Articles | Volume 3, issue 4
SOIL, 3, 235–244, 2017
https://doi.org/10.5194/soil-3-235-2017
SOIL, 3, 235–244, 2017
https://doi.org/10.5194/soil-3-235-2017

Original research article 13 Dec 2017

Original research article | 13 Dec 2017

Planning spatial sampling of the soil from an uncertain reconnaissance variogram

R. Murray Lark et al.

Related authors

Three-dimensional soil organic matter distribution, accessibility and microbial respiration in macroaggregates using osmium staining and synchrotron X-ray computed tomography
Barry G. Rawlins, Joanna Wragg, Christina Reinhard, Robert C. Atwood, Alasdair Houston, R. Murray Lark, and Sebastian Rudolph
SOIL, 2, 659–671, https://doi.org/10.5194/soil-2-659-2016,https://doi.org/10.5194/soil-2-659-2016, 2016
Short summary
Uncertainty in mapped geological boundaries held by a national geological survey:eliciting the geologists' tacit error model
R. M. Lark, R. S. Lawley, A. J. M. Barron, D. T. Aldiss, K. Ambrose, A. H. Cooper, J. R. Lee, and C. N. Waters
Solid Earth, 6, 727–745, https://doi.org/10.5194/se-6-727-2015,https://doi.org/10.5194/se-6-727-2015, 2015
Short summary
Interpretative modelling of a geological cross section from boreholes: sources of uncertainty and their quantification
R. M. Lark, S. Thorpe, H. Kessler, and S. J. Mathers
Solid Earth, 5, 1189–1203, https://doi.org/10.5194/se-5-1189-2014,https://doi.org/10.5194/se-5-1189-2014, 2014
Short summary
Modelling complex geological circular data with the projected normal distribution and mixtures of von Mises distributions
R. M. Lark, D. Clifford, and C. N. Waters
Solid Earth, 5, 631–639, https://doi.org/10.5194/se-5-631-2014,https://doi.org/10.5194/se-5-631-2014, 2014

Related subject area

Soil and methods
The influence of training sample size on the accuracy of deep learning models for the prediction of soil properties with near-infrared spectroscopy data
Wartini Ng, Budiman Minasny, Wanderson de Sousa Mendes, and José Alexandre Melo Demattê
SOIL, 6, 565–578, https://doi.org/10.5194/soil-6-565-2020,https://doi.org/10.5194/soil-6-565-2020, 2020
Short summary
Game theory interpretation of digital soil mapping convolutional neural networks
José Padarian, Alex B. McBratney, and Budiman Minasny
SOIL, 6, 389–397, https://doi.org/10.5194/soil-6-389-2020,https://doi.org/10.5194/soil-6-389-2020, 2020
Short summary
Comparing three approaches of spatial disaggregation of legacy soil maps based on the Disaggregation and Harmonisation of Soil Map Units Through Resampled Classification Trees (DSMART) algorithm
Yosra Ellili-Bargaoui, Brendan Philip Malone, Didier Michot, Budiman Minasny, Sébastien Vincent, Christian Walter, and Blandine Lemercier
SOIL, 6, 371–388, https://doi.org/10.5194/soil-6-371-2020,https://doi.org/10.5194/soil-6-371-2020, 2020
Oblique geographic coordinates as covariates for digital soil mapping
Anders Bjørn Møller, Amélie Marie Beucher, Nastaran Pouladi, and Mogens Humlekrog Greve
SOIL, 6, 269–289, https://doi.org/10.5194/soil-6-269-2020,https://doi.org/10.5194/soil-6-269-2020, 2020
Short summary
Development of pedotransfer functions for water retention in tropical mountain soil landscapes: spotlight on parameter tuning in machine learning
Anika Gebauer, Monja Ellinger, Victor M. Brito Gomez, and Mareike Ließ
SOIL, 6, 215–229, https://doi.org/10.5194/soil-6-215-2020,https://doi.org/10.5194/soil-6-215-2020, 2020
Short summary

Cited articles

de Gruijter, J. J., Brus, D. J., Biekens, M. F. P., and Knotters, M.: Sampling for Natural Resource Monitoring, Springer, Berlin, 2006.
Di, H. J., Trangmar, B. B., and Kemp, R. A.: Use of geostatistics in designing sampling strategies for soil survey, Soil Sci. Soci. Am. J., 53, 1163–1167, 1989.
Diggle, P. J. and Ribeiro, P. J.: Model-Based Geostatistics, Springer, New York, 2007.
Dobson, A. J.: An Introduction to Generalized Linear Models, Chapman & Hall, London, 1990.
Download
Short summary
An advantage of geostatistics for mapping soil properties is that, given a statistical model of the variable of interest, we can make a rational decision about how densely to sample so that the map is sufficiently precise. However, uncertainty about the statistical model affects this process. In this paper we show how Bayesian methods can be used to support decision making on sampling with an uncertain model, ensuring that the probability of meeting certain levels of precision is high enough.