Articles | Volume 5, issue 2
SOIL, 5, 275–288, 2019
https://doi.org/10.5194/soil-5-275-2019
SOIL, 5, 275–288, 2019
https://doi.org/10.5194/soil-5-275-2019
Original research article
25 Sep 2019
Original research article | 25 Sep 2019

Error propagation in spectrometric functions of soil organic carbon

Monja Ellinger et al.

Related authors

Can soil spectroscopy contribute to soil organic carbon monitoring on agricultural soils?
Javier Reyes and Mareike Ließ
EGUsphere, https://doi.org/10.5194/egusphere-2022-273,https://doi.org/10.5194/egusphere-2022-273, 2022
Short summary
Small-scale topography explains patterns and dynamics of dissolved organic carbon exports from the riparian zone of a temperate, forested catchment
Benedikt J. Werner, Oliver J. Lechtenfeld, Andreas Musolff, Gerrit H. de Rooij, Jie Yang, Ralf Gründling, Ulrike Werban, and Jan H. Fleckenstein
Hydrol. Earth Syst. Sci., 25, 6067–6086, https://doi.org/10.5194/hess-25-6067-2021,https://doi.org/10.5194/hess-25-6067-2021, 2021
Short summary
Performance of three machine learning algorithms for predicting soil organic carbon in German agricultural soil
Ali Sakhaee, Anika Gebauer, Mareike Ließ, and Axel Don
SOIL Discuss., https://doi.org/10.5194/soil-2021-107,https://doi.org/10.5194/soil-2021-107, 2021
Revised manuscript under review for SOIL
Short summary
STH-net: a soil monitoring network for process-based hydrological modelling from the pedon to the hillslope scale
Edoardo Martini, Matteo Bauckholt, Simon Kögler, Manuel Kreck, Kurt Roth, Ulrike Werban, Ute Wollschläger, and Steffen Zacharias
Earth Syst. Sci. Data, 13, 2529–2539, https://doi.org/10.5194/essd-13-2529-2021,https://doi.org/10.5194/essd-13-2529-2021, 2021
Short summary
On the benefits of clustering approaches in digital soil mapping: an application example concerning soil texture regionalization
Istvan Dunkl and Mareike Ließ
SOIL Discuss., https://doi.org/10.5194/soil-2020-102,https://doi.org/10.5194/soil-2020-102, 2021
Revised manuscript under review for SOIL
Short summary

Related subject area

Soil and methods
Estimating soil fungal abundance and diversity at a macroecological scale with deep learning spectrotransfer functions
Yuanyuan Yang, Zefang Shen, Andrew Bissett, and Raphael A. Viscarra Rossel
SOIL, 8, 223–235, https://doi.org/10.5194/soil-8-223-2022,https://doi.org/10.5194/soil-8-223-2022, 2022
Short summary
Thermal signature and quantification of charcoal in soil by differential scanning calorimetry and BPCA markers
Brieuc Hardy, Nils Borchard, and Jens Leifeld
SOIL Discuss., https://doi.org/10.5194/soil-2021-146,https://doi.org/10.5194/soil-2021-146, 2022
Revised manuscript accepted for SOIL
Short summary
An underground, wireless, open-source, low-cost system for monitoring oxygen, temperature, and soil moisture
Elad Levintal, Yonatan Ganot, Gail Taylor, Peter Freer-Smith, Kosana Suvocarev, and Helen E. Dahlke
SOIL, 8, 85–97, https://doi.org/10.5194/soil-8-85-2022,https://doi.org/10.5194/soil-8-85-2022, 2022
Short summary
Performance of three machine learning algorithms for predicting soil organic carbon in German agricultural soil
Ali Sakhaee, Anika Gebauer, Mareike Ließ, and Axel Don
SOIL Discuss., https://doi.org/10.5194/soil-2021-107,https://doi.org/10.5194/soil-2021-107, 2021
Revised manuscript under review for SOIL
Short summary
Estimation of soil properties with mid-infrared soil spectroscopy across yam production landscapes in West Africa
Philipp Baumann, Juhwan Lee, Emmanuel Frossard, Laurie Paule Schönholzer, Lucien Diby, Valérie Kouamé Hgaza, Delwende Innocent Kiba, Andrew Sila, Keith Sheperd, and Johan Six
SOIL, 7, 717–731, https://doi.org/10.5194/soil-7-717-2021,https://doi.org/10.5194/soil-7-717-2021, 2021
Short summary

Cited articles

Abdi, H.: Partial Least Square Regression – PLS-Regression, in: Encyclopedia of Measurement and Statistics, edited by: Salkind, N., ThousandOaks (CA), Sage., 2007. 
Adamchuk, V. I. and Viscarra Rossel, R. A.: Development of On-the-Go Proximal Soil Sensor Systems, in: Proximal Soil Sensing. Progress in Soil Science, edited by: Viscarra Rossel, R. A., McBratney, A., and Minasny, B., 15–28, Springer, Dordrecht, 2010. 
Altermann, M., Rinklebe, J., Merbach, I., Körschens, M., Langer, U., and Hofmann, B.: Chernozem – Soil of the Year 2005, J. Plant Nutr. Soil Sc., 168, 725–740, https://doi.org/10.1002/jpln.200521814, 2005. 
Barnes, R. J., Dhanoa, M. S., and Lister, S. J.: Standard Normal Variate Transformation and De-Trending of Near-Infrared Diffuse Reflectance Spectra, Appl. Spectrosc., 43, 772–777, 1989. 
Beleites, C., Baumgartner, R., Bowman, C., Somorjai, R., Steiner, G., Salzer, R., and Sowa, M. G.: Variance reduction in estimating classification error using sparse datasets, Chemometr. Intell. Lab., 79, 91–100, https://doi.org/10.1016/j.chemolab.2005.04.008, 2005. 
Download
Short summary
Vis–NIR spectrometry is often applied to capture soil organic carbon (SOC). This study addresses the impact of the involved data and modelling aspects on SOC precision with a focus on the propagation of input data uncertainties. It emphasizes the necessity of transparent documentation of the measurement protocol and the model building and validation procedure. Particularly, when Vis–NIR spectrometry is used for soil monitoring, the aspect of uncertainty propagation becomes essential.