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Abstract. Machine-learning algorithms are good at computing non-linear problems and fitting complex com-
posite functions, which makes them an adequate tool for addressing multiple environmental research questions.
One important application is the development of pedotransfer functions (PTFs). This study aims to develop water
retention PTFs for two remote tropical mountain regions with rather different soil landscapes: (1) those domi-
nated by peat soils and soils under volcanic influence with high organic matter contents and (2) those dominated
by tropical mineral soils. Two tuning procedures were compared to fit boosted regression tree models: (1) tun-
ing with grid search, which is the standard approach in pedometrics; and (2) tuning with differential evolution
optimization. A nested cross-validation approach was applied to generate robust models. The area-specific PTFs
developed outperform other more general PTFs. Furthermore, the first PTF for typical soils of Páramo landscapes
(Ecuador), i.e., organic soils under volcanic influence, is presented. Overall, the results confirmed the differen-
tial evolution algorithm’s high potential for tuning machine-learning models. While models based on tuning
with grid search roughly predicted the response variables’ mean for both areas, models applying the differential
evolution algorithm for parameter tuning explained up to 25 times more of the response variables’ variance.

1 Introduction

Machine-learning algorithms are good at fitting highly com-
plex non-linear functions (Witten et al., 2011). Major appli-
cation fields in soil science investigate the soils’ spatial vari-
ability (Heung et al., 2016), relate data from soil sensing to
soil properties (Viscarra Rossel et al., 2016), or develop pe-
dotransfer functions (PTFs; Botula et al., 2014; Van Looy et
al., 2017). McBratney et al. (2019) give a time line on devel-
opments in pedometrics, which refers to machine learning in
multiple applications.

Pedotransfer functions derive laborious and complex soil
parameters (response variables) from more readily avail-

able soil properties (predictor variables). Most PTFs are
developed to predict soil hydraulic properties. Reviews on
the methodologies involved are provided by Pachepsky
and Rawls (2004), Shein and Arkhangel’skaya (2006), and
Vereecken et al. (2010). Machine-learning algorithms ap-
plied for PTF development include support vector machines
(Lamorski et al., 2008) artificial neural networks (Haghverdi
et al., 2012), and regression trees (Tóth et al., 2015).

According to Van Looy et al. (2017), most PTFs are de-
veloped for mineral soils, while PTFs applicable to organic
soils or soils with specific properties like volcanic ash soils
are highly underrepresented. Patil and Singh (2016) and Bo-
tula et al. (2014) provide reviews of hydrological PTFs for
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mineral soils of certain tropical and temperate regions. With
particle size distribution (PSD) being the basic input param-
eter to derive soil hydrologic properties, most PTFs also use
the bulk density (BD) and soil organic carbon content (SOC)
as predictors.

As summarized by Patil and Singh (2016), the applica-
tion of existing hydrological PTFs is often restricted due
to two reasons. Firstly, the majority of PTFs are developed
on soils that developed under certain conditions. Often these
PTFs cannot be applied in other regions, as the site-specific
soil-forming conditions can cause considerable differences
in physical and chemical soil properties. This is demon-
strated by studies such as Botula et al. (2012) and Moreira
et al. (2004), who were able to show that, when applied to
independent tropical soil data, existing temperate PTFs per-
form worse than existing tropical PTFs. Secondly, the ap-
plicability of existing PTFs is further restricted by the input
data required. As stated by Morris et al. (2019), hydraulic
PTFs developed on mineral soils are often inapplicable to or-
ganic soils. The measurement of the predictor variable PSD
may be hampered by high organic matter contents, and or-
ganic soils may not include sufficient mineral soil material to
justify PSD analysis at all.

Overall, only a small number of PTFs have been developed
for organic soils, and most of them are based on data from
specific temperate regions and rely on very specific predictor
variables. Korus et al. (2007), for example, related the wa-
ter retention of Polish peat soils to the ash content, specific
surface area, BD, pH, and iron content. In Finish peat soils
semiempirical water retention PTFs were developed on dif-
ferent predictors including BD, sampling depth, and botan-
ical residues (Weiss et al., 1998). Although it was never in-
tended to be used for predictions, Rocha Campos et al. (2011)
provide the only regression model known to us, which relates
the soil hydrologic parameters of tropical organic soils to in-
dependent variables (fiber content, mineral material, BD, and
organic matter fractions).

The application of machine-learning algorithms requires
them to be adjusted to the specific modeling problem using
parameter tuning. Tuning parameter values cannot be cal-
culated analytically; thus, in soil science applications grid
search is often used as a standard technique (e.g., Babangida
et al., 2016; Khlosi et al., 2016; Twarakavi et al., 2009). Grid
search works by testing a number of predefined parameter
values or combinations of parameter values to finally choose
the best. Accordingly, the predominant part of the multivari-
ate parameter space cannot be searched in the case of con-
tinuous parameters, and the optimum might not be found.
To overcome this limitation, mathematical optimization is a
promising alternative.

Commonly applied optimization algorithms include arti-
ficial bee colony, simulated annealing, particle swarm opti-
mization, the Nelder–Mead method, Bayesian optimization,
or evolutionary and genetic strategies. Their applications
range from pattern recognition (e.g., Jayanth et al., 2015; Liu

and Huang, 1998), through solving combinatorial problems
(e.g., Wang et al., 2003; Reeves, 1993) to parameter tuning
in machine learning (e.g., Imbault and Lebart, 2004; Ozaki et
al., 2017). We would like to particularly emphasize the dif-
ferential evolution algorithm. Price et al. (2005), who com-
pared it to various other optimization algorithms, were able
to show that it usually leads to better results and compara-
tively low computing times. This has been confirmed by the
results of Chen et al. (2017), who compared differential evo-
lution to particle swarm optimization and a genetic algorithm
in landslide modeling, and Yin et al. (2018), who compared
differential evolution to simulated annealing, particle swarm
optimization, artificial bee colony, and genetic algorithms
in geotechnical engineering. It is also able to outperform
Bayesian approaches in certain applications. Comparisons of
both algorithms led to contradictory results: while some stud-
ies found Bayesian approaches to be superior (e.g., Carr et
al., 2016), others reported the opposite result (e.g., Schmidt
et al., 2019).

The differential evolution algorithm was applied to diverse
optimization problems including the prediction of stable
metallic clusters (Yang et al., 2018), the navigation of robots
(Martinez-Soltero and Hernandez-Barragan, 2018), the clas-
sification of microRNA targets (Bhadra et al., 2012), parity-
P problems (Slowik and Bialko, 2008), or the parameter tun-
ing of machine-learning models trained to carry out functions
such as predicting landslides (Tien Bui et al., 2017). In soil-
related research questions it has been applied to optimize pa-
rameters of geostatistical models (Brus et al., 2016; Wadoux
et al., 2018) and to optimize parameters defining the shape
of well-known soil water retention curves (Maggi, 2017; Ou,
2015) among other applications. However, in pedometrics,
applications for parameter tuning in machine learning are
scarce (e.g., Gebauer et al., 2019).

This study first aims to develop water retention PTFs for
two tropical soil landscapes dominated by (1) peat soils and
soils under volcanic influence with high organic matter con-
tents, such as those that commonly occur in the Páramo re-
gions (Ecuador), and (2) tropical soils of a dry climate. Cur-
rently, PTFs suitable for the soils of these regions are lack-
ing, if any exist at all. The parameter-tuning technique is
assumed to affect the performance of the machine-learning-
based PTFs. This is why our second and equally important
aim is to compare the differential evolution algorithm to grid
search. On average, different machine-learning algorithms
perform equally well (Wolpert, 2001). We have chosen to
fit boosted regression tree models, because we assume that
the preeminence of optimization for parameter tuning in ma-
chine learning will particularly show when applying it to a
machine-learning algorithm that requires not only the fitting
of discrete-valued parameters but also the fitting of numerous
continuous parameters.
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2 Material and methods

2.1 Research areas

The two soil landscapes investigated are situated in southern
Ecuador (Fig. 1). The Quinuas catchment encompasses an
area of about 93 km2, including parts of the Cajas National
Park (Fig. 1c), and is located between 3000 and 4400 m a.s.l.
with a mean annual temperature of between 5.3 and 8.7 ◦C
and no seasonality (Carrillo-Rojas et al., 2016). With one
peak in the period from March to May and one in October
(Celleri et al., 2007), the mean annual precipitation varies
between 900 and 1600 mm (Crespo et al., 2011). Due to vol-
canic ash deposits and the cold and wet climate, soils with a
low bulk density and high SOC contents are typical (Buytaert
et al., 2007). The Quinuas catchment can be allocated to the
Páramo ecosystem (Guio Blanco et al., 2018), which plays
a major role in the water supply of the inter-Andean region
(Buytaert et al., 2006a, b, 2007).

The Laipuna dry forest region is part of the “Laipuna Con-
servation and Development Area” and covers approximately
16 km2 (Fig. 1d). Its temperature profile shows little seasonal
variability, although there is a wet period from January to
May. Depending on the altitude, which ranges between 400
and 1500 m a.s.l., the mean annual temperature varies be-
tween 16 and 23 ◦C, and the mean annual precipitation varies
between 540 and 630 mm (Peters and Richter, 2011a, b). Ad-
ditionally, the El Niño–Southern Oscillation influences the
area (Bendix et al., 2003, 2011). Laipuna is part of an ecosys-
tem with high biodiversity and many endemic species (Best
and Kessler, 1995; Linares-Palomino et al., 2009), which are
strongly adapted to the ecosystem and may be threatened by
possible climate-induced changes in the water supply.

2.2 Soil data

To ensure representative data sets for both areas, sampling
sites were selected using the “QC-arLUS” algorithm (Ließ,
2015). The algorithm divides a research area into strata,
which represent characteristic landscape structures. Actual
sampling site selection per stratum is limited to the accessi-
ble area.

For Quinuas and Laipuna, two sampling sites were cho-
sen per landscape stratum, resulting in 46 sites for Quinuas
and 55 for Laipuna. Soil profiles were excavated at these
sites. However, due to laboratory constraints, samples for
the determination of soil water retention were only taken
from the topsoil. Water retention was measured in three
replicate samples according to DIN EN ISO 11274:2014-
07: hanging water columns of increasing length were ap-
plied to undisturbed 100 cm3 steel core samples. Four suc-
tion levels, expressed as the base 10 logarithm of the suc-
tion (pF), were simulated (suction shown in parentheses):
pF 0 (−100 hPa), pF 0.5 (−100.5 hPa), pF 1.5 (−101.5 hPa),
and pF 2.5 (−102.5 hPa). The high amount of organic matter

in the Quinuas soil samples prevented water retention mea-
surements at higher pF values. BD and SOC content were
used as predictors for both research areas in order to de-
velop the water retention PTFs, while PSD was only used
for Laipuna. For BD measurements according to DIN EN
ISO 11272:2017-07, undisturbed samples (three replicates)
were oven-dried at 105 ◦C for 3 d. Disturbed samples (three
replicates) were tested for carbonates with 10 % hydrochloric
acid, sieved to 2 mm, and ground before SOC content deter-
mination using dry combustion (DIN EN 15936:2012-11).
Disturbed samples from Laipuna were oven-dried at 40 ◦C,
sieved to 2 mm, and PSD was determined according to DIN
ISO 11277:2002-08 in two (sand fractions) and three (clay
and silt fractions) replicate samples. Measurements distin-
guish the following particle size classes: clay (< 2 µm), fine
silt (2–6.3 µm), medium silt (6.3–20 µm), coarse silt (20–
62 µm), fine sand (62–200 µm), medium sand (200–630 µm),
and coarse sand (630–2000 µm). The high soil organic matter
contents prevented PSD measurements in Quinuas.

As suggested by Guio Blanco et al. (2018), models built
on the Quinuas data set could be improved by treating sam-
ples from mineral soils as outliers and removing them. For
both research areas, only data pairs of response and predic-
tor variables that were identified as multivariate outliers were
removed. Tests for multivariate outliers were done by build-
ing hierarchical clusters using the “hclust” function from the
“fastcluster” R package (Müller, 2018), version 3.4.4. To en-
hance comparability, models were trained on response vari-
ables scaled to the range [0, 1] following Eq. (1):

xj [0, 1]=
xj −min(x)

max(x)−min(x)
, (1)

where x is the vector of the response variables of length j .

2.3 Boosted regression trees

The boosted regression trees (BRT) algorithm combines the
regression trees and boosting machine-learning techniques.
Tree models use decision rules, which involve the predic-
tor variables, to recursively partition the response variable
data into increasingly similar subgroups until terminal nodes
are reached (Kuhn and Johnson, 2013). For each subgroup,
the response variable values of the terminal regression tree
nodes are averaged to be used for the prediction (James et al.,
2017). The boosting machine-learning technique improves
the overall model accuracy by combining a number of simple
models (Witten et al., 2011).

To develop the PTFs, BRT models were trained using the
“gbm” R package, version 2.1.3 (Ridgeway, 2017), which is
based on stochastic gradient boosting from Friedman (2002).
This boosting technique iteratively fits a number of simple
regression tree models to random training data subsets. In
each iteration a new regression tree is added to the model
until many simple regression trees form a linear combina-
tion: the final BRT model. Each tree that is added improves
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Figure 1. Maps of (a) Ecuador within South America, (b) research areas within Ecuador, (c) Quinuas, and (d) Laipuna (overlaid with hill
shading – light source from the north). Adapted from Ließ (2015). Topographical data were used with permission from the Ecuadorian Geo-
graphical Institute (2013; national base, scale 1 : 50 000), and further GIS data were provided by the NGO Nature and Culture International
(NCI) and the municipal public agency ETAPA.

the overall model performance. The first tree improves model
performance the most; further regression trees are fitted with
emphasis on observations that are predicted poorly by the ex-
isting model.

To apply a BRT model, usually up to four parameters are
tuned: number of trees (n.trees), shrinkage, interaction depth,
and bag fraction (e.g., Ottoy et al., 2017; Wang et al., 2017;
Yang et al., 2016). Elith et al. (2008) provide a detailed analy-
sis of their function: the n.trees parameter describes the num-
ber of regression tree models to be iteratively fitted; shrink-
age defines the model’s learning rate by scaling the outcome
of each simple regression tree, thereby controlling its con-
tribution to the final model; the interaction depth parame-
ter controls the number of splits in each tree to divide the
response variable data into subgroups; and the bag fraction
parameter determines the size of the randomly selected data
subsets. This is able to reduce the risk of overfitting (Fried-
man, 2002), but it may lower the model robustness (Elith et
al., 2008). To develop PTFs for Quinuas and Laipuna, these
four parameters were tuned following the steps described in
Sect. 2.4 and 2.5.

2.4 Parameter tuning

Parameter tuning was done in two different ways: (1) by grid
search and (2) by optimization, which involved applying the
differential evolution algorithm. Grid search compares a cer-
tain number of predefined k dimensional parameter vectors.
In order to reduce computing time, the number of predefined
values of the k = 4 parameters was limited to five for each.
The selected values were based on the recommendations of
Elith et al. (2008) and Ridgeway (2012), and they are summa-
rized in Table 1. Finally, 5k different combinations of tuning
parameter values, i.e., 625, were compared.

In contrast to this, the differential evolution optimization
algorithm, developed by Storn and Price (1995), is able to
search the multivariate space between defined upper and
lower parameter limits. The parameter values are optimized
by minimizing an objective function, which defines their suit-
ability. The objective function is allowed to be stochastic and
noisy and does not need to be differentiable or continuous
(Mullen et al., 2011).

Following the evolutionary theory, this is done by repeat-
ing three steps for i iterations: mutation, crossover, and selec-
tion (Fig. 2). At first, an initial parent population of a num-
ber (v) of k-dimensional parameter vectors is generated ran-
domly. With each iteration i, these vectors are changed by

SOIL, 6, 215–229, 2020 https://doi.org/10.5194/soil-6-215-2020



A. Gebauer et al.: Spotlight on parameter tuning 219

Table 1. Tuning parameter values to be tested by grid search, and
optimization limits required by the differential evolution algorithm.

Tuning parameter Grid search values Differential evo-
lution limits

n.trees 100; 1000; 2000; 3000; 4000 100 4000
Shrinkage 0.001; 0.005; 0.01; 0.05; 0.1 0.001 0.1
Interaction depth 1; 2; 3; 4; 5 1 5
Bag fraction 0.5; 0.6; 0.7; 0.8; 0.9 0.5 0.9

mutation and randomly mixed by crossover to generate a new
population. Selection compares the objective function values
belonging to the parent and the new vector to decide whether
a new vector replaces its parent vector. Differential evolution
was applied using the “DEoptim” R package, version 2.2.4
(Ardia et al., 2016). For each tuning parameter, optimiza-
tion limits correspond to the maximum and minimum grid
search values (Table 1). The number of vectors of size k = 4
tuning parameters was set to v = 100. The R package’s de-
fault mutation strategy was used, which changes each parent
vector by adding two summands: (1) the difference between
two random parent vectors, and (2) the difference between
the vector to be perturbed and the best vector found in the
parent population. Summands were scaled by the factor 0.8.
For crossover, the probability of randomly mixing the parent
and the mutated vectors’ elements was set to 50 %. To re-
duce computing time, the optimization process was stopped
either after imax = 10 iterations without improving the objec-
tive function or a maximum number of 200 iterations. Prior
to the selection step, the discrete tuning parameter values
(n.trees and interaction depth) were rounded, as the differ-
ential evolution algorithm treats all values as real numbers
during mutation and crossover. To select the final tuning pa-
rameter values, grid search and differential evolution both
minimized same objective function: the cross validated root-
mean-squared error of parameter tuning (RMSET). The cal-
culation of RMSET is explained in Sect. 2.5.

2.5 Performance evaluation

In order to build robust models, we followed a nested cross-
validation (CV) approach. Stratified five-fold CV was ap-
plied for two purposes: (1) to conduct robust parameter tun-
ing on resampled data subsets using either grid search or the
differential evolution algorithm, and (2) to evaluate the final
performance of models built on tuned parameter values. CV
provides error metrics with good bias and variance proper-
ties, is beneficial for small data sets, and avoids overfitting
(Arlot and Celisse, 2009; James et al., 2017).

Following the steps shown in Fig. 3, stratified five-fold CV
was implemented with five repetitions for model evaluation
and one repetition for parameter tuning. In Step 1, the com-
plete data set (n= 100 %) was split into five folds with each
of them (n= 20 %) used once as the test set, leaving the re-

maining folds as the model training set. For resampling in
parameter tuning (Step 2), each model training set was again
subdivided in a similar fashion to Step 1. Each tuning param-
eter vector in grid search and the differential evolution al-
gorithm was evaluated by the cross-validated RMSET (Step
3 and Step 4). By comparing the RMSET, the best vector
of tuning parameter values for each model evaluation train-
ing set was selected and applied (Step 5 and Step 6). To
assess model performance, the coefficient of determination
(R2

E) and the root-mean-squared error (RMSEE) of model
evaluation were calculated by predicting the associated test
set data (Step 7). To divide the data sets into folds, the “parti-
tion_cv_strat” function from the “sperrorest” R package, ver-
sion 2.0.0 (Brenning et al., 2017), was applied, with three
equal probability strata of the response variable’s density
function.

2.6 Comparison to existing PTFs

To further assess the BRT PTFs developed, their results were
compared to predictions resulting from the application of ex-
isting PTFs. PTFs that were developed on different data sets,
under conditions as similar as possible to those of Quinuas
and Laipuna, were selected from the literature. If more than
one PTF was provided per study, the one with the best re-
ported performance was applied. For Laipuna, seven PTFs
(Table 2) were chosen based on four criteria: (1) developed
for tropical soils, (2) similar predictor variables, (3) regres-
sion equation provided, and (4) included in the peer-reviewed
Clarivate Analytics’ Web of Science database. To be able to
apply the readily available equations with predictors of the
Laipuna data set, it was necessary to convert the determined
soil texture classes to the respective USDA classes. Follow-
ing the approach of Shang (2013), texture conversion was
done using spline interpolation. Because of different predic-
tor variables, it is difficult to find organic PTFs applicable
to the Quinuas data set. An exhaustive literature search only
revealed the PTF from Boelter (1969), who related water re-
tention at pF 0 to BD for temperate peat soils in northern
Minnesota.

3 Results and discussion

3.1 Model input

For Laipuna, data pairs of four sampling sites were identi-
fied as multivariate outliers. After removing them, the data
sets contained the predictor and response variables of 51 and
46 sampling sites for Laipuna and Quinuas, respectively. A
summary of the remaining unscaled data is shown in Figs. 4
and 5.

As expected, both areas show huge differences regarding
the values of response and predictor variables. BD values in
Quinuas range from 64 to 807 kg m−3, while SOC values
vary between 8.8 wt % and 46.4 wt %. SOC values are nor-
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Figure 2. Flowchart of the differential evolution algorithm. “OBJ” refers to the objective function, “p” refers to the parent population, “n”
refers to the new population, “i” refers to the iteration, “imax” refers to the maximum number of iterations, and “v” refers to the number of
vectors. Reprinted from Gebauer et al. (2019).

Figure 3. Nested cross-validation approach comprising model
evaluation and parameter tuning. Adapted from Guio Blanco et
al. (2018). The tree icons symbolize BRT models, which are re-
peatedly (circular arrows) trained and tested on different data sets.
The numbers within black circles refer to the steps described in
Sect. 2.5. “RMSET” is the root-mean-squared error of parameter
tuning, “RMSEE” is the root-mean-squared error of model evalua-
tion, “R2

E” is the coefficient of determination of model evaluation,
“GS” refers to grid search, and “DE” refers to the differential evo-
lution.

Figure 4. Predictor variables for (1a, 1b) Quinuas (46 samples) and
(2a–c) Laipuna (51 samples), showing the (1a, 2a) SOC content,
(1b, 2b) bulk density, and (2c) particle size distribution displayed
as a cumulative distribution function (mean values with standard
deviation). High organic matter contents prevented measurements
of the particle size distribution in Quinuas.

mally distributed, while BD data display a positive skew. Wa-
ter retention ranges from 0.25 (pF 2.5) to 0.94 cm3 cm−3 (pF
0), decreasing by 22 % on average. While the data display a
positive skew for pF 0, the data distribution for the other pF
values shows a negative skew. For Laipuna, BD ranges be-
tween 1157 and 1727 kg m−3, displaying a distribution with
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Figure 5. Response variables for (1a–d) Quinuas (46 samples)
and (2a–d) Laipuna (51 samples), showing water retention at (1a,
2a) pF 0, (1b, 2b) pF 0.5, (1c, 2c) pF 1.5, and (1d, 2d) pF 2.5.

a positive skew. The SOC content is normally distributed and
varies between 0.4 wt % and 3.8 wt %. Clay content ranges
between 17 % and 48 %, silt ranges between 24 % and 45 %,
and sand ranges between 14 % and 50 %. Especially fine
and medium silt show skewed distributions. Water retention
values range between 0.25 (pF 2.5) and 0.61 cm3 cm−3 (pF
0). On average, they decrease by 37 % with increasing wa-
ter tension. Data are skewed positively for pF 0 and nega-
tively for pF 0.5. Quinuas soils go along with the low den-
sity, porous soils that are rich in organic material, which
are found throughout the Paute River basin (Buytaert et al.,
2007; Poulenard et al., 2003). Loosely bedded volcanic ash
deposits explain the low BD values, which are are caused
by low redox potentials and the presence of organometallic
complexes inhibiting degradation processes (Buytaert et al.,
2006a). Comparatively high water retention values can be at-
tributed to the fact that the porous structure of Páramo soils
is able to retain a lot of water (Buytaert et al., 2007). High
soil organic matter contents are associated with soils char-
acterized by a high water holding capacity (Buytaert et al.,
2007), which explains the relatively small decrease in water
retention with increasing water tension. Measured BD and
SOC contents are in accordance with data observed for other
Páramo regions (e.g., Buytaert et al., 2007, 2006b). The wa-
ter retention values are also comparable to data obtained in
other Páramo areas (Buytaert et al., 2005) and soils with high
organic matter contents (Schwärzel et al., 2002, 2006). Ex-
treme BD and water retention values (Figs. 4, 5) correspond
to less frequent mineral soils with much lower SOC contents
(Guio Blanco et al., 2018). As these values were expected
to be reliable, they were not removed from the model input.
The BD and SOC values measured in Laipuna correspond

Figure 6. Error metrics of the Quinuas BRT models, showing (1a–
d) RMSEE and (2a–d) R2

E for (1a, 2a) pF 0, (1b, 2b) pF 0.5, (1c,
2c) pF 1.5, and (1d, 2d) pF 2.5. Each boxplot is based on five values
resulting from five CV repetitions. GS refers to grid search, and
DE refers to the differential evolution algorithm. Error metrics were
calculated based on response variables scaled to the range [0, 1].

to other dry forest ecosystems (e.g., Conti et al., 2014; de
Araújo Filho et al., 2017; Singh et al., 2015), whereas the
PSD shows higher clay contents compared with the dry for-
est soils investigated by Cotler and Ortega-Larrocea (2006),
Jha et al. (1996), and Sagar et al. (2003). Measured water
retention values are higher than those obtained in a tropical
dry forest in Brazil (Vasques et al., 2016), which is proba-
bly caused by the higher clay content enhancing the water
holding capacity.

3.2 Model performance

The performance of the final models, which were built on
parameters selected by grid search and the differential evolu-
tion algorithm, is demonstrated by the R2

E and RMSEE error
metrics in Fig. 6 (Quinuas) and Fig. 7 (Laipuna) as well as
by scatterplots comparing observed and predicted water re-
tention values in Fig. 8 (Quinuas) and Fig. 9 (Laipuna). The
error metrics and scatterplots are based on response variables
scaled to the range [0, 1].

All grid search models resulted in very similar mean
RMSEE values: between 0.20 (pF 1.5) and 0.22 (pF 0) for
Quinuas and between 0.19 (pF 2.5) and 0.25 (pF 0, pF 0.5)
for Laipuna. Differential evolution models trained on the
Quinuas data sets correspond to mean RMSEE values rang-
ing from 0.11 (pF 0) to 0.17 (pF 2.5). The Laipuna differ-
ential evolution models resulted in the same mean RMSEE
values, ranging from 0.15 (pF 2.5) to 0.28 (pF 0). Mean R2

E
values resulting from grid search varied between 0.03 (pF 0)
and 0.09 (pF 1.5) for Quinuas and between 0.03 (pF 0.5, pF
2.5) and 0.05 (pF 1.5) for Laipuna. The differential evolution
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algorithm resulted in mean R2
E values increasing from 0.58

(pF 2.5) to 0.79 (pF 0) for Quinuas and from 0.35 (pF 0.5) to
0.68 (pF 0) for Laipuna. As demonstrated by the scatterplots,
the grid search models roughly reproduced the mean water
retention values, whereas the models with parameter tuning
using differential evolution were able to explain more of the
observations’ variance.

The five grid search predictions for each observation (pan-
els 1a–d in Figs. 8 and 9) cover a smaller range than the
differential evolution predictions (panels 2a–d in Figs. 8
and 9). Specifically, the differential evolution results of the
Laipuna pF 0 and pF 0.5 models are characterized by com-
paratively high variance. Caused by the better adjustment
to the modeling problem, the differential evolution models
show a higher predictive performance than the models tuned
by grid search: mean R2

E values are up to 25 (Quinuas, pF 0)
and 19 (Laipuna, pF 2.5) times higher, and the scaled RMSEE
values are up to 2.1 (Quinuas, pF 0) and 1.3 (Laipuna, pF 2.5)
times lower than those obtained by grid search. This corre-
sponds to the scatterplots in Fig. 8 and Fig. 9: the largest dif-
ference between grid search and differential evolution can be
recognized for the pF 0 (Quinuas) and pF 2.5 (Laipuna) mod-
els. The higher variability of the differential evolution predic-
tions corresponds to the differential evolution tuning param-
eter values covering a wider range than those achieved by
applying grid search (Sect. 3.3). For Quinuas, the decreasing
predictive performance with increasing pF values can proba-
bly be attributed to the lack of further predictors. While the
predictors BD and SOC are able to explain most of the wa-
ter retention values at pF 0 to pF 1.5, the lack of predictors
related to the soil matrix, e.g., PSD information, prevents fur-
ther improvement for pF 2.5.

In pedometrics, studies with a direct comparison of grid
search and mathematical optimization applied for parame-
ter tuning in machine learning are scarce. In fact we are
only aware of one application: Wu et al. (2016) compared
both tuning strategies to train support vector machine (SVM)
models for the prediction of soil contamination in Jiangxi
Province, China. Their results are contradictory: overall, us-
ing optimization to tune three SVM parameters led to the
best model performance. Unfortunately, the comparison with
grid search was only applied to a reduced two-parameter tun-
ing problem. Surprisingly, here, grid search outperformed the
tested optimization algorithms. Unfortunately, the tuning of a
different number of SVM parameters hampers direct compar-
ison. Still, the results of Wu et al. (2016) show that a lucky
selection of predefined parameter vectors can result in grid
search outperforming optimization algorithms – in particu-
lar, if the number of optimization iterations is small. Overall,
the more values that are tested during parameter tuning (grid
search or optimization), the higher the probability of finding
the global optimum. Wu et al. (2016) did not mention the
number of iterations of the optimization algorithms, but we
assume that increasing the number of iterations would have
led to results that were at least as good as those achieved by

Figure 7. Error metrics of the Laipuna BRT models, showing (1a–
d) the RMSEE and (2a–d) the R2

E for (1a, 2a) pF 0, (1b, 2b) pF
0.5, (1c, 2c) pF 1.5, and (1d, 2d) pF 2.5. Each boxplot is based
on five values resulting from five CV repetitions. GS refers to grid
search, and DE refers to the differential evolution algorithm. Error
metrics were calculated based on response variables scaled to the
range [0, 1].

grid search. Even though the benefits of optimization algo-
rithms towards grid search are obvious, further direct com-
parisons of mathematical optimization algorithms and grid
search applied for machine-learning parameter tuning in soil-
related research questions are necessary.

Overall, the predictive power of all differential-evolution-
based Quinuas models and the Laipuna pF 0 and 2.5 models
are comparable to other studies. Botula et al. (2013), for ex-
ample, obtained R2 values ranging from 0.32 to 0.68 (pF 0)
and from 0.60 to 0.68 (pF 1.5) using the k-nearest neighbor
algorithm for soil data originating from the Lower Congo.
Keshavarzi et al. (2010) used an artificial neural network to
predict water retention at different pF values for soils from
the Qazvin Province in Iran. Haghverdi et al. (2012) used the
same machine-learning technique on soils from northeast-
ern and northern Iran. While Keshavarzi et al. (2010) gained
R2 values of 0.77 (pF 2.5) and 0.72 (pF 4.2), Haghverdi
et al. (2012) reached R2 values ranging from 0.81 to 0.95.
In general, we expect model performance to improve when
extreme values are removed from the model input or when
larger data sets are used. Even though they were not iden-
tified as multivariate outliers, the low water retention val-
ues are underrepresented in the Quinuas data set. According
to Guio Blanco et al. (2018), these values are primarily ob-
served in the lower part of the river valley and include mea-
surements from mineral soils. Furthermore, the question of
whether different model algorithms are able to improve PTFs
for both research areas needs to be tested.

SOIL, 6, 215–229, 2020 https://doi.org/10.5194/soil-6-215-2020



A. Gebauer et al.: Spotlight on parameter tuning 223

Figure 8. Comparison of predicted and observed water retention values for Quinuas, showing (1a–d) models with tuning by grid search and
(2a–d) models with parameter tuning by differential evolution for (1a, 2a) pF 0, (1b, 2b) pF 0.5, (1c, 2c) pF 1.5, and (1d, 2d) pF 2.5. Each
boxplot is based on five values resulting from five CV repetitions. Predicted and observed values were scaled to the range [0, 1].

3.3 Comparison with existing PTFs

Applying the existing PTFs with predictor variables sampled
in Quinuas and Laipuna confirmed the good performance of
the differential evolution BRT models. RMSE values of the
respective PTFs are shown in Table 2. They were calculated
by comparing the unscaled measured water retention of each
soil profile to the water retention values calculated by apply-
ing the readily available PTFs. For Laipuna, mean RMSEE
values of the differential-evolution-tuned BRT models were
between 1.3 times (pF 2.5; Minasny and Hartemink, 2011,
and Tomasella et al., 2000) and 9.3 times (pF 1.5; Barros
et al., 2013) better (Table 2). For Quinuas, the application
of the differential evolution BRT models resulted in a mean
RMSEE of 0.03, whereas applying the PTF of Boelter (1969)
only resulted in an RMSE of 1.86. For BD values higher than
370 kg m−3, the predictions even became negative. The high
RMSE value is assumed to have been caused by large differ-
ences between the temperate organic soils in Minnesota and
the soils in Quinuas. This underlines the necessity of devel-
oping water retention PTFs specifically for tropical organic
soils.

3.4 Model parameters

The final tuning parameter values obtained by grid search
and the differential evolution algorithm are summarized in
Fig. 10 (Quinuas) and Fig. 11 (Laipuna). A total of 625 pre-
viously defined parameter vectors were compared using grid
search. On average, 31 (pF 0, 0.5), 33 (pF 1.5), and 28 (pF
2.5) iterations of the differential evolution algorithm were
necessary to find the optimal tuning parameter values for the

Quinuas models. For Laipuna, 32 (pF 0), 28 (pF 0.5), 25 (pF
1.5), and 22 (pF 2.5) iterations were needed.

Differences between the parameter-tuning techniques are
most distinct for n.trees and shrinkage. Neglecting outliers,
values obtained by the differential evolution algorithm cover
a wider range than those resulting from grid search: while
n.trees was set to the lowest tested value (100) by grid search
in most cases, the differential evolution algorithm resulted
in mean n.trees values (± standard deviation) ranging from
310±321 (pF 0) to 810±1132 (pF 1.5) for Quinuas and from
727±851 (pF 0) to 1688±1345 (pF 2.5) for Laipuna. There-
fore, the mean n.trees values obtained by differential evolu-
tion parameter tuning are more than 5 (Quinuas) and more
than 10 times (Laipuna) higher than the mean grid search
values. Neglecting extreme values, the shrinkage values re-
sulting from the differential evolution algorithm also cover a
wider range than the values obtained by the grid search tun-
ing technique. For both areas, the shrinkage values were usu-
ally set to 0.001 or 0.01 by grid search, whereas applying the
differential evolution algorithm resulted in mean shrinkage
values from 0.040±0.028 (pF 0.5) to 0.047±0.030 (pF 2.5)
for Quinuas and from 0.034± 0.03 (pF 0) to 0.062± 0.027
(pF 2.5) for Laipuna. On average, the differential evolution
shrinkage values are approximately 14 (Quinuas) and 17
(Laipuna) times higher than those obtained by grid search.

The observed pattern is more complex for the other two
tuning parameters: interaction depth and bag fraction. Al-
though the selected parameter ranges differ for most pF val-
ues, the median interaction depth values are the same for half
of the cases for grid search and tuning using the differential
evolution algorithm. The median of the selected bag fraction
is at the upper limit for the Quinuas models that were tuned
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Figure 9. Comparison of predicted and observed water retention values for Laipuna, showing (1a–d) models with tuning by grid search and
(2a–d) models with parameter tuning by differential evolution for (1a, 2a) pF 0, (1b, 2b) pF 0.5, (1c, 2c) pF 1.5, and (1d, 2d) pF 2.5. Each
boxplot is based on five values resulting from five CV repetitions. Predicted and observed values were scaled to the range [0, 1].

Table 2. Unscaled root-mean-squared errors for the tested PTFs. The best results for each matric potential are shown in bold. BRT PTF
results are averaged.

PTF – data origin, size of the data set pF 0 pF 0.5 pF 1.5 pF 2.5

BRT PTF – Laipuna, 51 0.03 0.03 0.03 0.03
Barros et al. (2013) – Brazil, 668∗ 0.18 0.12 0.28 0.07
Gaiser et al. (2000) – Brazil and Niger, 627 – – – 0.06
Minasny and Hartemink (2011) – various tropical regions, 652 – – – 0.04
Nguyen et al. (2014) – Vietnam, 160 – – 0.05 0.07
Obalum and Obi (2012) – Nigeria, 54 – – – 0.15
Pollacco (2008) – USA, 18 552 – – – 0.07
Tomasella et al. (2000) – Brazil, 630∗ 0.08 0.07 0.05 0.04

∗ Applied to predict parameters of the Van Genuchten equation first.

by the differential evolution algorithm, whereas grid search
resulted in median bag fraction values at the lower limit in
two cases. The Laipuna bag fraction values do not show this
pronounced difference between grid search and tuning using
the differential evolution algorithm. The selected tuning pa-
rameter values correspond to the differential-evolution-based
models having more predictive power than those adapted by
the common grid search approach.

Usually higher n.trees values, as received from the dif-
ferential evolution algorithm, are known to improve model
performance (Elith et al., 2008). However, according to the
results of Elith et al. (2008), using more trees causes the
shrinkage parameter to get smaller. The comparatively high
differential evolution shrinkage values are an indication of
the n.trees values still being too small. For both areas, the
differential evolution values for n.trees and shrinkage, which
cover a wider range than the grid search results, are assumed

to be caused by an incomplete optimization stemming from
not using enough iterations or the algorithm being stuck in a
local optimum. This corresponds to the high prediction vari-
ability of the final differential evolution models derived for
Laipuna (Fig. 9).

It should be noted that model performance depends on
the combination of parameter values. However, as n.trees
and shrinkage control how precisely the model learns the in-
put data structure, these parameters are assumed to be more
important than interaction depth and bag fraction. In this
case, there would not even be an optimum for the latter two
parameters. Especially for Laipuna, this explains the inter-
action depth and bag fraction values of both tuning tech-
niques covering the whole range of possible values. The bag
fraction differences between differential evolution and grid
search tuning remain unexplained. For both parameter-tuning
techniques, increasing the number of parameter values to be
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Figure 10. Selected tuning parameter values for Quinuas: (1a–d)
n.trees, (2a–d), shrinkage, (3a–d) interaction depth, and (4a–d) bag
fraction for (1a, 2a, 3a, 4a) pF 0, (1b, 2b, 3b, 4b) pF 0.5, (1c, 2c,
3c, 4c) pF 1.5, and (1d, 2d, 3d, 4d) pF 2.5. Each boxplot is based
on 25 values corresponding to the five-fold CV with five repetitions.
Dashed gray lines indicate the chosen optimization limits. GS refers
to grid search, and DE refers to the differential evolution algorithm.

tested enhances the probability of finding the global opti-
mum. For grid search, this can be realized by increasing the
number of values to be compared for each tuning parameter.
Increasing the number of iterations and starting with larger
and therefore more heterogeneous initial populations is ex-
pected to do the same for differential evolution. This is as-
sumed to result in less variable differential evolution results.

However, for tuning continuous parameters, it is impossi-
ble to know the necessary number of iterations in advance.
Accordingly, a trade-off between computing time and the
probability of finding the global optimum has to be made
for any parameter-tuning technique. In addition to increasing
the number of iterations and the number of initial vectors, the
risk of the differential evolution algorithm getting stuck in a
local optimum can also be reduced by changing the param-
eters “crossover probability” and the “mutation scaling fac-
tor” as well as applying another mutation strategy (Das and
Suganthan, 2011). To overcome the problem of choosing the
right control parameters as well as the mutation strategy, self-
adaptive differential evolution algorithms (e.g., Nahvi et al.,

Figure 11. Selected tuning parameter values for Laipuna: (1a–d)
n.trees, (2a–d) shrinkage, (3a–d), interaction depth, and (4a–d) bag
fraction for (1a, 2a, 3a, 4a) pF 0, (1b, 2b, 3b, 4b) pF 0.5, (1c, 2c,
3c, 4c) pF 1.5, and (1d, 2d, 3d, 4d) pF 2.5. Each boxplot is based
on 25 values corresponding to the five-fold CV with five repetitions.
Dashed gray lines indicate the chosen optimization limits. GS refers
to grid search, and DE refers to the differential evolution algorithm.

2016; Pierezan et al., 2017; Qin et al., 2009), which are able
to automatically adjust their settings during the optimization
process, could be applied in future studies. Furthermore, a
larger, high quality model input would result in more explicit
relationships between response and predictor variables that
can be detected and reproduced more easily by the BRT mod-
els. This is assumed to reduce the probability of the differen-
tial evolution algorithm getting stuck into a local optimum
as well as the number of iterations required. In general, the
superiority of differential evolution needs to be verified by
applying it to further machine-learning algorithms and ap-
plications and by comparing it to further parameter-tuning
techniques.

4 Conclusions

We successfully developed new PTFs for two tropical moun-
tain regions. The comparison with readily available PTFs
showed their high performance with respect to predicting soil
water retention for the soils in these areas. This is of partic-
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ular importance for soil hydrological modeling. The applica-
bility of the two PTFs in other areas with similar soils still
has to be tested. The PTF developed for the Páramo area is
novel, as PTFs for tropical organic soils under volcanic influ-
ence have been unavailable to date.

Furthermore, our study presents the first successful ap-
plication of parameter tuning by differential evolution in
PTF development. The comparison with the standard grid
search technique revealed the superiority of the differential
evolution algorithm and emphasizes the importance of pa-
rameter tuning for the successful application of machine-
learning models. Of course, this finding has to be confirmed
by further applications in pedometrics, including different
machine-learning algorithms. We hope to promote the imple-
mentation of optimization algorithms within the pedometrics
community, especially for tuning of machine-learning algo-
rithms with continuous parameters.

Data availability. The PTFs developed as well as the underly-
ing data sets are available from https://doi.org/10.17605/OSF.IO/
7UBWY (Ließ et al., 2020).
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