Articles | Volume 5, issue 2
https://doi.org/10.5194/soil-5-275-2019
https://doi.org/10.5194/soil-5-275-2019
Original research article
 | 
25 Sep 2019
Original research article |  | 25 Sep 2019

Error propagation in spectrometric functions of soil organic carbon

Monja Ellinger, Ines Merbach, Ulrike Werban, and Mareike Ließ

Related authors

Combining crosshole and reflection borehole ground-penetrating radar (GPR) for imaging controlled freezing in shallow aquifers
Peter Jung, Götz Hornbruch, Andreas Dahmke, Peter Dietrich, and Ulrike Werban
Solid Earth, 15, 1465–1477, https://doi.org/10.5194/se-15-1465-2024,https://doi.org/10.5194/se-15-1465-2024, 2024
Short summary
Deep learning with a multi-task convolutional neural network to generate a national-scale 3D soil data product: Particle size distribution of the German agricultural soil-landscape
Mareike Ließ and Ali Sakhaee
EGUsphere, https://doi.org/10.5194/egusphere-2023-2386,https://doi.org/10.5194/egusphere-2023-2386, 2023
Preprint archived
Short summary
The Münsterdorf sinkhole cluster: void origin and mechanical failure
Georg Kaufmann, Douchko Romanov, Ulrike Werban, and Thomas Vienken
Solid Earth, 14, 333–351, https://doi.org/10.5194/se-14-333-2023,https://doi.org/10.5194/se-14-333-2023, 2023
Short summary
Spatial prediction of organic carbon in German agricultural topsoil using machine learning algorithms
Ali Sakhaee, Anika Gebauer, Mareike Ließ, and Axel Don
SOIL, 8, 587–604, https://doi.org/10.5194/soil-8-587-2022,https://doi.org/10.5194/soil-8-587-2022, 2022
Short summary
On the benefits of clustering approaches in digital soil mapping: an application example concerning soil texture regionalization
István Dunkl and Mareike Ließ
SOIL, 8, 541–558, https://doi.org/10.5194/soil-8-541-2022,https://doi.org/10.5194/soil-8-541-2022, 2022
Short summary

Related subject area

Soil and methods
Spatial prediction of organic carbon in German agricultural topsoil using machine learning algorithms
Ali Sakhaee, Anika Gebauer, Mareike Ließ, and Axel Don
SOIL, 8, 587–604, https://doi.org/10.5194/soil-8-587-2022,https://doi.org/10.5194/soil-8-587-2022, 2022
Short summary
On the benefits of clustering approaches in digital soil mapping: an application example concerning soil texture regionalization
István Dunkl and Mareike Ließ
SOIL, 8, 541–558, https://doi.org/10.5194/soil-8-541-2022,https://doi.org/10.5194/soil-8-541-2022, 2022
Short summary
An open Soil Structure Library based on X-ray CT data
Ulrich Weller, Lukas Albrecht, Steffen Schlüter, and Hans-Jörg Vogel
SOIL, 8, 507–515, https://doi.org/10.5194/soil-8-507-2022,https://doi.org/10.5194/soil-8-507-2022, 2022
Short summary
Identification of thermal signature and quantification of charcoal in soil using differential scanning calorimetry and benzene polycarboxylic acid (BPCA) markers
Brieuc Hardy, Nils Borchard, and Jens Leifeld
SOIL, 8, 451–466, https://doi.org/10.5194/soil-8-451-2022,https://doi.org/10.5194/soil-8-451-2022, 2022
Short summary
Estimating soil fungal abundance and diversity at a macroecological scale with deep learning spectrotransfer functions
Yuanyuan Yang, Zefang Shen, Andrew Bissett, and Raphael A. Viscarra Rossel
SOIL, 8, 223–235, https://doi.org/10.5194/soil-8-223-2022,https://doi.org/10.5194/soil-8-223-2022, 2022
Short summary

Cited articles

Abdi, H.: Partial Least Square Regression – PLS-Regression, in: Encyclopedia of Measurement and Statistics, edited by: Salkind, N., ThousandOaks (CA), Sage., 2007. 
Adamchuk, V. I. and Viscarra Rossel, R. A.: Development of On-the-Go Proximal Soil Sensor Systems, in: Proximal Soil Sensing. Progress in Soil Science, edited by: Viscarra Rossel, R. A., McBratney, A., and Minasny, B., 15–28, Springer, Dordrecht, 2010. 
Altermann, M., Rinklebe, J., Merbach, I., Körschens, M., Langer, U., and Hofmann, B.: Chernozem – Soil of the Year 2005, J. Plant Nutr. Soil Sc., 168, 725–740, https://doi.org/10.1002/jpln.200521814, 2005. 
Barnes, R. J., Dhanoa, M. S., and Lister, S. J.: Standard Normal Variate Transformation and De-Trending of Near-Infrared Diffuse Reflectance Spectra, Appl. Spectrosc., 43, 772–777, 1989. 
Beleites, C., Baumgartner, R., Bowman, C., Somorjai, R., Steiner, G., Salzer, R., and Sowa, M. G.: Variance reduction in estimating classification error using sparse datasets, Chemometr. Intell. Lab., 79, 91–100, https://doi.org/10.1016/j.chemolab.2005.04.008, 2005. 
Download
Short summary
Vis–NIR spectrometry is often applied to capture soil organic carbon (SOC). This study addresses the impact of the involved data and modelling aspects on SOC precision with a focus on the propagation of input data uncertainties. It emphasizes the necessity of transparent documentation of the measurement protocol and the model building and validation procedure. Particularly, when Vis–NIR spectrometry is used for soil monitoring, the aspect of uncertainty propagation becomes essential.