Journal cover Journal topic
SOIL An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.343 IF 3.343
  • IF 5-year value: 4.963 IF 5-year
    4.963
  • CiteScore value: 9.6 CiteScore
    9.6
  • SNIP value: 1.637 SNIP 1.637
  • IPP value: 4.28 IPP 4.28
  • SJR value: 1.403 SJR 1.403
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 25 Scimago H
    index 25
SOIL | Articles | Volume 5, issue 2
SOIL, 5, 275–288, 2019
https://doi.org/10.5194/soil-5-275-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
SOIL, 5, 275–288, 2019
https://doi.org/10.5194/soil-5-275-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Original research article 25 Sep 2019

Original research article | 25 Sep 2019

Error propagation in spectrometric functions of soil organic carbon

Monja Ellinger et al.

Related authors

Development of pedotransfer functions for water retention in tropical mountain soil landscapes: spotlight on parameter tuning in machine learning
Anika Gebauer, Monja Ellinger, Victor M. Brito Gomez, and Mareike Ließ
SOIL, 6, 215–229, https://doi.org/10.5194/soil-6-215-2020,https://doi.org/10.5194/soil-6-215-2020, 2020
Short summary
Repeated electromagnetic induction measurements for mapping soil moisture at the field scale: validation with data from a wireless soil moisture monitoring network
Edoardo Martini, Ulrike Werban, Steffen Zacharias, Marco Pohle, Peter Dietrich, and Ute Wollschläger
Hydrol. Earth Syst. Sci., 21, 495–513, https://doi.org/10.5194/hess-21-495-2017,https://doi.org/10.5194/hess-21-495-2017, 2017
Short summary

Related subject area

Soil and methods
Development of pedotransfer functions for water retention in tropical mountain soil landscapes: spotlight on parameter tuning in machine learning
Anika Gebauer, Monja Ellinger, Victor M. Brito Gomez, and Mareike Ließ
SOIL, 6, 215–229, https://doi.org/10.5194/soil-6-215-2020,https://doi.org/10.5194/soil-6-215-2020, 2020
Short summary
The 15N gas-flux method to determine N2 flux: a comparison of different tracer addition approaches
Dominika Lewicka-Szczebak and Reinhard Well
SOIL, 6, 145–152, https://doi.org/10.5194/soil-6-145-2020,https://doi.org/10.5194/soil-6-145-2020, 2020
Short summary
Game theory interpretation of digital soil mapping convolutional neural networks
José Padarian, Alex B. McBratney, and Budiman Minasny
SOIL Discuss., https://doi.org/10.5194/soil-2020-17,https://doi.org/10.5194/soil-2020-17, 2020
Revised manuscript accepted for SOIL
Short summary
A new model for intra- and inter-institutional soil data sharing
José Padarian and Alex B. McBratney
SOIL, 6, 89–94, https://doi.org/10.5194/soil-6-89-2020,https://doi.org/10.5194/soil-6-89-2020, 2020
Short summary
Machine learning and soil sciences: a review aided by machine learning tools
José Padarian, Budiman Minasny, and Alex B. McBratney
SOIL, 6, 35–52, https://doi.org/10.5194/soil-6-35-2020,https://doi.org/10.5194/soil-6-35-2020, 2020
Short summary

Cited articles

Abdi, H.: Partial Least Square Regression – PLS-Regression, in: Encyclopedia of Measurement and Statistics, edited by: Salkind, N., ThousandOaks (CA), Sage., 2007. 
Adamchuk, V. I. and Viscarra Rossel, R. A.: Development of On-the-Go Proximal Soil Sensor Systems, in: Proximal Soil Sensing. Progress in Soil Science, edited by: Viscarra Rossel, R. A., McBratney, A., and Minasny, B., 15–28, Springer, Dordrecht, 2010. 
Altermann, M., Rinklebe, J., Merbach, I., Körschens, M., Langer, U., and Hofmann, B.: Chernozem – Soil of the Year 2005, J. Plant Nutr. Soil Sc., 168, 725–740, https://doi.org/10.1002/jpln.200521814, 2005. 
Barnes, R. J., Dhanoa, M. S., and Lister, S. J.: Standard Normal Variate Transformation and De-Trending of Near-Infrared Diffuse Reflectance Spectra, Appl. Spectrosc., 43, 772–777, 1989. 
Beleites, C., Baumgartner, R., Bowman, C., Somorjai, R., Steiner, G., Salzer, R., and Sowa, M. G.: Variance reduction in estimating classification error using sparse datasets, Chemometr. Intell. Lab., 79, 91–100, https://doi.org/10.1016/j.chemolab.2005.04.008, 2005. 
Publications Copernicus
Download
Short summary
Vis–NIR spectrometry is often applied to capture soil organic carbon (SOC). This study addresses the impact of the involved data and modelling aspects on SOC precision with a focus on the propagation of input data uncertainties. It emphasizes the necessity of transparent documentation of the measurement protocol and the model building and validation procedure. Particularly, when Vis–NIR spectrometry is used for soil monitoring, the aspect of uncertainty propagation becomes essential.
Vis–NIR spectrometry is often applied to capture soil organic carbon (SOC). This study addresses...
Citation