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Abstract. Soil organic carbon (SOC) plays a major role concerning chemical, physical, and biological soil
properties and functions. To get a better understanding of how soil management affects the SOC content, the
precise monitoring of SOC on long-term field experiments (LTFEs) is needed. Visible and near-infrared (Vis–
NIR) reflectance spectrometry provides an inexpensive and fast opportunity to complement conventional SOC
analysis and has often been used to predict SOC. For this study, 100 soil samples were collected at an LTFE in
central Germany by two different sampling designs. SOC values ranged between 1.5 % and 2.9 %. Regression
models were built using partial least square regression (PLSR). In order to build robust models, a nested repeated
5-fold group cross-validation (CV) approach was used, which comprised model tuning and evaluation. Various
aspects that influence the obtained error measure were analysed and discussed. Four pre-processing methods
were compared in order to extract information regarding SOC from the spectra. Finally, the best model perfor-
mance which did not consider error propagation corresponded to a mean RMSEMV of 0.12 % SOC (R2

= 0.86).
This model performance was impaired by1RMSEMV = 0.04 % SOC while considering input data uncertainties
(1R2

= 0.09), and by 1RMSEMV = 0.12 % SOC (1R2
= 0.17) considering an inappropriate pre-processing.

The effect of the sampling design amounted to a1RMSEMV of 0.02 % SOC (1R2
= 0.05). Overall, we empha-

size the necessity of transparent and precise documentation of the measurement protocol, the model building,
and validation procedure in order to assess model performance in a comprehensive way and allow for a com-
parison between publications. The consideration of uncertainty propagation is essential when applying Vis–NIR
spectrometry for soil monitoring.

1 Introduction

Soil is at the same time one of the most important and one of
the most limited natural resources. Most of all, it is needed
for food production, as well as for the production of energy
crops and fibre, and for the provision of freshwater (John-
son, 2008; Lorenz and Lal, 2016). All these aspects depend
on the quality of the soil, which is determined by its site-
specific properties. And this quality, in turn, is much influ-
enced by its soil organic carbon (SOC) content since it affects

chemical, physical, and biological soil properties and func-
tions (Knadel et al., 2015; Lorenz and Lal, 2016). Addition-
ally, SOC is also relevant in the context of global warming
since the soil is the largest terrestrial reservoir of organic car-
bon (Conforti et al., 2015; Johnson, 2008; McBratney et al.,
2014; Stockmann et al., 2011). SOC sequestration may lead
to long-term SOC storage in relatively stable soil fractions
(Lal, 2004; McBratney et al., 2014). Thus, the SOC stocks
of soils could be used as a manageable sink for atmospheric
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carbon (Stockmann et al., 2011), achieving both food secu-
rity and a strategy against the increasing CO2 concentration
in the atmosphere (Lal, 2004; Lorenz and Lal, 2016; McBrat-
ney et al., 2014). As the SOC content of soils reacts very
slowly to environmental changes (Meersmans et al., 2009),
long-term field experiments (LTFEs) are required to under-
stand the impact of soil management and farming systems
on the rate of SOC sequestration (Lal, 2004), as well as on
yield and crop quality in the long run.

The precise monitoring of SOC on an LTFE with con-
ventional laboratory analysis is labour- and cost-intensive
(Adamchuk and Viscarra Rossel, 2010; Loum et al., 2016) as
it requires the analysis of a rather high number of samples.
Visible and near-infrared (Vis–NIR) reflectance spectrome-
try can facilitate this procedure. It is non-destructive, fast,
and economical (Mouazen et al., 2010) and requires the con-
ventional laboratory analysis to be conducted on only a small
number of soil samples, as well as little sample preparation
(Conforti et al., 2015). The obtained spectrum contains infor-
mation about many different soil components (Conforti et al.,
2015; Viscarra Rossel et al., 2006b); please compare Sten-
berg et al. (2010) for a review on the past and current role
of Vis–NIR spectrometry in soil science. Spectral absorption
features are caused by vibrational stretching and bending of
structural molecule groups and electronic excitation (Ben-
Dor et al., 1999; Dalal and Henry, 1986). Molecule vibrations
from hydroxyl, carboxyl, and amine functional groups pro-
duce absorption features related to soil organic matter in the
mid-infrared (MIR) region of the spectra (Croft et al., 2012).
In comparison, Vis–NIR spectra show only broad and un-
clear adsorption features related to overtone vibrations from
the MIR, but instruments are less cost-intensive and available
for field monitoring as well (Stenberg and Viscarra Rossel,
2010; Viscarra Rossel et al., 2006a). Furthermore, in diffuse
reflectance spectroscopy, scattering properties depend on the
particular wavelengths and can vary significantly over the
Vis–NIR spectral range (Pilorget et al., 2016). Hence, the
pre-processing of Vis–NIR spectra is necessary in order to
extract soil property-related information (Stenberg and Vis-
carra Rossel, 2010). As there is no standard pre-processing
technique which works on all spectral data (Stenberg and
Viscarra Rossel, 2010), it is recommended to always test var-
ious techniques and to choose the one which performs best
for the respective data. Several studies, therefore, have com-
pared a rather high number of pre-processing methods. Scat-
tering and other effects attributed to within-sample variance
can be addressed by repeated measurements of replicate sam-
ples (e.g. Pimstein et al., 2011). Altogether, Vis–NIR soil
spectrometry has been used on many occasions to build SOC
prediction models (Jiang et al., 2016; Kuang and Mouazen,
2013; Nocita et al., 2013).

However, the application of Vis–NIR soil spectrometry for
SOC determination involves a couple of uncertainties. The
required calibration data are determined with standard labo-
ratory analysis, e.g. dry combustion, with associated uncer-

tainties. On the other hand, the spectral measurements are af-
fected by the sample preparation, e.g. drying, sieving, grind-
ing (e.g. Nduwamungu et al., 2009). Furthermore, sensor
noise and other spectrometer internal sources (electronic and
mechanical) can affect the measurements (Schwartz et al.,
2011). Finally, these two uncertain data sources are related
by a regression model. And the model building procedure in-
volves a couple of error sources itself. The development of
robust models requires a resampling procedure to determine
the model parameters and to avoid overfitting; the applied re-
sampling method impacts model performance (e.g. Molinaro
et al., 2005; Beleites et al., 2005). Further aspects that im-
pact model performance are the available dataset in concor-
dance with the applied sampling design, the handling of out-
liers, spectral pre-processing, and last but not least the model
evaluation procedure. In most studies dealing with SOC pre-
diction from Vis–NIR spectra, no clear statement about in-
put data uncertainties or their handling is made. The reported
prediction errors only refer to the model building procedure,
while uncertainties from laboratory measurements are ne-
glected. Commonly, only a single SOC measurement per soil
sample is available, and in spectrometric laboratory measure-
ments, the general approach consists in averaging the multi-
ple measured spectra of one sample to one spectrum, which
is then used for model building (Ge et al., 2011; Stevens et
al., 2013; Viscarra Rossel et al., 2003). However, the number
of measurements used to gain one averaged spectrum differs
between studies. Jiang et al. (2016), for example, averaged 10
measurements to receive one spectrum, while Volkan Bilgili
et al. (2010) and Wang et al. (2014) used four measurements.
This difference is also assumed to have an influence on the
uncertainties contained in the input data.

Overall, to allow for comparison between studies, in terms
of predictive uncertainty in % SOC, a modelling proce-
dure is required that deals with the propagation of the in-
put data uncertainties. For discussion of the general concept,
please refer to Jansen (1998); for applications in soil mod-
elling, compare, for example, Heuvelink (1999) and Pog-
gio and Gimona (2014). Although the problem of the in-
volved uncertainties in Vis–NIR spectrometry is well-known
(e.g. Gholizadeh et al., 2013; Nduwamungu et al., 2009;
Mortensen, 2014), implementations of uncertainty propaga-
tion in Vis–NIR spectrometric modelling are lacking.

2 Material and methods

2.1 The Static Fertilization Experiment Bad Lauchstädt

The soil samples were taken at the LTFE site Static Fertil-
ization Experiment in Bad Lauchstädt in central Germany
(Körschens and Pfefferkorn, 1998). Positioned at 51◦24′ N,
11◦53′ E and with an altitude of 113 m a.s.l. (Körschens and
Pfefferkorn, 1998), the climate is characterized by a mean
annual precipitation of 470–540 mm and an average mean
annual temperature of 8.5–9.0 ◦C. The soil type was charac-
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terized as a Haplic Chernozem developed from loess (Alter-
mann et al., 2005) with a soil texture of 21.1± 1.2 % clay,
72.1± 1.7 % silt, and 6.9± 1.9 % sand (Dierke and Wer-
ban, 2013). Saturated water conductivity and air capacity are
medium to high in the topsoil (Altermann et al., 2005). The
Static Fertilization Experiment was initialized in 1902 by
Schneidewind and Gröbler and is about 4 ha in size (Merbach
and Schulz, 2013). Its objective is to investigate the impact
of organic and mineral fertilization on soil fertility as well as
yield and quality of crops (Körschens and Pfefferkorn, 1998;
Schulz, 2017). The experiment includes eight subfields with
a width from 25.2 to 28.5 m and a length of 190 m which are
each divided into 18 plots that are treated with different min-
eral and organic fertilizer as well as planted with different
crops following a crop rotation (Körschens and Pfefferkorn,
1998). The plots of subfields 4 and 5 are additionally split
into 5 smaller subplots.

2.2 Sampling design

A total of 100 soil samples were taken at the soil surface
(0–10 cm) in September 2016. The exact location of the sam-
pling points was determined by a differential GPS/GNSS Le-
ica Viva GS08. It was decided to sample at precise point
locations instead of taking samples representative of LTFE
plots to allow for a direct comparison with spectrometric field
measurements for area-wide regionalization (not included in
this study). The sampling points were determined beforehand
by two sampling designs. Based on the LTFE treatment fac-
tors and per-plot soil archive data including Corg, Ntot, plant-
available P, plant-available K (both with double lactate ex-
tract method (VDLUFA, 2012), and pH (Fig. 1), both de-
signs strived to select a dataset of 50 samples representative
of the soil variability of the entire LTFE. Categorical and
continuous data first entered a factor analysis for mixed data
(FAMD) performed with R package FactoMineR (Lê et al.,
2008) to allow for further joint analysis. For design A the
LTFE plots were then grouped by a k-means cluster analysis.
R package NbClust (Charrad et al., 2014) automatically de-
termines the optimal number of clusters making use of 30 in-
dices. In the end, 10 plots were randomly selected from each
of the resulting five clusters, making a total of 50 plots to
be sampled. For design B, the Kennard–Stone algorithm was
applied with R package prospectr (Kennard and Stone, 1969;
Stevens and Ramirez Lopez, 2014); 50 LTFE plots were se-
lected involving 5 repetitions of the algorithm to reduce inter-
point dependence. Finally, one sampling point was randomly
selected from each of the 50 LTFE plots for design A and B
based on a 5 cm× 5 cm raster. Plot margins of 1.5 m (3 m be-
tween plots) were excluded. Figure 2 shows the location of
the obtained 100 soil samples.

Figure 1. Soil archive data of the LTFE measured from 2004 to
2007 (reports of the experimental station Bad Lauchstädt 2004–
2007; unpublished data).

2.3 Laboratory measurements

The soil samples were air-dried, sieved, and ground prior
to carbon measurements with dry combustion. A high-end
elemental analyser vario EL cube CN was used. Measure-
ments were repeated in three replicate samples. Carbon mea-
surements were taken as SOC due to negligibly small car-
bonate contents (below detection limit). The Vis–NIR con-
tact measurements were performed on air-dried and sieved
(2 mm) samples in July 2017, using Veris® Vis–NIR spec-
trophotometer by Veris Technologies, Inc. (hereinafter called
Veris) containing an Ocean Optics USB4000 instrument (200
to 1100 nm) and a Hamamatsu TG series mini-spectrometer
(1100 to 2200 nm, resolution 6 nm). The device was warmed
up for at least 20 min before performing measurements. All
measurements were taken in a dark room to prevent day-
light from affecting the outcome. The soil samples were
scanned from the top. Before and between soil sample mea-
surements, Veris was calibrated using four Avian Technolo-
gies Fluorilon™ grayscale standards. Each soil sample was
divided into three subsamples filled into Petri dishes (Schott
Duran Petri dishes; Duran Group, Mainz, Germany). These
replicate samples were not related to the three replicate sam-
ples used for SOC measurements. For each replicate sample,
six spectra were gained by measuring each replicate sample
three times, rotating it by 90◦, and then measuring it three
times again. This procedure resulted in 18 spectra for each
soil sample. Internally the spectrometer averaged 25 scans
for each spectrometer reading (spectrometer setting).

2.4 Spectral pre-processing

Veris is equipped with two spectrometers. At the beginning
and end of their respective wavelength ranges noise occurs
in the measurements. Therefore, the spectra between these
wavelengths (1000 to 1100 nm) had to be removed. Ad-
ditionally, the spectra were cut at the beginning (402 nm)
and the end (2220 nm). A number of pre-processing meth-
ods were tested to enhance the information regarding SOC
in the Vis–NIR spectra. The spectra were tested for out-
liers using R package mvoutlier (Filzmoser and Gschwandt-
ner, 2018). For this procedure, a principal component anal-
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Figure 2. Site of the Static Fertilization Experiment in Bad Lauchstädt with LTFE plots and sampling points according to design A and B.
Plot margins excluded from sampling are visible as 3 m wide stripes between plots.

ysis (PCA) is performed, using then the first two obtained
PCs for outlier detection with function aq.plot. Out of the
tested pre-processing methods, four different combinations
are shown in this study in order to demonstrate their impact
on model performance. Their application resulted in spectra
with different wavelength ranges (Table 1) and different ap-
pearance (Fig. 3). These pre-processing techniques include
the Savitzky–Golay algorithm (SG), the continuum removal
(CR), the standard normal variate (SNV), the first deriva-
tive (d1), and the gap-segment algorithm (gapDer). All pre-
processing methods for this study were conducted using R
package prospectr (Stevens and Ramirez Lopez, 2014). The
SG algorithm fits a polynomial regression on the spectral
data to find the derivative at a centre point i of a defined
smoothing window (w) (Savitzky and Golay, 1964). CR can
be seen as a spectra normalization technique which enables
the comparison of different absorption characteristics from
a mutual baseline. The continuum is calculated by linear in-
terpolation of the reflectance spectrum’s maxima. We imple-
mented CR following Stevens and Ramirez Lopez (2014) by
calculating

φi =
xi

ci
(1)

for i = 1, . . .,p, with xi and ci being the initial and the con-
tinuum reflectance values at wavelength i of a set of p wave-
lengths. φi then gives the continuum-removed reflectance
value. SNV is a scatter-corrective pre-processing method
(Barnes et al., 1989). The basic formula is as follows:

xcorr =
xorg− a0

a1
, (2)

where a0 is the measured spectrum’s average value which
shall be corrected, and a1 is the sample spectrum’s stan-
dard deviation. xorg is the original spectrum and xcorr the
corrected spectrum after applying SNV. In this study, SNV
operates row-wise, and each observation is processed on its
own (Stevens and Ramirez Lopez, 2014). d1 is calculated by
the finite difference method, i.e. the difference between two
subsequent data points xi and xi−1 (Eq. 3):

x′i = xi − xi−1, (3)
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Figure 3. Impact of different pre-processing techniques on
a spectrum; SG−Savitzky–Golay, CR− continuum removal,
SNV− standard normal variate, d1− 1st derivative, gapDer− gap-
segment algorithm.

where x′i is the value of the first derivative at the ith wave-
length (Rinnan et al., 2009). The downside of using deriva-
tive spectra is their tendency to increase noise so that smooth-
ing of the data is required (Stevens and Ramirez Lopez,
2014). With the gapDer, smoothing is performed under a cho-
sen segment size (s) and then a derivative follows (Stevens
and Ramirez Lopez, 2014).

2.5 Error propagation

A problem occurring in every model building process is un-
certainty propagation. Uncertainties of the input data and
model result in uncertainties in the output (Brown and
Heuvelink, 2006). Uncertainties in the input data are caused
by errors in data acquisition (e.g. measurement errors) as
well as variation in the data themselves (e.g. within-sample
variability) (Heuvelink, 1999). For this study, there are two
different sources for errors in data acquisition: the measure-
ment of the spectral data and the measurement of the SOC
content of the soil samples. In order to investigate the in-
fluence of these errors, different datasets were built in this
study. Figure 4 gives an overview. From the measured Vis–
NIR spectra, three different spectral data variants were cre-
ated (Fig. 4, step 1). For the first variant, all 18 spectra were

retained. The inclusion of all 18 spectra reveals the influence
of the error implemented in the spectral measurements as
well as the influence of the within-sample variability. For the
second variant, the three measurements obtained before and
after sample rotation were averaged separately resulting in 6
spectra per sample showing the influence of within-sample
variability (replicate measurements). For the third data vari-
ant, all 18 spectra were averaged to 1 mean spectrum per
sample, removing the influence of the measurement error as
well as the within-sample variability. The different spectra
obtained through this procedure can be seen in Fig. 5; only
parts of the spectra are depicted in order to show their dif-
ferences. The three different spectral data variants were then
pre-processed with the methods from Table 1 (Fig. 4, step 2),
resulting in 12 different spectral datasets (Fig. 4, step 3).
These were then combined with single and averaged SOC
values in step 4 so that altogether 24 datasets were obtained
(Fig. 4, step 5). In order to compare the two sampling de-
signs, this procedure was carried out for the 50 soil samples
labelled “A” and “B” and also for the complete set of soil
samples. In this way, three different soil sample sets (“A”,
“B” and “all” samples) were obtained.

2.6 Model building and validation

Regression models were built using partial least square re-
gression (PLSR). Out of the many algorithms, PLSR is seen
as a standard method for spectral calibration and prediction
(Mouazen et al., 2010; Viscarra Rossel et al., 2006b). For re-
cent applications to predict SOC from Vis–NIR soil spectra,
see e.g. Liu et al. (2018) and Yang et al. (2019). PLSR is
described in detail by Martens and Næs (1989) and Naes et
al. (2002). It incorporates characteristics from PCA and mul-
tiple regression (Abdi, 2007). The concept behind PLSR is
to seek a small number of linear combinations (components
or latent factors) obtained from the measured spectral data
and to use them in the regression equation to predict SOC
instead of the initial values (Martens and Næs, 1989; Naes et
al., 2002). These components are constructed so that they ac-
count for most of the variance in the measured spectral data
(X) and the SOC content (Y ), and at the same time they max-
imize the correlation betweenX and Y . In other words, PLSR
leads to the covariance between X and Y being maximized
(Bjørsvik and Martens, 2008; Wehrens, 2011).

In order to receive a robust model, it is important not to
include too many components in model building as this will
lead to overfitting (Hastie et al., 2009; Kuhn and Johnson,
2013). On the other hand, the inclusion of too few compo-
nents comprises the risk of building an underfitted model
which is too simple to cover the variability existing in the
soil spectral data (Naes et al., 2002). The selection of the
optimal number of components is hereinafter referred to as
model tuning. In order to receive a robust model, resampling
is commonly applied for model validation. But resampling
can also be used for model tuning to receive robust tuning
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Table 1. Combinations of pre-processing techniques used in this study; w is window size, s segment size.

Pre-processing methods Wavelength range Abbreviation

Savitzky–Golay (w = 11 nm) 432–2201 nm SG
Savitzky–Golay (w = 11 nm) and continuum removal 432–2201 nm SGCR
Standard normal variate and 1st derivative 408–2186 nm SNVd1
Gap-segment algorithm (w = 11 nm, s = 10 nm) 490–2163 nm gapDer

Figure 4. Datasets to investigate the uncertainty propagation. SG−Savitzky–Golay, CR− continuum removal, SNV− standard normal
variate, d1− 1st derivative, gapDer− gap-segment algorithm.

parameters (Guio Blanco et al., 2018; Hastie et al., 2009;
Kuhn and Johnson, 2013). For small datasets, k-fold cross-
validation (CV) is recommended (Hastie et al., 2009).

In this study, model building, model validation, and model
tuning were implemented using a nested CV approach
(Fig. 6; e.g. Varma and Simon, 2006, and Guio Blanco et
al., 2018). The CV for model validation and tuning con-
sisted of a repeated k-fold group CV. In order to calculate
reliable error measures, the subdivision of the spectral data
into the folds had to account for repeated scans and repli-
cate measurements per sample. Accordingly, all spectra for
one sample were assigned to the same fold during k-fold CV,
i.e. k-fold group CV. Furthermore, to allow for comparison
of the models built on behalf of the 24 datasets (Fig. 4),
the created folds coincide for all datasets; the data of cer-
tain sample IDs were always assigned to the same fold ID.
For the model validation CV, two further aspects were taken
into account that were neglected for the model tuning CV.
The group CV was adapted to also guarantee that neighbour-
ing points of ≤ 5 m distance were assigned to the same fold
to avoid spatial autocorrelation and error measures that are
too optimistic. Furthermore, the response variable’s density
distribution was taken into account during fold creation, i.e.
a stratified CV. Overall, a nested repeated k-fold group CV
was applied. Five repetitions of a 5-fold group CV were con-
ducted in this case. Kuhn and Johnson (2013) recommend
5-fold CV as it can increase the precision of the prediction
while maintaining a small bias.

Figure 6 shows the various steps of the modelling pro-
cedure involving repeated 5-fold group CV for model tun-
ing (right box) and validation (left box). In the process, the
dataset (n= 100 %) is randomly subdivided into 5 folds of

Table 2. Data basis per soil sample.

Number of Number of The resulting
SOC values spectra size of the
per sample per sample dataset

per sample

Dataset111 3 18 54
Dataset101 3 6 18
Dataset100 3 1 3
Dataset011 1 18 18
Dataset001 1 6 6
Dataset000 1 1 1

equal size (step 1). One of the 5 folds is held out as a test
set and the other four are used as the training set and par-
titioned again into 5 folds for model tuning (step 2). The
optimal number of components (best Ncomp) is then deter-
mined by computing a PLSR on the resampled data, testing
1 to 30 components (step 3) and calculating the repeatedly 5-
fold cross-validated RMSE of model tuning (RMSEMT) cor-
responding to each number of components (step 4). The latter
was implemented with the trainControl() function of R pack-
age caret (Kuhn, 2017). The optimal number of components
(step 5) is then used in model building (step 6). The result-
ing model’s test set RMSE of model validation (RMSEMV) is
determined in step 7. The whole procedure is repeated until
all folds have once been used as the test set to have a sim-
ple 5-fold group CV. A repeated 5-fold group CV means that
the model tuning CV and model validation CV each have to
be rerun according to the number of repetitions. Finally, the
performance of the models built with the 24 datasets is com-
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Figure 5. Zoom-in to a sample’s spectral dataset: (a) 18 spectra comprised of 6 replicate sample measurements with 3 scans each, (b) 6 spec-
tra related to replicate sample measurements (average of 3 scans each) and (c) 1 averaged spectrum.

Figure 6. Model tuning and model validation procedure with a
nested k-fold group CV approach. The right box shows the model
tuning, the left one the model validation procedure; Ncomp in-
dicates the number of components; adapted from Guio Blanco et
al. (2018).

pared based on their RMSEMV mean and interquartile range.
Table 2 displays the respective dataset size per soil sample.
The resulting datasets and models were named according to
the following scheme: Datasetx1 x2 x3 with the SOC measure-
ment error (x1), the spectral measurement error (x2), and the
within-sample variability (x3). A value of 1 indicates that the
respective error is included in the model; a value of 0 shows
that the error was removed beforehand by averaging the data.

3 Results and discussion

3.1 Soil organic carbon content

Figure 7 compares the distribution of the SOC content of the
three soil sample sets to the LTFE archive data (Fig. 1). A
Mann–Whitney U test was applied. The statistics of the data

Figure 7. Soil organic carbon (SOC) content of the three soil sam-
ple sets A (left), B (middle), and all (middle) and of archive data
measured from 2004 to 2007 (right). The thin line shows the 95 %
confidence interval, the bar the interquartile range, and the dot the
median. Mann–Whitney U test was used to compare A, B, and all
samples to the archive data. The three soil sample sets were not
compared among each other.

are given in Table 3. In all cases, no significant difference
between the respective dataset and the archive data could be
found. This shows that all soil sample sets used in this study
were representative of the SOC variability in the LTFE. Nev-
ertheless, the SOC distribution of A and B samples differed.
The A samples contained more samples representing higher
SOC values, whereas the B samples showed a higher repre-
sentation of lower SOC values. The violin plots of all three
datasets do not resemble the archive violin plot very much.
The plots for A samples show higher and lower SOC values
than the archive data; B samples share the same minimum
value with the archive data but display slightly higher SOC
values. This difference is likely due to the fact that the archive
data were obtained from compound samples; i.e. a number of
distributed soil samples were taken per LTFE plot and mixed
before they were subjected to soil laboratory analysis.

www.soil-journal.net/5/275/2019/ SOIL, 5, 275–288, 2019
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Table 3. Statistics of soil organic carbon in percent for the three different soil sample sets and the per-plot soil archive data.

Samples Min. 1st quartile Median Mean 3rd quartile Max.

A 1.47 1.82 2.21 2.11 2.36 2.93
B 1.49 1.70 1.97 2.02 2.31 2.74
all 1.47 1.72 2.12 2.01 2.35 2.93
Archive data 1.49 1.89 2.09 2.08 2.33 2.64

Figure 8. Boxplots of test-set RMSEMV obtained with the various datasets. Figure columns refer to datasets using (a) A samples, (b) B
samples, and (c) all samples. Figure rows refer to the applied pre-processing, 1−SG, 2−SGCR, 3−SNVd1, 4− gapDer.

3.2 Comparison of datasets and pre-processing
methods

Figure 8 shows the box plots of the RMSEMV. The results of
the six datasets corresponding to different information con-
cerning SOC values and spectra (Table 2) are displayed in
one plot. The results according to the various pre-processing
methods (compare Fig. 4) are displayed in figure lines 1 to 4,
and the results of the models built from the data correspond-
ing to A samples, B samples, and all samples are shown in
figure columns a, b, and c. As 5-fold CV with five repetitions
was performed, five RMSEMV test sets are shown in each box
plot.

As expected, the dataset of three SOC replicate measure-
ments with one averaged spectrum (Dataset100) resulted in

low model performance, as the within-sample variance con-
cerning SOC could not be explained by the contained pre-
dictor information; the input data uncertainty propagated
through the model building process. This model performance
was impaired in some cases by Dataset101, which combined
the three SOC measurements with six replicate spectral mea-
surements (Fig. 8b1, a2, a3, b3, c3). It seems that the within-
sample variation concerning soil spectra was somehow able
to compensate for the within-sample variability concerning
SOC in the model building process, although replicate mea-
surements did not match. Considering the dataset with 18
spectra and 3 SOC measurements (Dataset111), model per-
formance improved even further. In contrast to this, we found
the expected pattern while only one SOC measurement was
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Figure 9. Comparison of predicted and observed soil organic carbon (SOC) values for Dataset111 (a1 to c1) and Dataset000 (a2 to c2) for
five repetitions with the corresponding best pre-processing (SGCR for data A and all data, SG for data B); (a) shows results for A samples,
(b) for B samples, and (c) for all samples. The depicted RMSE and R2 values refer to the mean of five repetitions.

considered: model performance results display an increase
of RMSE values from Dataset000 to Dataset001 to Dataset011
due to the fact that more spectral variance was related to
the same target information concerning SOC. This applies
to three of the four spectral pre-processing variants (SG,
SGCR, gapDer), while SNVd1 pre-processing displays an
unexpected pattern with datasets including replicate mea-
surements and multiple scans even outperforming those with
averaged data. Overall SGCR resulted in the best model per-
formance for data A (Fig. 8a2) and all samples (Fig. 8c2),
while SG pre-processing resulted best for data B (Fig. 8b1).
However, the latter does not apply for Dataset000, where
gapDer pre-processing resulted in the best model perfor-
mance with RMSEMV = 0.13.

The overall best pre-processing methods in this study were
the combination of SG and CR as well as SG alone. SG was
used successfully by many authors before for spectral pre-
processing. CR was used by, for example, Viscarra Rossel et
al. (2016) and Loum et al. (2016) with acceptable success.
The combination of SG and CR could not be found in liter-
ature, though. SNV was applied before by other authors in
order to remove baseline effects (Knadel et al., 2015; Mi-
nasny et al., 2011; Viscarra Rossel et al., 2006a). The pre-
processing technique d1 was found to lead to poorer model
results and rather unexpected performance patterns in this

study. The former may have its cause in the tendency of d1
to increase noise (Leone et al., 2012; Stevens and Ramirez
Lopez, 2014). We do not have an explanation for the latter,
though. Leone et al. (2012) suggested the usage of SG in
combination with d1 to solve the problem. For the usage of
gapDer no comparison could be found in the literature.

Comparing the mean RMSEMV, the models built on sam-
ples B resulted in better model performance than those built
on samples A with the exception of Dataset100. The Mann–
Whitney U test did not show a significant difference. The A
samples, as well as B samples, seem to represent the archive
data in an adequate way. Nevertheless, the difference in the
distribution of SOC values of A and B samples may have led
to the observed different predictive capability in certain SOC
value ranges. However, whether this difference is the reason
for the better performance of the B models cannot be stated
with certainty.

Comparing the results of Dataset111 with those of
Dataset000 shows how the inclusion of all input data un-
certainties impaired model performance. It can be seen that
a model without error propagation (Dataset000) achieved a
mean RMSEMV of 0.12 % SOC and a mean R2 of 0.86 us-
ing the pre-processing method which delivered the best re-
sults. A model with error propagation (Dataset111), on the
other hand, reached a mean RMSEMV of 0.16 % SOC and
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Table 4. R2 model performance values from Vis–NIR applications to predict SOC.

Authors SOC (%) Soil variability Instrumentation n m Calibration and vali-
dation set

R2

Reeves and
Smith (2009)

0.04–34.2 various soil types
(USA)

Digilab FTS 7000
Fourier transform

720 64 (internal scans) (a) LOO CV
(b) cluster analysis
based partition (1/2,
1/2)

(a) 0.534
(b) 0.335

Liu et al.
(2018)

0.10–3.40 various soil types
(China)

ASD FieldSpec Pro 515 10 scans Stratified systematic
partition (75 %,
25 %)

0.74–0.83

Islam et al.
(2003)

0.06–4.95 various soil types
(Australia)

Cary 500 (UV–Vis–
NIR), Labsphere
DRA_CA-50D

161 – random partition
(3/4, 1/4)

0.76

Volkan Bilgili
et al. (2010)

0.39–0.69
(SOM)

various soil types
(Turkey)

ASD FieldSpec Pro 512 100 (2 replicates,
5 scans, 10 inter-
nal scans)

random partition
(70 %, 30 %)

0.80

Jiang et al.
(2016)

0.24–2.62 various soil types
(China)

ASD FieldSpec 3 98 10 stratified partition
(2/3, 1/3)

0.58–0.85

Conforti et al.
(2015)

0.3–6.5 various soil types
(Italy)

ASD FieldSpec Pro 201 30 CV (unspecified) –

Yang et al.
(2019)

0.24–6.05
(SOM)

single soil type,
texture range
(China)

ASD FieldSpec Pro 523 3 replicates, 10 in-
ternal scans

partition (2/3, 1/3) 0.81

Leone et al.
(2012)

0.04–21.56 various soil types
(Italy)

ASD FieldSpec Pro 374 4 scans random partition
(2/3, 1/3)

0.84–0.92

n, number of samples; m, averaged spectral measurements per sample; LOO CV, leave-one-out cross-validation.

an R2 of 0.77. This is further illustrated in Fig. 9 and could
be expected, as Dataset000 contained no input data uncertain-
ties. The RMSEMV values, therefore, only correspond to the
model building process. Overall, the best model performance
which did not consider error propagation corresponded to a
mean RMSEMV of 0.12 % SOC (R2

= 0.86). This model per-
formance was impaired by1RMSEMV = 0.04 % SOC while
considering input data uncertainties (1R2

= 0.09), and by
1RMSEMV = 0.12 (1R2

= 0.17) considering an inappro-
priate pre-processing. The effect of the sampling design
amounted to a 1RMSEMV of 0.02 % SOC (1R2

= 0.05).
Overall, the additional accounting of neighbouring sample
locations during fold division not only for model validation
CV but also for model tuning CV might still improve the per-
formance of all models. This is currently not implemented in
the applied R package caret. We will, therefore, opt for other
implementations in future studies.

Model performance values between studies that use Vis–
NIR spectral information to predict soil properties are often
compared to one another without mentioning the underly-
ing range of the target variable, the variability of the mea-
sured soils, the applied sampling design, measurement pro-
tocol, validation approach, or applied instrumentation. Of-
ten, this information is not even provided by the respective

studies. However, all of this has an impact on the calculated
measures of model performance. The listed studies used a
different number of scans and replicate samples to calculate
an averaged spectrum to predict SOC. Often, it is not speci-
fied whether the measurements refer to instrument internal
scans, repeated external scans, or replicate measurements.
As a consequence, the error implemented in the respective
spectral input data must be assumed to be different. Pimstein
et al. (2011) proposed a number of 3–5 replicate measure-
ments as standard protocol for measuring Vis–NIR spectra
of soil samples under laboratory conditions. Figure 5b indi-
cated the high impact of within-sample variance determined
by the measurements of replicate samples, whereas the ef-
fect of the repeated scans per replicate was comparatively
small (compare Fig. 5a and b). We dried and sieved the sam-
ples before spectral measurements but did not grind them to
a fine powder. The latter might reduce the spectral variance
in replicate measurements, but the benefit of Vis–NIR spec-
troscopy as a fast and inexpensive method would be reduced.
One might argue that samples had to be ground for SOC anal-
ysis, anyway. However, this requires a tiny fraction of the
large amount that would have to be ground for Vis–NIR mea-
surements. In addition, comparison to measurements under
field conditions would be further distorted while grinding the
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samples for laboratory measurements. In none of the studies
listed in Table 4 was the error in SOC measurements men-
tioned to be considered during model building. Also, in most
studies the available dataset was randomly parted into cal-
ibration and validation set, using different data proportions
for the two sets. Jeong et al. (2017) and Beleites et al. (2005)
showed that different validation strategies led to different er-
ror values. As shown in Fig. 8, the input data uncertainty had
a major influence on model performance. Accordingly, the
applied measurement protocol should be reported with com-
plete details.

4 Conclusions

This study addressed the impact of various data and mod-
elling aspects on model performance with a focus on the
propagation of input data uncertainties. Overall, the best
model performance which did not consider uncertainty prop-
agation corresponded to a mean RMSEMV of 0.12 % SOC
(R2
= 0.86). This model performance was impaired by

1RMSEMV = 0.04 % SOC considering input data uncer-
tainties (1R2

= 0.09) and by 1RMSEMV = 0.12 % SOC
(1R2

= 0.17) considering an inappropriate pre-processing.
The effect of the sampling design amounted to a1RMSEMV
of 0.02 % SOC (1R2

= 0.05).
Overall, the applied nested k-fold group CV approach can

be recommended in general. Furthermore, this study showed
that it is of uttermost importance to clarify which informa-
tion is contained in the reported error values. We, therefore,
emphasize the necessity of a transparent and precise docu-
mentation of the measurement protocol, the model building,
and validation procedure, including the calculation of the er-
ror measure, in order to assess model performance in a com-
prehensive way and allow for comparison between publica-
tions. Particularly, when Vis–NIR spectrometry is used for
soil monitoring, the aspect of uncertainty propagation in the
involved modelling procedure becomes essential.
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