Bustamante, M., Verdejo, V., Zúñiga, C., Espinosa, F., Orlando, J.,
and Carú, M.: Comparison of water availability effect on ammonia–oxidizing
bacteria and archaea in microcosms of a Chilean semiarid soil, Front.
Microbiol. 3, 282, https://doi.org/10.3389/fmicb.2012.00282, 2012.
Cerdeira, A. L. and Duke, S. O.: The current status and environmental impacts
of glyphosate–resistant crops. A review, J. Environ. Qual., 35,
1633–1658, https://doi.org/10.2134/jeq2005.0378, 2006.
Clements, W. H. and Rohr, J. R.: Community responses to contaminants: using
basic ecological principles to predict ecotoxicological effects, Environ.
Toxicol. Chem., 28, 1789–1800, https://doi.org/10.1897/09-140.1., 2009.
Evans, S. E. and Wallenstein, M. D.: Soil microbial community response to
drying and rewetting stress: does historical precipitation regime matter?,
Biogeochemistry, 109, 101–116, https://doi.org/10.1007/s10533-011-9638-3, 2011.
EFSA Panel on Plant Protection Products and their Residues: Scientific
Opinion Addressing the State of the Science on Risk Assessment of Plant
Protection Products for In–soil Organisms, EFSA Journal, European Food
Safety Authority, Parma, available at:
https://efsa.onlinelibrary.wiley.com
(last access: January 2020), 2016.
Fierer, N. and Schimel, J.: Effects of drying–rewetting frequency on soil
carbon and nitrogen transformations, Soil Biol. Biochem., 34, 777–787,
https://doi.org/10.1016/S0038-0717(02)00007-X, 2002.
Fierer, N., Schimel, J. P., and Holden, P. A.: Influence of Drying–Rewetting
Frequency on Soil Bacterial Community Structure, Microb. Ecol., 45, 63–71,
https://doi.org/10.1007/s00248-002-1007-2, 2003.
Fierer, N., Carney, K. M., Horner-Devine, M. C., and Megonigal, J. P.: The
biogeography of ammonia–oxidizing bacterial communities in soil, Microb.
Ecol., 58, 435–445, https://doi.org/10.1007/s00248-009-9517-9, 2009.
Franzluebbers, A. J., Hons, F. M., and Zuberer, D. A.: Long-term changes in
soil carbon and nitrogen pools in wheat management systems, Soil Sci. Soc.
Am. J., 58, 1639–1645, https://doi.org/10.2136/sssaj1994.03615995005800060009x, 1994.
Gleeson, D. B., Herrmann, A. M., Livesley, S. J., and Murphy D. V.: Influence of
water potential on nitrification and structure of nitrifying bacterial
communities in semiarid soils, App. Soil Ecol., 40, 189–194, https://doi.org/10.1016/j.apsoil.2008.02.005, 2008.
Gleeson, D. B., Müller, C., Banerjee, S., Ma, W., Siciliano, S. D.,
and Murphy, D. V.: Response of ammonia oxidizing archaea and bacteria to
changing water filled pore space, Soil Biol. Biochem., 42, 1888–1891, https://doi.org/10.1016/j.soilbio.2010.06.020, 2010.
Griffiths, R. I., Whiteley, A. S., O'Donnell, A. G., and Bailey, M. J.:
Physiological and community responses of established grassland bacterial
populations to water stress, App. Environ. Microbiol., 69, 6961–6968, https://doi.org/10.1128/AEM.69.12.6961-6968.2003, 2003.
Haney, R. L., Senseman, S. A., Hons, F. M., and Zuberer, D. A.: Effect of
glyphosate on soil microbial activity and biomass, Weed Sci. 48, 89–93,
https://doi.org/10.1614/0043-1745(2000)048[0089:EOGOSM]2.0.CO;2, 2000.
Hastings, R. C., Butler, C., Singleton, I., Saunders, J. R., and McCarthy, A.
J.: Analysis of ammonia–oxidizing bacteria populations in acid forest soil
during conditions of moisture limitation, Lett. Appl. Microbiol., 30,
14–18, https://doi.org/10.1046/j.1472--765x.2000.00630.x., 2000.
Huntington, T. G.: Evidence for intensification of the global water cycle:
review and synthesis, J. Hydrol., 319, 83–95, https://doi.org/10.1016/j.jhydrol.2005.07.003, 2006.
Ouyang, Y., Norton, J. M., Stark, J. M., Reeve, J. R., and Habteselassie, M. Y.:
Ammonia–oxidizing bacteria are more responsive than archaea to nitrogen
source in an agricultural soil, Soil Biol. Biochem., 96, 4–15, https://doi.org/10.1016/j.soilbio.2016.01.012, 2016.
Pfeiffer, S., Pastar, M., Mitter, B., Lippert, K., Hackl, E., Lojan, P., Oswald, A., and Sessitsch, A.: Improved group–specific primers based on the full SILVA 16S rRNA gene
reference database, Environ. Microbiol., 16, 2389–2407, https://doi.org/10.1111/1462-2920.12350, 2014.
Ratcliff, A. W., Busse, M. D., and Shestak, C. J.: Changes in microbial
community structure following herbicide (glyphosate) additions to forest
soils, Appl. Soil Ecol., 34, 114–124, https://doi.org/10.1016/j.apsoil.2006.03.002,
2006.
Rotthauwe, J. H., Witzel, K. P., and Liesack, W.: The ammonia monooxygenase
structural gene
amoA as a functional marker: molecular fine-scale analysis of
natural ammonia-oxidizing populations, Appl. Environ. Microbiol., 63,
4704–4712, 1997.
Rudisill, M. A., Turco, R. F., and Hoagland, L. A.: Fertility practices and
rhizosphere effects alter ammonia oxidizer community structure and potential
nitrification activity in pepper production soils, Appl. Soil Ecol., 99,
70–77, https://doi.org/10.1016/j.apsoil.2015.10.011, 2016.
Shade, A., Peter, H., Allison, S. D., Baho, D. L., Berga, M., Bürgmann, H., Huber, D. H., Langenheder, S., Lennon, J. T., Martiny, J. B. H., Matulich, K. L., Schmidt, T. M., and Handelsman, J.:
Fundamentals of microbial community resistance and resilience, Front.
Microbiol. 3, 417, https://doi.org/10.3389/fmicb.2012.00417, 2012.
Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R., and Polasky, S.:
Agricultural sustainability and intensive production practices, Nature,
418, 671–677, https://doi.org/10.1038/nature01014, 2002.
Zabaloy, M. C., Carné, I., Viassolo, R., Gómez, M. A., and Gomez, E.: Soil
ecotoxicity assessment of glyphosate use under field conditions: microbial
activity and community structure of Eubacteria and ammonia-oxidising
bacteria, Pest Manage. Sci., 72, 684–691, https://doi.org/10.1002/ps.4037, 2016.
Zabaloy, M. C., Allegrini, M., Tebbe, D. A, Schuster, K., and Gómez, E.:
Nitrifying bacteria and archaea withstanding glyphosate in fertilized soil
microcosms, Appl. Soil Ecol., 117, 88–95, https://doi.org/10.1016/j.apsoil.2017.04.012, 2017.
Zhang, M., Wang, W., Tang, L., Heenan, M., and Xu, Z.: Effects of nitrification
inhibitor and herbicides on nitrification, nitrite and nitrate consumptions
and nitrous oxide emission in an Australian sugarcane soil, Biol. Fert.
Soils, 54, 697–706, https://doi.org/10.1007/s00374-018-1293-6, 2018.