Articles | Volume 6, issue 1
https://doi.org/10.5194/soil-6-215-2020
https://doi.org/10.5194/soil-6-215-2020
Original research article
 | 
03 Jun 2020
Original research article |  | 03 Jun 2020

Development of pedotransfer functions for water retention in tropical mountain soil landscapes: spotlight on parameter tuning in machine learning

Anika Gebauer, Monja Ellinger, Victor M. Brito Gomez, and Mareike Ließ

Related authors

Spatial prediction of organic carbon in German agricultural topsoil using machine learning algorithms
Ali Sakhaee, Anika Gebauer, Mareike Ließ, and Axel Don
SOIL, 8, 587–604, https://doi.org/10.5194/soil-8-587-2022,https://doi.org/10.5194/soil-8-587-2022, 2022
Short summary

Related subject area

Soil and methods
Spatial prediction of organic carbon in German agricultural topsoil using machine learning algorithms
Ali Sakhaee, Anika Gebauer, Mareike Ließ, and Axel Don
SOIL, 8, 587–604, https://doi.org/10.5194/soil-8-587-2022,https://doi.org/10.5194/soil-8-587-2022, 2022
Short summary
On the benefits of clustering approaches in digital soil mapping: an application example concerning soil texture regionalization
István Dunkl and Mareike Ließ
SOIL, 8, 541–558, https://doi.org/10.5194/soil-8-541-2022,https://doi.org/10.5194/soil-8-541-2022, 2022
Short summary
An open Soil Structure Library based on X-ray CT data
Ulrich Weller, Lukas Albrecht, Steffen Schlüter, and Hans-Jörg Vogel
SOIL, 8, 507–515, https://doi.org/10.5194/soil-8-507-2022,https://doi.org/10.5194/soil-8-507-2022, 2022
Short summary
Identification of thermal signature and quantification of charcoal in soil using differential scanning calorimetry and benzene polycarboxylic acid (BPCA) markers
Brieuc Hardy, Nils Borchard, and Jens Leifeld
SOIL, 8, 451–466, https://doi.org/10.5194/soil-8-451-2022,https://doi.org/10.5194/soil-8-451-2022, 2022
Short summary
Estimating soil fungal abundance and diversity at a macroecological scale with deep learning spectrotransfer functions
Yuanyuan Yang, Zefang Shen, Andrew Bissett, and Raphael A. Viscarra Rossel
SOIL, 8, 223–235, https://doi.org/10.5194/soil-8-223-2022,https://doi.org/10.5194/soil-8-223-2022, 2022
Short summary

Cited articles

Ardia, D., Mullen, K., Peterson, B., Ulrich, J., and Boudt, K.: R package “DEoptim”: Global Optimization by Differential Evolution, available at: https://cran.r-project.org/package=DEoptim (last access: 5 July 2019), 2016. 
Arlot, S. and Celisse, A.: A survey of cross-validation procedures for model selection, Stat. Surv., 4, 40–79, https://doi.org/10.1214/09-SS054, 2009. 
Babangida, N. M., Ul Mustafa, M. R., Yusuf, K. W., Isa, M. H., and Baig, I.: Evaluation of low degree polynomial kernel support vector machines for modelling Pore-water pressure responses, Matec. Web Conf., 59, 6 pp., https://doi.org/10.1051/matecconf/20165904003, 2016. 
Barros, A. H. C., Lier, Q. de J. van, Maia, A. de H. N., and Scarpare, F. V.: Pedotransfer functions to estimate water retention parameters of soils in northeastern Brazil, Rev. Bras. Ciência do Solo, 37, 379–391, https://doi.org/10.1590/S0100-06832013000200009, 2013. 
Bendix, J., Gämmerler, S., Reudenbach, C., and Bendix, A.: A case study on rainfall dynamics during El Niño/La Niña 1997/99 in Ecuador and surrounding areas as inferred from GOES-8 and TRMM-PR observations, Erdkunde, 57, 81–93, https://doi.org/10.3112/erdkunde.2003.02.01, 2003. 
Download
Short summary
Pedotransfer functions (PTFs) for soil water retention were developed for two tropical soil landscapes using machine learning. The models corresponding to these PTFs had to be adjusted by tuning their parameters. The standard tuning approach was compared to mathematical optimization. The latter resulted in much better model performance. The PTFs derived are of particular importance for soil process and hydrological models.