Nevertheless, the RMSE obtained in this group
of fields using inputs from the geophysics-based soil map
was lower for both days and was larger in September than in
August. The second group consists of fields F12, F44, and
F47 in sub-area BC. In these fields, no water stress was sim-
ulated for any of the soil maps. Therefore, all three soil maps
provided accurate LAI simulations, as indicated by the low
RMSE. The third group consist of fields F50 and F51 that are
located in sub-area D. In August, the RMSE of the simula-
tions performed using the three soil maps was rather similar.
In contrast, the simulations based on the geophysics-based
soil map clearly outperformed those based on the commonly
available soil maps in September. This again corresponds
with the simulated water stress in sub-area D, which was high
in September but rather low in August.

Overall, the results clearly highlight that the improvements
provided by the use of the geophysics-based soil map for the
simulation of sugar beet are clearly dependent on the mag-
nitude and timing of water stress. Simulations based on the
three soil maps showed rather similar results in periods with
sufficient water availability and in areas where water stress
did not affect crop development. In contrast, in the presence
of significant water stress, the use of the geophysics-based
soil map reduced the RMSE between LAI simulations and
observations compared with the use of the 1 : 5000 soil map
or the soil taxation map. This reduction in RMSE varied sub-
stantially from field to field, with a minimum of 2 % and a
maximum of 67 %. Likely, this variability is due to local dif-
ferences in the quality of the soil characterization provided
by the three soil maps. The area-averaged RMSE reduction
in periods of significant water stress was 25 % compared to
the 1 : 5000 soil map and 31 % compared to the soil taxation
map.

In field F01 of sub-area A, the reduction of the RMSE be-
tween LAI simulations and observations provided by the use
of the geophysics-based soil map varied between 15 % and
49 % on 8 September. In this field, the yield recorded by the
farmer was 14.2 t ha−1 of dry beet biomass. The use of in-
puts from the geophysics-based soil map resulted in a simu-
lated yield of 14.3 t ha−1, which was only 1 % higher than the
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Figure 8. Observed LAINDVI (dots) of sugar beet compared to the simulated LAI (lines) in sub-area A (upper plots) as well as corresponding
stress occurrence (lower plots) simulated using input from (a) the geophysics-based soil map, (b) the 1 : 5000 soil map, and (c) the soil
taxation map.

Figure 9. Observed LAINDVI and simulated LAI obtained using input from the geophysics-based soil map (Geophysi.), the 1 : 5000 soil map
(Soil 5k), and the soil taxation map (Taxation); row (a) shows the codes of the investigated fields and the comparison on 12 August 2016,
and row (b) shows the geometry of sub-areas A, BC, and D and the comparison on 8 September 2016.
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Table 5. RMSE between simulated LAI and LAINDVI in fields with sugar beet. The best result for each date is marked in bold.

Field 12 August 2016 8 September 2016

Geophysics- 1 : 5000 Tax. Geophysics- 1 : 5000 Tax.
based soil map map based soil map map

soil map soil map

F01 0.56 0.91 0.57 0.45 0.53 0.88
F05 0.58 0.91 0.67 0.40 0.47 0.53
F13 0.52 0.73 0.57 0.56 0.73 0.73
F46 0.62 0.52 0.92 0.42 0.44 1.27
F48 0.52 0.98 0.57 0.62 0.78 0.90
F49 0.58 1.01 0.61 0.44 0.47 1.10
F12 0.63 0.66 0.66 0.72 0.73 0.73
F44 0.57 0.62 0.58 0.51 0.45 0.43
F47 0.68 0.63 0.56 0.68 0.79 0.77
F50 0.69 0.65 0.66 0.51 0.76 0.79
F51 1.21 1.24 1.22 0.95 1.19 1.32

actual yield. The yield simulated with inputs from the com-
monly available map showed an overestimated yield, with
15.4 ha−1 for the 1 : 5000 soil map (+8 %) and 17.3 ha−1 for
the soil taxation map (+22 %). Similarly as in the case of
LAI, the geophysics-based soil map outperformed the other
two maps. However, these results should be interpreted care-
fully as the required information was only available for a
rather small field within the study area. Nonetheless, it is an-
ticipated that the geophysics-based soil map provides similar
improvements in yield estimates as for the LAI simulations
for other fields. This expectation is based on the tight rela-
tionship between LAI and other aspects of crop development,
such as biomass production and ultimately yield. For this
same reason, the assimilation of LAI data into crop growth
model ensembles has been shown to improve yield estimates
(Jonckheere et al., 2004; Tewes et al., 2020; Wilhelm et al.,
2000).

When comparing the results provided by the use of the
three maps, it has to be noted that the geophysics-based soil
map was produced with a set of 100 sampling locations (one
per hectare), which is similar to the sampling density of the
1 : 5000 soil map (∼ one per hectare) and lower than the one
of the soil taxation map (∼ four per hectare). It can be ar-
gued that the geophysics-based soil map had an advantage
resulting from the quantitative textural information based on
laboratory analysis. To a certain extent, this holds true. How-
ever, it should be seen against the background that textural
information on the coarse soils from the geophysics-based
product was integrated into the simulations with the com-
monly available soil maps. Furthermore, the characterization
of the upper soils only showed local differences between the
three maps.

The reduction in performance of the 1 : 5000 soil map and
of the soil taxation map compared to the geophysics-based
soil map was strongly dependent on local soil characteris-

tics. In general, it was found that this reduction in perfor-
mance was caused by a poor representation of (i) the spatial
geometry of individual soil units, (ii) the depth to the coarse
sediments, (iii) the textural characteristics of the overlying
sediments, and (iv) the subdivision between large sub-areas.
The different quality of this soil representation affected the
quality of the LAI simulations throughout the year and espe-
cially towards the end of the growing season of the summer
crops.

4 Conclusions

In this study, agro-ecosystem simulations were performed on
a 1 km× 1 km agricultural area by using information from
three different soil maps: (i) a high-resolution geophysics-
based soil map, (ii) a 1 : 5000 regional soil map, and (iii) a
soil taxation map. The growth in 2016 of silage maize, sugar
beet, winter barley, winter rapeseed, and winter wheat was
simulated using the agro-ecosystem model AgroC. The LAI
simulated with this model was compared with LAI observa-
tions determined from RapidEye satellite imagery. The simu-
lations based on the geophysics-based soil map outperformed
simulations based on the commonly available maps by con-
sistently showing higher explained variance (R2) and model
efficiency (ME) as well as lower root mean square error
(RMSE). However, simulations for winter crops and in pe-
riods with limited water stress showed subtle improvements
only. In contrast, the geophysics-based soil map clearly out-
performed the commonly available soil maps in periods with
moderate to high water stress that caused a reduction in crop
performance, particularly for silage maize and sugar beet.

AgroC simulations for sugar beet were analysed in more
detail. It was found that the commonly available soil rep-
resentations were strongly outperformed by the geophysics-
based product in areas with coarser soils and in periods with
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high water stress. This was related to a more accurate de-
scription in the geophysics-based soil map of (i) the depth
to the coarse sediments; (ii) the soil texture of the overlying
horizons; (iii) the subdivision of the four geomorphological
sub-areas A, BC, and D; and (iv) the distribution of the soil
units that are found in the study area. This study showed that
a geophysics-based soil characterization combined with di-
rect soil sampling provides an added value to agro-ecosystem
modelling and allows for the improved simulation of crop
LAI and crop performance. Thus, such geophysics-based soil
maps may have a positive and quantifiable utility in agricul-
ture and, depending on local soil characteristics, can support
the use of advanced precision farming techniques and strate-
gies that are not practicable when solely based on general-
purpose soil maps.

Nevertheless, the strong dependence of the added value of
the geophysics-based soil map on the crop type, soil charac-
teristics, and precipitations calls for further research on such
topics. For example, it would be important to estimate the
added value of a geophysics-based soil map before this soil
map is realized, so that farmers could make an informed de-
cision on the profitability of such a mapping product. This
could be achieved by investigating the specific pedoclimatic
conditions of a given farm or by mapping small portions of
the target area to provide an estimate of the costs and bene-
fits of the final soil map. Similarly, by performing long-term
simulations, farmers could be informed on the time span re-
quired to achieve returns on their investment. Such simu-
lations should include agricultural practices that are key to
certain areas such as irrigation, crop rotation, and different
fertilization practices. In parallel, the use of different geo-
physical techniques (taken singularly or in combination) and
their added value should be further investigated. In the case
of electromagnetic induction (EMI), focus should be put on
the different added value for agro-ecosystem models orig-
inating from rather simple apparent electrical conductivity
(ECa) maps or from more refined products based on the cal-
ibration and inversion of ECa measurements.
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