Articles | Volume 6, issue 1
https://doi.org/10.5194/soil-6-115-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/soil-6-115-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Depletion of soil carbon and aggregation after strong warming of a subarctic Andosol under forest and grassland cover
Christopher Poeplau
CORRESPONDING AUTHOR
Thünen Institute of Climate-Smart Agriculture, Bundesallee 68,
38116 Braunschweig, Germany
Páll Sigurðsson
Agricultural University of Iceland, Hvanneyri 311, Borgarnes,
Iceland
Bjarni D. Sigurdsson
Agricultural University of Iceland, Hvanneyri 311, Borgarnes,
Iceland
Related authors
Amicie A. Delahaie, Lauric Cécillon, Marija Stojanova, Samuel Abiven, Pierre Arbelet, Dominique Arrouays, François Baudin, Antonio Bispo, Line Boulonne, Claire Chenu, Jussi Heinonsalo, Claudy Jolivet, Kristiina Karhu, Manuel Martin, Lorenza Pacini, Christopher Poeplau, Céline Ratié, Pierre Roudier, Nicolas P. A. Saby, Florence Savignac, and Pierre Barré
SOIL, 10, 795–812, https://doi.org/10.5194/soil-10-795-2024, https://doi.org/10.5194/soil-10-795-2024, 2024
Short summary
Short summary
This paper compares the soil organic carbon fractions obtained from a new thermal fractionation scheme and a well-known physical fractionation scheme on an unprecedented dataset of French topsoil samples. For each fraction, we use a machine learning model to determine its environmental drivers (pedology, climate, and land cover). Our results suggest that these two fractionation schemes provide different fractions, which means they provide complementary information.
Tino Peplau, Christopher Poeplau, Edward Gregorich, and Julia Schroeder
Biogeosciences, 20, 1063–1074, https://doi.org/10.5194/bg-20-1063-2023, https://doi.org/10.5194/bg-20-1063-2023, 2023
Short summary
Short summary
We buried tea bags and temperature loggers in a paired-plot design in soils under forest and agricultural land and retrieved them after 2 years to quantify the effect of land-use change on soil temperature and litter decomposition in subarctic agricultural systems. We could show that agricultural soils were on average 2 °C warmer than forests and that litter decomposition was enhanced. The results imply that deforestation amplifies effects of climate change on soil organic matter dynamics.
Niel Verbrigghe, Niki I. W. Leblans, Bjarni D. Sigurdsson, Sara Vicca, Chao Fang, Lucia Fuchslueger, Jennifer L. Soong, James T. Weedon, Christopher Poeplau, Cristina Ariza-Carricondo, Michael Bahn, Bertrand Guenet, Per Gundersen, Gunnhildur E. Gunnarsdóttir, Thomas Kätterer, Zhanfeng Liu, Marja Maljanen, Sara Marañón-Jiménez, Kathiravan Meeran, Edda S. Oddsdóttir, Ivika Ostonen, Josep Peñuelas, Andreas Richter, Jordi Sardans, Páll Sigurðsson, Margaret S. Torn, Peter M. Van Bodegom, Erik Verbruggen, Tom W. N. Walker, Håkan Wallander, and Ivan A. Janssens
Biogeosciences, 19, 3381–3393, https://doi.org/10.5194/bg-19-3381-2022, https://doi.org/10.5194/bg-19-3381-2022, 2022
Short summary
Short summary
In subarctic grassland on a geothermal warming gradient, we found large reductions in topsoil carbon stocks, with carbon stocks linearly declining with warming intensity. Most importantly, however, we observed that soil carbon stocks stabilised within 5 years of warming and remained unaffected by warming thereafter, even after > 50 years of warming. Moreover, in contrast to the large topsoil carbon losses, subsoil carbon stocks remained unaffected after > 50 years of soil warming.
Lauric Cécillon, François Baudin, Claire Chenu, Bent T. Christensen, Uwe Franko, Sabine Houot, Eva Kanari, Thomas Kätterer, Ines Merbach, Folkert van Oort, Christopher Poeplau, Juan Carlos Quezada, Florence Savignac, Laure N. Soucémarianadin, and Pierre Barré
Geosci. Model Dev., 14, 3879–3898, https://doi.org/10.5194/gmd-14-3879-2021, https://doi.org/10.5194/gmd-14-3879-2021, 2021
Short summary
Short summary
Partitioning soil organic carbon (SOC) into fractions that are stable or active on a century scale is key for more accurate models of the carbon cycle. Here, we describe the second version of a machine-learning model, named PARTYsoc, which reliably predicts the proportion of the centennially stable SOC fraction at its northwestern European validation sites with Cambisols and Luvisols, the two dominant soil groups in this region, fostering modelling works of SOC dynamics.
Christopher Poeplau, Cora Vos, and Axel Don
SOIL, 3, 61–66, https://doi.org/10.5194/soil-3-61-2017, https://doi.org/10.5194/soil-3-61-2017, 2017
Short summary
Short summary
This paper shows that three out of four frequently used methods to calculate soil organic carbon stocks lead to systematic overestimation of those stocks. Stones, which can be assumed to be free of carbon, have to be corrected for in both bulk density and layer thickness. We used data of the German Agricultural Soil Inventory to illustrate the potential bias and suggest a unified and unbiased calculation method for stocks of soil organic carbon, which is the largest terrestrial carbon pool.
C. Poeplau, H. Marstorp, K. Thored, and T. Kätterer
SOIL, 2, 175–184, https://doi.org/10.5194/soil-2-175-2016, https://doi.org/10.5194/soil-2-175-2016, 2016
Short summary
Short summary
We compared two long-term contrasting systems of urban lawn management (frequently cut utility lawn vs. seldomly cut meadow-like lawn) regarding their effect on soil carbon in three Swedish cities. Biomass production was also measured during 1 year. The utility lawns had a significantly higher biomass production, which resulted in a higher soil carbon storage, since clippings were not removed. Soil carbon sequestration outweighed the higher management-related CO2 emissions of the utility lawns.
Christopher Poeplau, Martin A. Bolinder, Holger Kirchmann, and Thomas Kätterer
Biogeosciences, 13, 1119–1127, https://doi.org/10.5194/bg-13-1119-2016, https://doi.org/10.5194/bg-13-1119-2016, 2016
Short summary
Short summary
Nutrients determine the balance between inputs and outputs to and from the soil and thus exert a strong impact on the total soil organic carbon stock. However, for phosphorus, this impact has not been comprehensively addressed. Here we show in 10 different long-term experiments that phosphorus fertilisation can significantly deplete soil carbon stocks, despite a positive impact on plant growth and thus carbon inputs. Thus, soil carbon decay is most likely stimulated even more strongly.
C. Poeplau, M. A. Bolinder, J. Eriksson, M. Lundblad, and T. Kätterer
Biogeosciences, 12, 3241–3251, https://doi.org/10.5194/bg-12-3241-2015, https://doi.org/10.5194/bg-12-3241-2015, 2015
Short summary
Short summary
Soil carbon dynamics of the past 2 decades in Swedish agricultural soils were assessed using three consecutive soil inventories. We found a significant increase in country-wide soil carbon concentrations, which is in contrast to trends reported in neighbouring countries. We explained this by a significant rise of the proportion of leys in Swedish agriculture, which was found to be strongly related to the increase in horse population. Human lifestyle can affect soil carbon.
Amicie A. Delahaie, Lauric Cécillon, Marija Stojanova, Samuel Abiven, Pierre Arbelet, Dominique Arrouays, François Baudin, Antonio Bispo, Line Boulonne, Claire Chenu, Jussi Heinonsalo, Claudy Jolivet, Kristiina Karhu, Manuel Martin, Lorenza Pacini, Christopher Poeplau, Céline Ratié, Pierre Roudier, Nicolas P. A. Saby, Florence Savignac, and Pierre Barré
SOIL, 10, 795–812, https://doi.org/10.5194/soil-10-795-2024, https://doi.org/10.5194/soil-10-795-2024, 2024
Short summary
Short summary
This paper compares the soil organic carbon fractions obtained from a new thermal fractionation scheme and a well-known physical fractionation scheme on an unprecedented dataset of French topsoil samples. For each fraction, we use a machine learning model to determine its environmental drivers (pedology, climate, and land cover). Our results suggest that these two fractionation schemes provide different fractions, which means they provide complementary information.
Tino Peplau, Christopher Poeplau, Edward Gregorich, and Julia Schroeder
Biogeosciences, 20, 1063–1074, https://doi.org/10.5194/bg-20-1063-2023, https://doi.org/10.5194/bg-20-1063-2023, 2023
Short summary
Short summary
We buried tea bags and temperature loggers in a paired-plot design in soils under forest and agricultural land and retrieved them after 2 years to quantify the effect of land-use change on soil temperature and litter decomposition in subarctic agricultural systems. We could show that agricultural soils were on average 2 °C warmer than forests and that litter decomposition was enhanced. The results imply that deforestation amplifies effects of climate change on soil organic matter dynamics.
Niel Verbrigghe, Niki I. W. Leblans, Bjarni D. Sigurdsson, Sara Vicca, Chao Fang, Lucia Fuchslueger, Jennifer L. Soong, James T. Weedon, Christopher Poeplau, Cristina Ariza-Carricondo, Michael Bahn, Bertrand Guenet, Per Gundersen, Gunnhildur E. Gunnarsdóttir, Thomas Kätterer, Zhanfeng Liu, Marja Maljanen, Sara Marañón-Jiménez, Kathiravan Meeran, Edda S. Oddsdóttir, Ivika Ostonen, Josep Peñuelas, Andreas Richter, Jordi Sardans, Páll Sigurðsson, Margaret S. Torn, Peter M. Van Bodegom, Erik Verbruggen, Tom W. N. Walker, Håkan Wallander, and Ivan A. Janssens
Biogeosciences, 19, 3381–3393, https://doi.org/10.5194/bg-19-3381-2022, https://doi.org/10.5194/bg-19-3381-2022, 2022
Short summary
Short summary
In subarctic grassland on a geothermal warming gradient, we found large reductions in topsoil carbon stocks, with carbon stocks linearly declining with warming intensity. Most importantly, however, we observed that soil carbon stocks stabilised within 5 years of warming and remained unaffected by warming thereafter, even after > 50 years of warming. Moreover, in contrast to the large topsoil carbon losses, subsoil carbon stocks remained unaffected after > 50 years of soil warming.
Lauric Cécillon, François Baudin, Claire Chenu, Bent T. Christensen, Uwe Franko, Sabine Houot, Eva Kanari, Thomas Kätterer, Ines Merbach, Folkert van Oort, Christopher Poeplau, Juan Carlos Quezada, Florence Savignac, Laure N. Soucémarianadin, and Pierre Barré
Geosci. Model Dev., 14, 3879–3898, https://doi.org/10.5194/gmd-14-3879-2021, https://doi.org/10.5194/gmd-14-3879-2021, 2021
Short summary
Short summary
Partitioning soil organic carbon (SOC) into fractions that are stable or active on a century scale is key for more accurate models of the carbon cycle. Here, we describe the second version of a machine-learning model, named PARTYsoc, which reliably predicts the proportion of the centennially stable SOC fraction at its northwestern European validation sites with Cambisols and Luvisols, the two dominant soil groups in this region, fostering modelling works of SOC dynamics.
Jyrki Jauhiainen, Jukka Alm, Brynhildur Bjarnadottir, Ingeborg Callesen, Jesper R. Christiansen, Nicholas Clarke, Lise Dalsgaard, Hongxing He, Sabine Jordan, Vaiva Kazanavičiūtė, Leif Klemedtsson, Ari Lauren, Andis Lazdins, Aleksi Lehtonen, Annalea Lohila, Ainars Lupikis, Ülo Mander, Kari Minkkinen, Åsa Kasimir, Mats Olsson, Paavo Ojanen, Hlynur Óskarsson, Bjarni D. Sigurdsson, Gunnhild Søgaard, Kaido Soosaar, Lars Vesterdal, and Raija Laiho
Biogeosciences, 16, 4687–4703, https://doi.org/10.5194/bg-16-4687-2019, https://doi.org/10.5194/bg-16-4687-2019, 2019
Short summary
Short summary
We collated peer-reviewed publications presenting GHG flux data for drained organic forest soils in boreal and temperate climate zones, focusing on data that have been used, or have the potential to be used, for estimating net annual soil GHG emission/removals. We evaluated the methods in data collection and identified major gaps in background/environmental data. Based on these, we developed suggestions for future GHG data collection to increase data applicability in syntheses and inventories.
Marja Maljanen, Heli Yli-Moijala, Bjarni Didrik Sigurdsson, and Christina Biasi
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-213, https://doi.org/10.5194/bg-2019-213, 2019
Revised manuscript not accepted
Short summary
Short summary
We studied the proportion of biotic and abiotic CO2 fluxes from soil using static chamber method and stable isotope approach from a geothermally warmed area in southern Iceland. These sites can be used cost efficiently to study the effects of soil warming on the ecosystem. However, our study showed that a significant amount of CO2 emitted from the higher warming levels can have non-biotic origin and this has to be taken into account when measuring respiration fluxes on such volcanic sites.
Christopher Poeplau, Cora Vos, and Axel Don
SOIL, 3, 61–66, https://doi.org/10.5194/soil-3-61-2017, https://doi.org/10.5194/soil-3-61-2017, 2017
Short summary
Short summary
This paper shows that three out of four frequently used methods to calculate soil organic carbon stocks lead to systematic overestimation of those stocks. Stones, which can be assumed to be free of carbon, have to be corrected for in both bulk density and layer thickness. We used data of the German Agricultural Soil Inventory to illustrate the potential bias and suggest a unified and unbiased calculation method for stocks of soil organic carbon, which is the largest terrestrial carbon pool.
C. Poeplau, H. Marstorp, K. Thored, and T. Kätterer
SOIL, 2, 175–184, https://doi.org/10.5194/soil-2-175-2016, https://doi.org/10.5194/soil-2-175-2016, 2016
Short summary
Short summary
We compared two long-term contrasting systems of urban lawn management (frequently cut utility lawn vs. seldomly cut meadow-like lawn) regarding their effect on soil carbon in three Swedish cities. Biomass production was also measured during 1 year. The utility lawns had a significantly higher biomass production, which resulted in a higher soil carbon storage, since clippings were not removed. Soil carbon sequestration outweighed the higher management-related CO2 emissions of the utility lawns.
Niki I. W. Leblans, Bjarni D. Sigurdsson, Rien Aerts, Sara Vicca, Borgthór Magnússon, and Ivan A. Janssens
Biogeosciences Discuss., https://doi.org/10.5194/bg-2016-111, https://doi.org/10.5194/bg-2016-111, 2016
Revised manuscript not accepted
Short summary
Short summary
Increasing nitrogen (N) deposition has enhanced productivity in many ecosystems and thereby the terrestrial sink for anthropogenic CO2 emissions. However, little is known about how long this N-induced carbon (C) sink can continue. We studied the effect of elevated N inputs on short- (decadal) and long-term (millennial) C storage in Icelandic grasslands and found that chronically elevated N inputs led to a strengthening of this sink for at least 1600 years, in absence of large-scale disturbances.
Christopher Poeplau, Martin A. Bolinder, Holger Kirchmann, and Thomas Kätterer
Biogeosciences, 13, 1119–1127, https://doi.org/10.5194/bg-13-1119-2016, https://doi.org/10.5194/bg-13-1119-2016, 2016
Short summary
Short summary
Nutrients determine the balance between inputs and outputs to and from the soil and thus exert a strong impact on the total soil organic carbon stock. However, for phosphorus, this impact has not been comprehensively addressed. Here we show in 10 different long-term experiments that phosphorus fertilisation can significantly deplete soil carbon stocks, despite a positive impact on plant growth and thus carbon inputs. Thus, soil carbon decay is most likely stimulated even more strongly.
C. Poeplau, M. A. Bolinder, J. Eriksson, M. Lundblad, and T. Kätterer
Biogeosciences, 12, 3241–3251, https://doi.org/10.5194/bg-12-3241-2015, https://doi.org/10.5194/bg-12-3241-2015, 2015
Short summary
Short summary
Soil carbon dynamics of the past 2 decades in Swedish agricultural soils were assessed using three consecutive soil inventories. We found a significant increase in country-wide soil carbon concentrations, which is in contrast to trends reported in neighbouring countries. We explained this by a significant rise of the proportion of leys in Swedish agriculture, which was found to be strongly related to the increase in horse population. Human lifestyle can affect soil carbon.
V. Marteinsson, A. Klonowski, E. Reynisson, P. Vannier, B. D. Sigurdsson, and M. Ólafsson
Biogeosciences, 12, 1191–1203, https://doi.org/10.5194/bg-12-1191-2015, https://doi.org/10.5194/bg-12-1191-2015, 2015
Short summary
Short summary
Colonization of life on Surtsey has been observed systematically since the formation of the island. Microbial colonization and the influence of associate vegetation and birds on viable counts of environmental bacteria at the surface of the Surtsey was explored for the first time in diverse surface soils. Also, hot subsurface samples deep in the centre of this volcanic island were collected. Both uncultivated bacteria and archaea were found in the subsurface samples collected below 145 m.
N. I. W. Leblans, B. D. Sigurdsson, P. Roefs, R. Thuys, B. Magnússon, and I. A. Janssens
Biogeosciences, 11, 6237–6250, https://doi.org/10.5194/bg-11-6237-2014, https://doi.org/10.5194/bg-11-6237-2014, 2014
Short summary
Short summary
We studied the influence of allochthonous N inputs on primary succession and soil development of a 50-year-old volcanic island, Surtsey. Seabirds increased the ecosystem N accumulation rate inside their colony to ~47 kg ha-1 y-1, compared to 0.7 kg ha-1 y-1 outside it. A strong relationship was found between total ecosystem N stock and both total above- and belowground biomass and SOC stock, which shows how fast external N input can boost primary succession and soil formation.
G. Stefansdottir, A. L. Aradottir, and B. D. Sigurdsson
Biogeosciences, 11, 5763–5771, https://doi.org/10.5194/bg-11-5763-2014, https://doi.org/10.5194/bg-11-5763-2014, 2014
B. Magnússon, S. H. Magnússon, E. Ólafsson, and B. D. Sigurdsson
Biogeosciences, 11, 5521–5537, https://doi.org/10.5194/bg-11-5521-2014, https://doi.org/10.5194/bg-11-5521-2014, 2014
K. Ilieva-Makulec, B. Bjarnadottir, and B. D. Sigurdsson
Biogeosciences Discuss., https://doi.org/10.5194/bgd-11-14239-2014, https://doi.org/10.5194/bgd-11-14239-2014, 2014
Revised manuscript not accepted
Related subject area
Soils and global change
Soil is a major contributor to global greenhouse gas emissions and climate change
Large errors in common soil carbon measurements due to sample processing
Carbon balance and emissions of methane and nitrous oxide during four years of moderate rewetting of a cultivated peat soil site
Thermodynamic and hydrological drivers of the soil and bedrock thermal regimes in central Spain
The effect of different biopreparations on soil physical properties and CO2 emissions when growing winter wheat and oilseed rape
Earthworm-invaded boreal forest soils harbour distinct microbial communities
Back to the future? Conservative grassland management can preserve soil health in the changing landscapes of Uruguay
Effects of a warmer climate and forest composition on soil carbon cycling, soil organic matter stability and stocks in a humid boreal region
Effects of mild alternate wetting and drying irrigation and rice straw application on N2O emissions in rice cultivation
Whole-soil warming decreases abundance and modifies the community structure of microorganisms in the subsoil but not in surface soil
Short- and long-term temperature responses of soil denitrifier net N2O efflux rates, inter-profile N2O dynamics, and microbial genetic potentials
Acute glyphosate exposure does not condition the response of microbial communities to a dry–rewetting disturbance in a soil with a long history of glyphosate-based herbicides
Effect of deforestation and subsequent land use management on soil carbon stocks in the South American Chaco
The effects of worms, clay and biochar on CO2 emissions during production and soil application of co-composts
Climate and soil factors influencing seedling recruitment of plant species used for dryland restoration
A call for international soil experiment networks for studying, predicting, and managing global change impacts
Global distribution of soil organic carbon – Part 2: Certainty of changes related to land use and climate
The economics of soil C sequestration and agricultural emissions abatement
Peter Martin Kopittke, Ram C. Dalal, Brigid A. McKenna, Pete Smith, Peng Wang, Zhe Weng, Frederik J. T. van der Bom, and Neal W. Menzies
EGUsphere, https://doi.org/10.5194/egusphere-2024-1782, https://doi.org/10.5194/egusphere-2024-1782, 2024
Short summary
Short summary
Soil produces 98.8 % of the calories consumed by humans, but the contribution that the anthropogenic use of soil makes to global warming is not clear. We show that soil has contributed 15 % of entire global warming caused by the well-mixed greenhouse gases. Thus, our finding that soil is a substantial contributor to global anthropogenic greenhouse gas emissions represents a ‘wicked problem’ – how do we continue to increase food production from soil whilst also decreasing emissions?
Rebecca J. Even, Megan B. Machmuller, Jocelyn M. Lavallee, Tamara J. Zelikova, and M. Francesca Cotrufo
EGUsphere, https://doi.org/10.5194/egusphere-2024-1470, https://doi.org/10.5194/egusphere-2024-1470, 2024
Short summary
Short summary
We conducted a service soil laboratory comparison study and tested the individual effect of common sieving, grinding, drying and quantification methods on total, inorganic, and organic soil carbon (C) measurements. We found that inter-lab variability is large and each soil processing step impacts C measurement accuracy and/or precision. Standardizing soil processing methods is needed to ensure C measurements are accurate and precise, especially for C credit allocation and model calibration.
Kristiina Lång, Henri Honkanen, Jaakko Heikkinen, Sanna Saarnio, Tuula Larmola, and Hanna Kekkonen
EGUsphere, https://doi.org/10.5194/egusphere-2024-934, https://doi.org/10.5194/egusphere-2024-934, 2024
Short summary
Short summary
We studied greenhouse gas fluxes at an agricultural peat soil site with willow, forage and set-aside. The mean annual water table raised from 80 to 30 cm in 2019–2022. Raising the water table slowed down annual CO2 emissions. CH4 fluxes changed from uptake to emissions, and nitrous oxide emissions decreased towards the end of the experiment. The total greenhouse gas balance was relatively high, highlighting the challenge in mitigating emissions from cultivated peatlands.
Félix García-Pereira, Jesús Fidel González-Rouco, Thomas Schmid, Camilo Melo-Aguilar, Cristina Vegas-Cañas, Norman Julius Steinert, Pedro José Roldán-Gómez, Francisco José Cuesta-Valero, Almudena García-García, Hugo Beltrami, and Philipp de Vrese
SOIL, 10, 1–21, https://doi.org/10.5194/soil-10-1-2024, https://doi.org/10.5194/soil-10-1-2024, 2024
Short summary
Short summary
This work addresses air–ground temperature coupling and propagation into the subsurface in a mountainous area in central Spain using surface and subsurface data from six meteorological stations. Heat transfer of temperature changes at the ground surface occurs mainly by conduction controlled by thermal diffusivity of the subsurface, which varies with depth and time. A new methodology shows that near-surface diffusivity and soil moisture content changes with time are closely related.
Sidona Buragienė, Egidijus Šarauskis, Aida Adamavičienė, Kęstutis Romaneckas, Kristina Lekavičienė, Daiva Rimkuvienė, and Vilma Naujokienė
SOIL, 9, 593–608, https://doi.org/10.5194/soil-9-593-2023, https://doi.org/10.5194/soil-9-593-2023, 2023
Short summary
Short summary
The aim of this study was to investigate the effects of different biopreparations on soil porosity, temperature, and CO2 emission from the soil in northeast Europe (Lithuania) when growing food-type crops. The application of the biopreparations showed a cumulative effect on the soil properties. In the third year of the study, the total porosity of the soil was higher in all scenarios compared to the control, ranging between 51% and 74%.
Justine Lejoly, Sylvie Quideau, Jérôme Laganière, Justine Karst, Christine Martineau, Mathew Swallow, Charlotte Norris, and Abdul Samad
SOIL, 9, 461–478, https://doi.org/10.5194/soil-9-461-2023, https://doi.org/10.5194/soil-9-461-2023, 2023
Short summary
Short summary
Earthworm invasion in North American forests can alter soil functioning. We investigated how the presence of invasive earthworms affected microbial communities, key drivers of soil biogeochemistry, across the major soil types of the Canadian boreal forest, which is a region largely understudied. Although total microbial biomass did not change, community composition shifted in earthworm-invaded mineral soils, where we also found higher fungal biomass and greater microbial species diversity.
Ina Säumel, Leonardo R. Ramírez, Sarah Tietjen, Marcos Barra, and Erick Zagal
SOIL, 9, 425–442, https://doi.org/10.5194/soil-9-425-2023, https://doi.org/10.5194/soil-9-425-2023, 2023
Short summary
Short summary
We analyzed intensification of Uruguayan grasslands in a country-wide survey on fertility proxies, pH and trace metals in topsoils. We observed a loss of nutrients, trace metals and organic matter in grasslands, croplands and timber plantations and accumulation in riverine forests. This raises questions about the carrying capacity of Uruguayan soils with regard to currently implemented intensification strategies and supports more conservative forms of extensive grassland management.
David Paré, Jérôme Laganière, Guy R. Larocque, and Robert Boutin
SOIL, 8, 673–686, https://doi.org/10.5194/soil-8-673-2022, https://doi.org/10.5194/soil-8-673-2022, 2022
Short summary
Short summary
Major soil carbon pools and fluxes were assessed along a climatic gradient expanding 4 °C in mean annual temperature for two important boreal conifer forest stand types. Species and a warmer climate affected soil organic matter (SOM) cycling but not stocks. Contrarily to common hypotheses, SOM lability was not reduced by warmer climatic conditions and perhaps increased. Results apply to cold and wet conditions and a stable vegetation composition along the climate gradient.
Kaikuo Wu, Wentao Li, Zhanbo Wei, Zhi Dong, Yue Meng, Na Lv, and Lili Zhang
SOIL, 8, 645–654, https://doi.org/10.5194/soil-8-645-2022, https://doi.org/10.5194/soil-8-645-2022, 2022
Short summary
Short summary
We explored the effects of mild alternate wetting and drying (AWD) irrigation combined with rice straw return on N2O emissions and rice yield through rice pot experiments. Mild AWD irrigation significantly increased both N2O and yield-scaled N2O emissions. The addition of rice straw under mild AWD irrigation could promote N2O emissions. Mild AWD irrigation could reduce soil-nitrogen uptake by rice when urea was applied. Mild AWD irrigation reduced rice aboveground biomass but not rice yield.
Cyrill U. Zosso, Nicholas O. E. Ofiti, Jennifer L. Soong, Emily F. Solly, Margaret S. Torn, Arnaud Huguet, Guido L. B. Wiesenberg, and Michael W. I. Schmidt
SOIL, 7, 477–494, https://doi.org/10.5194/soil-7-477-2021, https://doi.org/10.5194/soil-7-477-2021, 2021
Short summary
Short summary
How subsoil microorganisms respond to warming is largely unknown, despite their crucial role in the soil organic carbon cycle. We observed that the subsoil microbial community composition was more responsive to warming compared to the topsoil community composition. Decreased microbial abundance in subsoils, as observed in this study, might reduce the magnitude of the respiration response over time, and a shift in the microbial community will likely affect the cycling of soil organic carbon.
Kate M. Buckeridge, Kate A. Edwards, Kyungjin Min, Susan E. Ziegler, and Sharon A. Billings
SOIL, 6, 399–412, https://doi.org/10.5194/soil-6-399-2020, https://doi.org/10.5194/soil-6-399-2020, 2020
Short summary
Short summary
We do not understand the short- and long-term temperature response of soil denitrifiers, which produce and consume N2O. Boreal forest soils from a long-term climate gradient were incubated in short-term warming experiments. We found stronger N2O consumption at depth, inconsistent microbial gene abundance and function, and consistent higher N2O emissions from warmer-climate soils at warmer temperatures. Consideration of our results in models will contribute to improved climate projections.
Marco Allegrini, Elena Gomez, and María Celina Zabaloy
SOIL, 6, 291–297, https://doi.org/10.5194/soil-6-291-2020, https://doi.org/10.5194/soil-6-291-2020, 2020
Short summary
Short summary
Research was conducted to assess the response of microbial communities in a soil with a long history of glyphosate-based herbicides to a secondary imposed perturbation (dry–rewetting event). Both perturbations could increase their frequency under current agricultural practices and climate change. The results of this study demonstrate that acute exposure to a glyphosate-based herbicide does not have a conditioning effect on the response of microbial communities to the dry–rewetting event.
Natalia Andrea Osinaga, Carina Rosa Álvarez, and Miguel Angel Taboada
SOIL, 4, 251–257, https://doi.org/10.5194/soil-4-251-2018, https://doi.org/10.5194/soil-4-251-2018, 2018
Short summary
Short summary
The sub-humid Argentine Chaco, originally covered by forest, has been subjected to clearing since the end of the 1970s and replacement of the forest by no-till farming. The organic carbon stock content up to 1 m depth varied as follows: forest > pasture > continuous cropping, with no impact of the number of years under cropping. The incorporation of pastures of warm-season grasses was able to mitigate the decrease of C stocks caused by cropping and so could be considered sustainable management.
Justine Barthod, Cornélia Rumpel, Remigio Paradelo, and Marie-France Dignac
SOIL, 2, 673–683, https://doi.org/10.5194/soil-2-673-2016, https://doi.org/10.5194/soil-2-673-2016, 2016
Short summary
Short summary
In this study we evaluated CO2 emissions during composting of green wastes with clay and/or biochar in the presence and absence of worms, as well as the effect of those amendments on carbon mineralization after application to soil. Our results indicated that the addition of clay or clay–biochar mixture reduced carbon mineralization during co-composting without worms by up to 44 %. In the presence of worms, CO2 emissions during composting increased for all treatments except for the low clay dose.
Miriam Muñoz-Rojas, Todd E. Erickson, Dylan C. Martini, Kingsley W. Dixon, and David J. Merritt
SOIL, 2, 287–298, https://doi.org/10.5194/soil-2-287-2016, https://doi.org/10.5194/soil-2-287-2016, 2016
M. S. Torn, A. Chabbi, P. Crill, P. J. Hanson, I. A. Janssens, Y. Luo, C. H. Pries, C. Rumpel, M. W. I. Schmidt, J. Six, M. Schrumpf, and B. Zhu
SOIL, 1, 575–582, https://doi.org/10.5194/soil-1-575-2015, https://doi.org/10.5194/soil-1-575-2015, 2015
M. Köchy, A. Don, M. K. van der Molen, and A. Freibauer
SOIL, 1, 367–380, https://doi.org/10.5194/soil-1-367-2015, https://doi.org/10.5194/soil-1-367-2015, 2015
Short summary
Short summary
Using ranges for variables in a model of organic C stocks of the top 1m of soil on a global 0.5° grid, we assessed the (un)certainty of changes in stocks over the next 75 years. Changes are more certain where land-use change strongly affects carbon inputs and where higher temperatures and adequate moisture favour decomposition, e.g. tropical mountain forests. Global stocks will increase by 1% with a certainty of 75% if inputs to the soil increase due to CO₂ fertilization of the vegetation.
P. Alexander, K. Paustian, P. Smith, and D. Moran
SOIL, 1, 331–339, https://doi.org/10.5194/soil-1-331-2015, https://doi.org/10.5194/soil-1-331-2015, 2015
Cited articles
Abdullah, E. C. and Geldart, D.: The use of bulk density measurements as
flowability indicators, Powder Technol., 102, 151–165, 1999.
Barrios, E.: Soil biota, ecosystem services and land productivity,
Ecol. Econ., 64, 269–285, 2007.
Besnard, E., Chenu, C., Balesdent, J., Puget, P., and Arrouays, D.: Fate of
particulate organic matter in soil aggregates during cultivation, Eur.
J. Soil Sci., 47, 495–503, 1996.
Bischoff, N., Mikutta, R., Shibistova, O., Puzanov, A., Silanteva, M., Grebennikova, A., Fuß, R., and Guggenberger, G.: Limited protection of macro-aggregate-occluded organic carbon in Siberian steppe soils, Biogeosciences, 14, 2627–2640, https://doi.org/10.5194/bg-14-2627-2017, 2017.
Bonan, G. B.: Forests and climate change: forcings, feedbacks, and the
climate benefits of forests, Science, 320, 1444–1449, 2008.
Bradford, M. A., Wieder, W. R., Bonan, G. B., Fierer, N., Raymond, P. A.,
and Crowther, T. W.: Managing uncertainty in soil carbon feedbacks to
climate change, Nat. Clim. Change, 6, 751, https://doi.org/10.1038/nclimate3071, 2016.
Callesen, I., Liski, J., Raulund-Rasmussen, K., Olsson, M., Tau-Strand, L.,
Vesterdal, L., and Westman, C.: Soil carbon stores in Nordic well-drained
forest soils – Relationships with climate and texture class, Glob. Change
Biol., 9, 358–370, 2003.
Chepil, W.: Properties of soil which influence wind erosion: IV. State of
dry aggregate structure, Soil Sci., 72, 387–402, 1951.
Conant, R. T., Ryan, M. G., Ågren, G. I., Birge, H. E., Davidson, E. A.,
Eliasson, P. E., Evans, S. E., Frey, S. D., Giardina, C. P., and Hopkins, F.
M.: Temperature and soil organic matter decomposition rates–synthesis of
current knowledge and a way forward, Glob. Change Biol., 17, 3392–3404,
2011.
Crowther, T. W., Todd-Brown, K. E., Rowe, C. W., Wieder, W. R., Carey, J.
C., Machmuller, M. B., Snoek, B., Fang, S., Zhou, G., and Allison, S. D.:
Quantifying global soil carbon losses in response to warming, Nature, 540,
104–108, 2016.
Davis, M. and Condron, L.: Impact of grassland afforestation on soil carbon
in New Zealand: a review of paired-site studies, Soil Res., 40, 675–690,
2002.
De Vos, B., Van Meirvenne, M., Quataert, P., Deckers, J., and Muys, B.:
Predictive quality of pedotransfer functions for estimating bulk density of
forest soils, Soil Sci. Soc. Am. J., 69, 500–510, 2005.
Diffenbaugh, N. S. and Giorgi, F.: Climate change hotspots in the CMIP5
global climate model ensemble, Climatic Change, 114, 813–822, 2012.
Don, A., Hagen, C., Grüneberg, E., and Vos, C.: Simulated wild boar bioturbation increases the stability of forest soil carbon, Biogeosciences, 16, 4145–4155, https://doi.org/10.5194/bg-16-4145-2019, 2019.
Ellert, B. H. and Bettany, J. R.: Calculation of organic matter and
nutrients stored in soils under contrasting management regimes, Can.
J. Soil Sci., 75, 529–538, 1995.
Fang, C., Smith, P., Moncrieff, J. B., and Smith, J. U.: Similar response of
labile and resistant soil organic matter pools to changes in temperature,
Nature, 433, 57, https://doi.org/10.1038/nature03138, 2005.
Franzluebbers, A. J.: Water infiltration and soil structure related to
organic matter and its stratification with depth, Soil Till. Res.,
66, 197–205, https://doi.org/10.1016/S0167-1987(02)00027-2, 2002.
Halldórsson, B. and Sigbjörnsson, R.: The Mw 6.3 Ölfus earthquake
at 15:45 UTC on 29 May 2008 in South Iceland: ICEARRAY strong-motion
recordings, Soil Dyn. Earthq. Eng., 29, 1073–1083, 2009.
Hansson, K., Fröberg, M., Helmisaari, H.-S., Kleja, D. B., Olsson, B.
A., Olsson, M., and Persson, T.: Carbon and nitrogen pools and fluxes above
and below ground in spruce, pine and birch stands in southern Sweden, Forest
Ecol. Manag., 309, 28–35, 2013.
Hassink, J., Bouwman, L., Zwart, K., and Brussaard, L.: Relationships between
habitable pore space, soil biota and mineralization rates in grassland
soils, Soil Biol. Biochem., 25, 47–55, 1993.
Helfrich, M., Flessa, H., Mikutta, R., Dreves, A., and Ludwig, B.:
Comparison of chemical fractionation methods for isolating stable soil
organic carbon pools, Eur. J. Soil Sci., 58, 1316–1329,
https://doi.org/10.1111/j.1365-2389.2007.00926.x, 2007.
Hicks Pries, C. E., Castanha, C., Porras, R. C., and Torn, M. S.: The
whole-soil carbon flux in response to warming, Science, 355, 1420–1423,
2017.
Holmstrup, M., Ehlers, B. K., Slotsbo, S., Ilieva-Makulec, K., Sigurdsson,
B. D., Leblans, N. I. W., Ellers, J., and Berg, M. P.: Functional diversity
of Collembola is reduced in soils subjected to short-term, but not
long-term, geothermal warming, Funct. Ecol., 32, 1304–1316, 2018.
Horn, R., Taubner, H., Wuttke, M., and Baumgartl, T.: Soil physical properties
related to soil structure, Soil Till. Res., 30, 187–216, 1994.
Huang, Z., Davis, M. R., Condron, L. M., and Clinton, P. W.: Soil carbon
pools, plant biomarkers and mean carbon residence time after afforestation
of grassland with three tree species, Soil Biol. Biochem., 43,
1341–1349, 2011.
IPCC: Climate Change: The Physical Science Basis, Cambridge University Press, Cambridge and New York, 2013.
Johnston, A. E., Poulton, P. R., and Coleman, K.: Soil organic matter: its
importance in sustainable agriculture and carbon dioxide fluxes, Adv.
Agron., 101, 1–57, 2009.
Kalbitz, K., Solinger, S., Park, J. H., Michalzik, B., and Matzner, E.:
Controls on the dynamics of dissolved organic matter in soils: A review,
Soil Sci., 165, 277–304, 2000.
Kreyling, J., Jentsch, A., and Beier, C.: Beyond realism in climate change
experiments: gradient approaches identify thresholds and tipping points,
Ecol. Lett., 17, 125-e1, 2014.
Larsbo, M., Koestel, J., Kätterer, T., and Jarvis, N.: Preferential
Transport in Macropores is Reduced by Soil Organic Carbon, Vadose Zone
J., 15, 1–7, https://doi.org/10.2136/vzj2016.03.0021, 2016.
Lefevre, R., Barre, P., Moyano, F. E., Christensen, B. T., Bardoux, G.,
Eglin, T., Girardin, C., Houot, S., Kaetterer, T., and Oort, F.: Higher
temperature sensitivity for stable than for labile soil organic
carbon–Evidence from incubations of long-term bare fallow soils, Glob.
Change Biol., 20, 633–640, 2014.
Leppälammi-Kujansuu, J., Ostonen, I., Strömgren, M., Nilsson, L. O.,
Kleja, D. B., Sah, S. P., and Helmisaari, H.-S.: Effects of
long-term temperature and nutrient manipulation on Norway spruce fine roots
and mycelia production, Plant Soil, 366, 287–303, 2013.
Leppälammi-Kujansuu, J., Salemaa, M., Kleja, D. B., Linder, S., and
Helmisaari, H.-S.: Fine root turnover and litter production of Norway spruce
in a long-term temperature and nutrient manipulation experiment, Plant
Soil, 374, 73–88, 2014.
Lutfalla, S., Chenu, C., and Barré, P.: Are chemical oxidation methods
relevant to isolate a soil pool of centennial carbon?, Biogeochemistry, 118,
135–139, 2014.
Majdi, H. and Ohrvik, J.: Interactive effects of soil warming and fertilization
on root production, mortality, and longevity in a Norway spruce stand in
Northern Sweden, Glob. Change Biol., 10, 182–188, 2004.
Melillo, J., Steudler, P., Aber, J., Newkirk, K., Lux, H., Bowles, F.,
Catricala, C., Magill, A., Ahrens, T., and Morrisseau, S.: Soil
warming and carbon-cycle feedbacks to the climate system, Science, 298, 2173–2176,
2002.
Mikutta, R., Kleber, M., Kaiser, K., and Jahn, R.: Review: Organic matter
removal from soils using hydrogen peroxide, sodium hypochlorite, and
disodium peroxodisulfate, Soil Sci. Soc. Am. J., 69,
120–135, 2005.
Oades, J. M.: Soil organic matter and structural stability: mechanisms and
implications for management,
Plant Soil, 76, 319–337, 1984.
O'Gorman, E. J., Benstead, J. P., Cross, W. F., Friberg, N., Hood, J. M.,
Johnson, P. W., Sigurdsson, B. D., and Woodward, G.: Climate change and
geothermal ecosystems: natural laboratories, sentinel systems, and future
refugia, Glob. Change Biol., 20, 3291–3299, 2014.
Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R.,
O'hara, R., Simpson, G. L., Solymos, P., Stevens, M. H. H., and Wagner, H.:
vegan: Community ecology Package R package version 2.5-4, available at: http://CRAN.Rproject.org/package=vegan (last access: 17 March 2020), 2019.
Oldfield, E. E., Bradford, M. A., and Wood, S. A.: Global meta-analysis of the relationship between soil organic matter and crop yields, SOIL, 5, 15–32, https://doi.org/10.5194/soil-5-15-2019, 2019.
Parts, K., Tedersoo, L., Schindlbacher, A., Sigurdsson, B. D., Leblans, N.
I. W., Oddsdóttir, E. S., Borken, W., and Ostonen, I.: Acclimation of fine
root systems to soil warming: comparison of an experimental setup and a
natural soil temperature gradient, Ecosystems, 22, 457–472, 2019.
Poeplau, C.: Geothermal forest soil warming, OSF Home, https://doi.org/10.17605/OSF.IO/SGUZ2, 2019.
Poeplau, C. and Don, A.: Sensitivity of soil organic carbon stocks and
fractions to different land-use changes across Europe, Geoderma, 192,
189–201, 2013.
Poeplau, C., Don, A., Dondini, M., Leifeld, J., Nemo, R., Schumacher, J.,
Senapati, N., and Wiesmeier, M.: Reproducibility of a soil organic carbon
fractionation method to derive RothC carbon pools, Eur. J. Soil
Sci., 64, 735–746, 2013.
Poeplau, C., Kätterer, T., Leblans, N. I., and Sigurdsson, B. D.:
Sensitivity of soil carbon fractions and their specific stabilization
mechanisms to extreme soil warming in a subarctic grassland, Glob. Change
Biol., 23, 1316–1327, 2017.
Poeplau, C., Don, A., Six, J., Kaiser, M., Benbi, D., Chenu, C., Cotrufo, M.
F., Derrien, D., Gioacchini, P., Grand, S., Gregorich, E., Griepentrog, M.,
Gunina, A., Haddix, M., Kuzyakov, Y., Kühnel, A., Macdonald, L. M.,
Soong, J., Trigalet, S., Vermeire, M.-L., Rovira, P., van Wesemael, B.,
Wiesmeier, M., Yeasmin, S., Yevdokimov, I., and Nieder, R.: Isolating
organic carbon fractions with varying turnover rates in temperate
agricultural soils – A comprehensive method comparison, Soil Biol.
Biochem., 125, 10–26, 2018.
Poeplau, C., Barré, P., Cécillon, L., Baudin, F., and Sigurdsson, B.
D.: Changes in the Rock-Eval signature of soil organic carbon upon extreme
soil warming and chemical oxidation – A comparison, Geoderma, 337, 181–190,
2019.
Prescott, C. E., Zabek, L. M., Staley, C. L., and Kabzems, R.: Decomposition
of broadleaf and needle litter in forests of British Columbia: influences of
litter type, forest type, and litter mixtures, Can. J. Forest
Res., 30, 1742–1750, https://doi.org/10.1139/x00-097, 2000.
R Development Core Team: R: A language and environment for statistical
computing, R Foundation for Statistical Computing, Vienna, Austria, 2010.
Rosenstock, N., Ellström, M., Oddsdottir, E., Sigurdsson, B. D., and
Wallander, H.: Carbon sequestration and community composition of
ectomycorrhizal fungi across a geothermal warming gradient in an Icelandic
spruce forest, Fungal Ecol., 40, 32–42, 2019.
Rustad, L.: Global change: Matter of time on the prairie, Nature, 413, 578–579,
2001.
Scharlemann, J. P., Tanner, E. V., Hiederer, R., and Kapos, V.: Global soil
carbon: understanding and managing the largest terrestrial carbon pool,
Carbon Manag., 5, 81–91, 2014.
Schmidt, M. W. I., Rumpel, C., and Kögel-Knabner, I.: Evaluation of an
ultrasonic dispersion procedure to isolate primary organomineral complexes
from soils, Eur. J. Soil Sci., 50, 87–94, 1999.
Schnecker, J., Borken, W., Schindlbacher, A., and Wanek, W.: Little effects
on soil organic matter chemistry of density fractions after seven years of
forest soil warming, Soil Biol. Biochem., 103, 300–307, 2016.
Shaver, G. R., Canadell, J., Chapin, F. S., Gurevitch, J., Harte, J., Henry,
G., Ineson, P., Jonasson, S., Melillo, J., and Pitelka, L.: Global Warming
and Terrestrial Ecosystems: A Conceptual Framework for Analysis: Ecosystem
responses to global warming will be complex and varied. Ecosystem warming
experiments hold great potential for providing insights on ways terrestrial
ecosystems will respond to upcoming decades of climate change. Documentation
of initial conditions provides the context for understanding and predicting
ecosystem responses, BioScience, 50, 871–882, 2000.
Shepherd, M., Harrison, R., and Webb, J.: Managing soil organic
matter–implications for soil structure on organic farms, Soil Use
Manage., 18, 284–292, 2002.
Sigurdsson, B. D., Leblans, N., Oddsdottir, E. S., Maljanen, M., and Janssens,
I. A.: Effects of geothermal soil warming on soil carbon and nutrient
processes in a Sitka spruce plantation, Working Papers of the Finnish Forest
Research Institute, 316, 11–13, 2014.
Sigurdsson, B. D., Leblans, N. I., Dauwe, S., Gudmundsdottir, E., Gundersen,
P., Gunnarsdottir, G. E., Holmstrup, M., Ilieva-Makulec, K., Katterer, T.,
and Marteinsdottir, B.-S.: Geothermal ecosystems as natural climate change
experiments: The ForHot research site in Iceland as a case study, Iceland.
Agr. Sci., 29, 53–71, 2016.
Six, J., Conant, R., Paul, E. A., and Paustian, K.: Stabilization mechanisms
of soil organic matter: implications for C-saturation of soils, Plant
Soil, 241, 155–176, 2002.
Six, J., Bossuyt, H., Degryze, S., and Denef, K.: A history of research on the
link between (micro) aggregates, soil biota, and soil organic matter
dynamics, Soil Till. Res., 79, 7–31, 2004.
Smith, P. J. G. C. B.: How long before a change in soil organic carbon can
be detected?, Glob. Change Biol., 10, 1878–1883, 2004.
Tarnocai, C., Canadell, J., Schuur, E. A., Kuhry, P., Mazhitova, G., and
Zimov, S.: Soil organic carbon pools in the northern circumpolar permafrost
region, Global Biogeochem. Cy., 23, GB2023, https://doi.org/10.1029/2008GB003327, 2009.
Tisdall, J. M. and Oades, J. M.: Organic matter and water-stable aggregates
in soils, Eur. J. Soil Sci., 33, 141–163, 1982.
Totsche, K. U., Amelung, W., Gerzabek, M. H., Guggenberger, G., Klumpp, E.,
Knief, C., Lehndorff, E., Mikutta, R., Peth, S., and Prechtel, A.:
Microaggregates in soils, J. Plant Nutr. Soil Sc., 181,
104–136, 2018.
van Gestel, N., Shi, Z., van Groenigen, K. J., Osenberg, C. W., Andresen, L.
C., Dukes, J. S., Hovenden, M. J., Luo, Y., Michelsen, A., Pendall, E.,
Reich, P. B., Schuur, E. A. G., and Hungate, B. A.: Predicting soil carbon
loss with warming, Nature, 554, E4–E5, 2018.
von Lützow, M., Kogel-Knabner, I., Ekschmittb, K., Flessa, H.,
Guggenberger, G., Matzner, E., and Marschner, B.: SOM fractionation methods:
Relevance to functional pools and to stabilization mechanisms, Soil Biol.
Biochem., 39, 2183–2207, 2007.
Walker, T. W. N., Kaiser, C., Strasser, F., Herbold, C. W., Leblans, N. I.
W., Woebken, D., Janssens, I. A., Sigurdsson, B. D., and Richter, A.: Microbial
temperature sensitivity and biomass change explain soil carbon loss with
warming, Nat. Clim. Change, 8, 885–889, 2018.
Wickham, H.: ggplot2: elegant graphics for data analysis, Springer, Berlin, 2016.
Zhang, Y., Chen, W., Smith, S. L., Riseborough, D. W., and Cihlar, J.: Soil
temperature in Canada during the twentieth century: Complex responses to
atmospheric climate change, J. Geophys. Res.-Atmos.,
110, D03112, https://doi.org/10.1029/2004JD004910, 2005.
Zimmermann, M., Leifeld, J., Schmidt, M. W. I., Smith, P., and Fuhrer, J.:
Measured soil organic matter fractions can be related to pools in the RothC
model, Eur. J. Soil Sci., 58, 658–667, 2007.
Short summary
Global warming leads to increased mineralisation of soil organic matter, inducing a positive climate–carbon cycle feedback loop. Loss of organic matter can be associated with loss of soil structure. Here we use a strong geothermal gradient to investigate soil warming effects on soil organic matter and structural parameters in subarctic forest and grassland soils. Strong depletion of organic matter caused a collapse of aggregates, highlighting the potential impact of warming on soil function.
Global warming leads to increased mineralisation of soil organic matter, inducing a positive...