Articles | Volume 3, issue 4
https://doi.org/10.5194/soil-3-235-2017
https://doi.org/10.5194/soil-3-235-2017
Original research article
 | 
13 Dec 2017
Original research article |  | 13 Dec 2017

Planning spatial sampling of the soil from an uncertain reconnaissance variogram

R. Murray Lark, Elliott M. Hamilton, Belinda Kaninga, Kakoma K. Maseka, Moola Mutondo, Godfrey M. Sakala, and Michael J. Watts

Related authors

Three-dimensional soil organic matter distribution, accessibility and microbial respiration in macroaggregates using osmium staining and synchrotron X-ray computed tomography
Barry G. Rawlins, Joanna Wragg, Christina Reinhard, Robert C. Atwood, Alasdair Houston, R. Murray Lark, and Sebastian Rudolph
SOIL, 2, 659–671, https://doi.org/10.5194/soil-2-659-2016,https://doi.org/10.5194/soil-2-659-2016, 2016
Short summary
Uncertainty in mapped geological boundaries held by a national geological survey:eliciting the geologists' tacit error model
R. M. Lark, R. S. Lawley, A. J. M. Barron, D. T. Aldiss, K. Ambrose, A. H. Cooper, J. R. Lee, and C. N. Waters
Solid Earth, 6, 727–745, https://doi.org/10.5194/se-6-727-2015,https://doi.org/10.5194/se-6-727-2015, 2015
Short summary
Interpretative modelling of a geological cross section from boreholes: sources of uncertainty and their quantification
R. M. Lark, S. Thorpe, H. Kessler, and S. J. Mathers
Solid Earth, 5, 1189–1203, https://doi.org/10.5194/se-5-1189-2014,https://doi.org/10.5194/se-5-1189-2014, 2014
Short summary
Modelling complex geological circular data with the projected normal distribution and mixtures of von Mises distributions
R. M. Lark, D. Clifford, and C. N. Waters
Solid Earth, 5, 631–639, https://doi.org/10.5194/se-5-631-2014,https://doi.org/10.5194/se-5-631-2014, 2014

Related subject area

Soil and methods
Spatial prediction of organic carbon in German agricultural topsoil using machine learning algorithms
Ali Sakhaee, Anika Gebauer, Mareike Ließ, and Axel Don
SOIL, 8, 587–604, https://doi.org/10.5194/soil-8-587-2022,https://doi.org/10.5194/soil-8-587-2022, 2022
Short summary
On the benefits of clustering approaches in digital soil mapping: an application example concerning soil texture regionalization
István Dunkl and Mareike Ließ
SOIL, 8, 541–558, https://doi.org/10.5194/soil-8-541-2022,https://doi.org/10.5194/soil-8-541-2022, 2022
Short summary
An open Soil Structure Library based on X-ray CT data
Ulrich Weller, Lukas Albrecht, Steffen Schlüter, and Hans-Jörg Vogel
SOIL, 8, 507–515, https://doi.org/10.5194/soil-8-507-2022,https://doi.org/10.5194/soil-8-507-2022, 2022
Short summary
Identification of thermal signature and quantification of charcoal in soil using differential scanning calorimetry and benzene polycarboxylic acid (BPCA) markers
Brieuc Hardy, Nils Borchard, and Jens Leifeld
SOIL, 8, 451–466, https://doi.org/10.5194/soil-8-451-2022,https://doi.org/10.5194/soil-8-451-2022, 2022
Short summary
Estimating soil fungal abundance and diversity at a macroecological scale with deep learning spectrotransfer functions
Yuanyuan Yang, Zefang Shen, Andrew Bissett, and Raphael A. Viscarra Rossel
SOIL, 8, 223–235, https://doi.org/10.5194/soil-8-223-2022,https://doi.org/10.5194/soil-8-223-2022, 2022
Short summary

Cited articles

de Gruijter, J. J., Brus, D. J., Biekens, M. F. P., and Knotters, M.: Sampling for Natural Resource Monitoring, Springer, Berlin, 2006.
Di, H. J., Trangmar, B. B., and Kemp, R. A.: Use of geostatistics in designing sampling strategies for soil survey, Soil Sci. Soci. Am. J., 53, 1163–1167, 1989.
Diggle, P. J. and Ribeiro, P. J.: Model-Based Geostatistics, Springer, New York, 2007.
Dobson, A. J.: An Introduction to Generalized Linear Models, Chapman & Hall, London, 1990.
Download
Short summary
An advantage of geostatistics for mapping soil properties is that, given a statistical model of the variable of interest, we can make a rational decision about how densely to sample so that the map is sufficiently precise. However, uncertainty about the statistical model affects this process. In this paper we show how Bayesian methods can be used to support decision making on sampling with an uncertain model, ensuring that the probability of meeting certain levels of precision is high enough.