Articles | Volume 3, issue 4
SOIL, 3, 191–210, 2017
https://doi.org/10.5194/soil-3-191-2017
SOIL, 3, 191–210, 2017
https://doi.org/10.5194/soil-3-191-2017

Original research article 16 Nov 2017

Original research article | 16 Nov 2017

Mapping of soil properties at high resolution in Switzerland using boosted geoadditive models

Madlene Nussbaum et al.

Related authors

Uncertainty indication in soil function maps – transparent and easy-to-use information to support sustainable use of soil resources
Lucie Greiner, Madlene Nussbaum, Andreas Papritz, Stephan Zimmermann, Andreas Gubler, Adrienne Grêt-Regamey, and Armin Keller
SOIL, 4, 123–139, https://doi.org/10.5194/soil-4-123-2018,https://doi.org/10.5194/soil-4-123-2018, 2018
Short summary
Evaluation of digital soil mapping approaches with large sets of environmental covariates
Madlene Nussbaum, Kay Spiess, Andri Baltensweiler, Urs Grob, Armin Keller, Lucie Greiner, Michael E. Schaepman, and Andreas Papritz
SOIL, 4, 1–22, https://doi.org/10.5194/soil-4-1-2018,https://doi.org/10.5194/soil-4-1-2018, 2018
Short summary
Estimating soil organic carbon stocks of Swiss forest soils by robust external-drift kriging
M. Nussbaum, A. Papritz, A. Baltensweiler, and L. Walthert
Geosci. Model Dev., 7, 1197–1210, https://doi.org/10.5194/gmd-7-1197-2014,https://doi.org/10.5194/gmd-7-1197-2014, 2014

Related subject area

Soil and methods
Developing the Swiss mid-infrared soil spectral library for local estimation and monitoring
Philipp Baumann, Anatol Helfenstein, Andreas Gubler, Armin Keller, Reto Giulio Meuli, Daniel Wächter, Juhwan Lee, Raphael Viscarra Rossel, and Johan Six
SOIL, 7, 525–546, https://doi.org/10.5194/soil-7-525-2021,https://doi.org/10.5194/soil-7-525-2021, 2021
Short summary
Predicting the spatial distribution of soil organic carbon stock in Swedish forests using a group of covariates and site-specific data
Kpade O. L. Hounkpatin, Johan Stendahl, Mattias Lundblad, and Erik Karltun
SOIL, 7, 377–398, https://doi.org/10.5194/soil-7-377-2021,https://doi.org/10.5194/soil-7-377-2021, 2021
Short summary
Improved calibration of the Green–Ampt infiltration module in the EROSION-2D/3D model using a rainfall-runoff experiment database
Hana Beitlerová, Jonas Lenz, Jan Devátý, Martin Mistr, Jiří Kapička, Arno Buchholz, Ilona Gerndtová, and Anne Routschek
SOIL, 7, 241–253, https://doi.org/10.5194/soil-7-241-2021,https://doi.org/10.5194/soil-7-241-2021, 2021
Short summary
Quantifying soil carbon in temperate peatlands using a mid-IR soil spectral library
Anatol Helfenstein, Philipp Baumann, Raphael Viscarra Rossel, Andreas Gubler, Stefan Oechslin, and Johan Six
SOIL, 7, 193–215, https://doi.org/10.5194/soil-7-193-2021,https://doi.org/10.5194/soil-7-193-2021, 2021
Short summary
Are researchers following best storage practices for measuring soil biochemical properties?
Jennifer M. Rhymes, Irene Cordero, Mathilde Chomel, Jocelyn M. Lavallee, Angela L. Straathof, Deborah Ashworth, Holly Langridge, Marina Semchenko, Franciska T. de Vries, David Johnson, and Richard D. Bardgett
SOIL, 7, 95–106, https://doi.org/10.5194/soil-7-95-2021,https://doi.org/10.5194/soil-7-95-2021, 2021

Cited articles

Adhikari, K., Kheir, R., Greve, M., Bøcher, P., Malone, B., Minasny, B., McBratney, A., and Greve, M.: High-resolution 3-D mapping of soil texture in Denmark, Soil Sci. Soc. Am. J., 77, 860–876, https://doi.org/10.2136/sssaj2012.0275, 2013.
ALN: Historische Feuchtgebiete der Wildkarte 1850. Amt für Landschaft und Natur des Kantons Zürich, available at: http://www.aln.zh.ch/internet/baudirektion/aln/de/naturschutz/naturschutzdaten/geodaten.html (last access: 29 March 2017), 2002.
ALN: Geologische Karte des Kantons Zürich nach Hantke et al. 1967, GIS-ZH Nr. 41. Amt für Landschaft und Natur des Kantons Zürich, available at: http://www.gis.zh.ch/Dokus/Geolion/gds_41.pdf (last access: 15 February 2015), 2014a.
ALN: Meliorationskataster des Kantons Zürich, GIS-ZH Nr. 148. Amt für Landschaft und Natur des Kantons Zürich, available at: http://www.geolion.zh.ch/geodatensatz/show?nbid=387 (last access: 29 March 2017), 2014b.
AWEL: Hinweisflächen für anthropogene Böden, GIS-ZH Nr. 260. Amt für Abfall, Wasser, Energie und Luft des Kanton Zürich, available at: http://www.geolion.zh.ch/geodatensatz/show?nbid=985 (last access: 29 March 2017), 2012.
Short summary
Digital soil mapping (DSM) relates soil property data to environmental data that describe soil-forming factors. With imagery sampled from satellites or terrain analysed at multiple scales, large sets of possible input to DSM are available. We propose a new statistical framework (geoGAM) that selects parsimonious models for DSM and illustrate the application of geoGAM to two study regions. Straightforward interpretation of the modelled effects likely improves end-user acceptance of DSM products.