Articles | Volume 6, issue 2
https://doi.org/10.5194/soil-6-483-2020
https://doi.org/10.5194/soil-6-483-2020
Original research article
 | 
09 Oct 2020
Original research article |  | 09 Oct 2020

Development of a soil biological quality index for soils of semi-arid tropics

Selvaraj Aravindh, Chinnappan Chinnadurai, and Dananjeyan Balachandar

Related subject area

Soil biodiversity and soil health
Biochar promotes soil aggregate stability and associated organic carbon sequestration and regulates microbial community structures in Mollisols from northeast China
Jing Sun, Xinrui Lu, Guoshuang Chen, Nana Luo, Qilin Zhang, and Xiujun Li
SOIL, 9, 261–275, https://doi.org/10.5194/soil-9-261-2023,https://doi.org/10.5194/soil-9-261-2023, 2023
Short summary
Only a minority of bacteria grow after wetting in both natural and post-mining biocrusts in a hyperarid phosphate mine
Talia Gabay, Eva Petrova, Osnat Gillor, Yaron Ziv, and Roey Angel
SOIL, 9, 231–242, https://doi.org/10.5194/soil-9-231-2023,https://doi.org/10.5194/soil-9-231-2023, 2023
Short summary
Lower functional redundancy in “narrow” than “broad” functions in global soil metagenomics
Huaihai Chen, Kayan Ma, Yu Huang, Qi Fu, Yingbo Qiu, Jiajiang Lin, Christopher W. Schadt, and Hao Chen
SOIL, 8, 297–308, https://doi.org/10.5194/soil-8-297-2022,https://doi.org/10.5194/soil-8-297-2022, 2022
Short summary
Pairing litter decomposition with microbial community structures using the Tea Bag Index (TBI)
Anne Daebeler, Eva Petrová, Elena Kinz, Susanne Grausenburger, Helene Berthold, Taru Sandén, Roey Angel, and the high-school students of biology project groups I, II, and III from 2018–2019
SOIL, 8, 163–176, https://doi.org/10.5194/soil-8-163-2022,https://doi.org/10.5194/soil-8-163-2022, 2022
Short summary
Network complexity of rubber plantations is lower than tropical forests for soil bacteria but not for fungi
Guoyu Lan, Chuan Yang, Zhixiang Wu, Rui Sun, Bangqian Chen, and Xicai Zhang
SOIL, 8, 149–161, https://doi.org/10.5194/soil-8-149-2022,https://doi.org/10.5194/soil-8-149-2022, 2022
Short summary

Cited articles

Acton, D. and Padbury, G.: A conceptual framework for soil quality assessment and monitoring, A program to assess and monitor soil quality in Canada: Soil quality evaluation program summary, Centre for Land and Biological Resources Research Research Branch, Ottowa, Canada, 205 pp., 1993. 
Alves de Castro Lopes, A., Gomes de Sousa, D. M., Chaer, G. M., Bueno dos Reis Junior, F., Goedert, W. J., and de Carvalho Mendes, I.: Interpretation of microbial soil indicators as a function of crop yield and organic carbon, Soil Sci. Soc. Am. J., 77, 461–472, https://doi.org/10.2136/sssaj2012.0191, 2013. 
Amacher, M. C., O'Neill, K. P., and Perry, C. H.: Soil vital signs: a new soil quality index (SQI) for assessing forest soil health, U.S. Department of Agriculture Forest Service, Fort Collins, USA, 2007. 
Andrews, S., Karlen, D., and Mitchell, J.: A comparison of soil quality indexing methods for vegetable production systems in Northern California, Agr. Ecosyst. Environ., 90, 25–45, https://doi.org/10.1016/S0167-8809(01)00174-8, 2002. 
Andrews, S. S. and Carroll, C. R.: Designing a soil quality assessment tool for sustainable agroecosystem management, Ecol. Appl., 11, 1573–1585, https://doi.org/10.1890/1051-0761(2001)011[1573:DASQAT]2.0.CO;2, 2001. 
Download
Short summary
Soil quality is important for functioning of the agricultural ecosystem to sustain productivity. It is combination of several physical, chemical, and biological attributes. In the present work, we developed a soil biological quality index, a sub-set of the soil quality index (SBQI) using six important biological variables. These variables were computed from long-term manurial experimental soils and transformed into a unitless 10-scaled SBQI. This will provide constraints of soil processes.