Articles | Volume 3, issue 4
https://doi.org/10.5194/soil-3-191-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/soil-3-191-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Mapping of soil properties at high resolution in Switzerland using boosted geoadditive models
Madlene Nussbaum
CORRESPONDING AUTHOR
Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Universitätstrasse 16, 8092 Zürich, Switzerland
Lorenz Walthert
Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
Marielle Fraefel
Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
Lucie Greiner
Research Station Agroscope Reckenholz-Taenikon ART, Reckenholzstrasse 191, 8046 Zürich, Switzerland
Andreas Papritz
Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Universitätstrasse 16, 8092 Zürich, Switzerland
Related authors
Christopher Chagumaira, Joseph G. Chimungu, Patson C. Nalivata, Martin R. Broadley, Madlene Nussbaum, Alice E. Milne, and R. Murray Lark
EGUsphere, https://doi.org/10.5194/egusphere-2022-583, https://doi.org/10.5194/egusphere-2022-583, 2022
Preprint archived
Short summary
Short summary
Our study examines different quantitative methods to predict concentrations of micronutrients in the soil from field samples. However, we emphasize the concerns of stakeholders, who use such information to make decisions, in this case in relation to the study and management of micronutrient deficiency risk in the human population. We propose a framework to think about these concerns then compare common approaches for digital soil mapping within this framework.
Lucie Greiner, Madlene Nussbaum, Andreas Papritz, Stephan Zimmermann, Andreas Gubler, Adrienne Grêt-Regamey, and Armin Keller
SOIL, 4, 123–139, https://doi.org/10.5194/soil-4-123-2018, https://doi.org/10.5194/soil-4-123-2018, 2018
Short summary
Short summary
To maintain the soil resource, spatial information on soil multi-functionality is key. Soil function (SF) maps rate soils potentials to fulfill a certain function, e.g., nutrient regulation. We show how uncertainties in predictions of soil properties generated by digital soil mapping propagate into soil function maps, present possibilities to display this uncertainty information and show that otherwise comparable SF assessment methods differ in their behaviour in view of uncertainty propagation.
Madlene Nussbaum, Kay Spiess, Andri Baltensweiler, Urs Grob, Armin Keller, Lucie Greiner, Michael E. Schaepman, and Andreas Papritz
SOIL, 4, 1–22, https://doi.org/10.5194/soil-4-1-2018, https://doi.org/10.5194/soil-4-1-2018, 2018
Short summary
Short summary
This paper presents an extensive evaluation of digital soil mapping (DSM) tools. Recently, large sets of environmental covariates (e.g. from analysis of terrain on multiple scales) have become more common for DSM. Many DSM studies, however, only compared DSM methods using less than 30 covariates or tested approaches on few responses. We built DSM models from 300–500 covariates using six approaches that are either popular in DSM or promising for large covariate sets.
M. Nussbaum, A. Papritz, A. Baltensweiler, and L. Walthert
Geosci. Model Dev., 7, 1197–1210, https://doi.org/10.5194/gmd-7-1197-2014, https://doi.org/10.5194/gmd-7-1197-2014, 2014
Marielle Fraefel, Barbara Schneider, and Christoph Düggelin
Abstr. Int. Cartogr. Assoc., 5, 71, https://doi.org/10.5194/ica-abs-5-71-2022, https://doi.org/10.5194/ica-abs-5-71-2022, 2022
Christopher Chagumaira, Joseph G. Chimungu, Patson C. Nalivata, Martin R. Broadley, Madlene Nussbaum, Alice E. Milne, and R. Murray Lark
EGUsphere, https://doi.org/10.5194/egusphere-2022-583, https://doi.org/10.5194/egusphere-2022-583, 2022
Preprint archived
Short summary
Short summary
Our study examines different quantitative methods to predict concentrations of micronutrients in the soil from field samples. However, we emphasize the concerns of stakeholders, who use such information to make decisions, in this case in relation to the study and management of micronutrient deficiency risk in the human population. We propose a framework to think about these concerns then compare common approaches for digital soil mapping within this framework.
Tessa Sophia van der Voort, Utsav Mannu, Frank Hagedorn, Cameron McIntyre, Lorenz Walthert, Patrick Schleppi, Negar Haghipour, and Timothy Ian Eglinton
Biogeosciences, 16, 3233–3246, https://doi.org/10.5194/bg-16-3233-2019, https://doi.org/10.5194/bg-16-3233-2019, 2019
Short summary
Short summary
The carbon stored in soils is the largest reservoir of organic carbon on land. In the context of greenhouse gas emissions and a changing climate, it is very important to understand how stable the carbon in the soil is and why. The deeper parts of the soil have often been overlooked even though they store a lot of carbon. In this paper, we discovered that although deep soil carbon is expected to be old and stable, there can be a significant young component that cycles much faster.
I. Iosifescu Enescu, G-K. Plattner, L. Bont, M. Fraefel, R. Meile, T. Kramer, L. Espona-Pernas, D. Haas-Artho, M. Hägeli, and K. Steffen
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-4-W14, 107–110, https://doi.org/10.5194/isprs-archives-XLII-4-W14-107-2019, https://doi.org/10.5194/isprs-archives-XLII-4-W14-107-2019, 2019
Emily F. Solly, Valentino Weber, Stephan Zimmermann, Lorenz Walthert, Frank Hagedorn, and Michael W. I. Schmidt
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-33, https://doi.org/10.5194/bg-2019-33, 2019
Revised manuscript not accepted
Short summary
Short summary
Soils are the largest reservoir of carbon on land. In the context of global change, it is important to assess which environmental variables are needed to describe changes in the content of soil organic carbon. We assessed how climatic, vegetation and edaphic variables explain the variance of soil organic carbon content in Swiss forests. Our results provide a first indication that considering the effective cation exchange capacity of soils in future biogeochemical simulations could be beneficial.
Lucie Greiner, Madlene Nussbaum, Andreas Papritz, Stephan Zimmermann, Andreas Gubler, Adrienne Grêt-Regamey, and Armin Keller
SOIL, 4, 123–139, https://doi.org/10.5194/soil-4-123-2018, https://doi.org/10.5194/soil-4-123-2018, 2018
Short summary
Short summary
To maintain the soil resource, spatial information on soil multi-functionality is key. Soil function (SF) maps rate soils potentials to fulfill a certain function, e.g., nutrient regulation. We show how uncertainties in predictions of soil properties generated by digital soil mapping propagate into soil function maps, present possibilities to display this uncertainty information and show that otherwise comparable SF assessment methods differ in their behaviour in view of uncertainty propagation.
Madlene Nussbaum, Kay Spiess, Andri Baltensweiler, Urs Grob, Armin Keller, Lucie Greiner, Michael E. Schaepman, and Andreas Papritz
SOIL, 4, 1–22, https://doi.org/10.5194/soil-4-1-2018, https://doi.org/10.5194/soil-4-1-2018, 2018
Short summary
Short summary
This paper presents an extensive evaluation of digital soil mapping (DSM) tools. Recently, large sets of environmental covariates (e.g. from analysis of terrain on multiple scales) have become more common for DSM. Many DSM studies, however, only compared DSM methods using less than 30 covariates or tested approaches on few responses. We built DSM models from 300–500 covariates using six approaches that are either popular in DSM or promising for large covariate sets.
M. Nussbaum, A. Papritz, A. Baltensweiler, and L. Walthert
Geosci. Model Dev., 7, 1197–1210, https://doi.org/10.5194/gmd-7-1197-2014, https://doi.org/10.5194/gmd-7-1197-2014, 2014
Related subject area
Soil and methods
Spatial prediction of organic carbon in German agricultural topsoil using machine learning algorithms
On the benefits of clustering approaches in digital soil mapping: an application example concerning soil texture regionalization
An open Soil Structure Library based on X-ray CT data
Identification of thermal signature and quantification of charcoal in soil using differential scanning calorimetry and benzene polycarboxylic acid (BPCA) markers
Estimating soil fungal abundance and diversity at a macroecological scale with deep learning spectrotransfer functions
An underground, wireless, open-source, low-cost system for monitoring oxygen, temperature, and soil moisture
Estimation of soil properties with mid-infrared soil spectroscopy across yam production landscapes in West Africa
The central African soil spectral library: a new soil infrared repository and a geographical prediction analysis
Developing the Swiss mid-infrared soil spectral library for local estimation and monitoring
Predicting the spatial distribution of soil organic carbon stock in Swedish forests using a group of covariates and site-specific data
Improved calibration of the Green–Ampt infiltration module in the EROSION-2D/3D model using a rainfall-runoff experiment database
Quantifying soil carbon in temperate peatlands using a mid-IR soil spectral library
Are researchers following best storage practices for measuring soil biochemical properties?
Quantifying and correcting for pre-assay CO2 loss in short-term carbon mineralization assays
The influence of training sample size on the accuracy of deep learning models for the prediction of soil properties with near-infrared spectroscopy data
Game theory interpretation of digital soil mapping convolutional neural networks
Comparing three approaches of spatial disaggregation of legacy soil maps based on the Disaggregation and Harmonisation of Soil Map Units Through Resampled Classification Trees (DSMART) algorithm
Oblique geographic coordinates as covariates for digital soil mapping
Development of pedotransfer functions for water retention in tropical mountain soil landscapes: spotlight on parameter tuning in machine learning
The 15N gas-flux method to determine N2 flux: a comparison of different tracer addition approaches
A new model for intra- and inter-institutional soil data sharing
Machine learning and soil sciences: a review aided by machine learning tools
Identification of new microbial functional standards for soil quality assessment
Identifying and quantifying geogenic organic carbon in soils – the case of graphite
Error propagation in spectrometric functions of soil organic carbon
Word embeddings for application in geosciences: development, evaluation, and examples of soil-related concepts
Soil lacquer peel do-it-yourself: simply capturing beauty
Multi-source data integration for soil mapping using deep learning
Using deep learning for digital soil mapping
No silver bullet for digital soil mapping: country-specific soil organic carbon estimates across Latin America
Separation of soil respiration: a site-specific comparison of partition methods
Proximal sensing for soil carbon accounting
Evaluation of digital soil mapping approaches with large sets of environmental covariates
Planning spatial sampling of the soil from an uncertain reconnaissance variogram
Quantitative imaging of the 3-D distribution of cation adsorption sites in undisturbed soil
Decision support for the selection of reference sites using 137Cs as a soil erosion tracer
Soil organic carbon stocks are systematically overestimated by misuse of the parameters bulk density and rock fragment content
The added value of biomarker analysis to the genesis of plaggic Anthrosols; the identification of stable fillings used for the production of plaggic manure
Synchrotron microtomographic quantification of geometrical soil pore characteristics affected by compaction
Pedotransfer functions for Irish soils – estimation of bulk density (ρb) per horizon type
Assessing the performance of a plastic optical fibre turbidity sensor for measuring post-fire erosion from plot to catchment scale
Passive soil heating using an inexpensive infrared mirror design – a proof of concept
The application of terrestrial laser scanner and SfM photogrammetry in measuring erosion and deposition processes in two opposite slopes in a humid badlands area (central Spanish Pyrenees)
Soil surface roughness: comparing old and new measuring methods and application in a soil erosion model
Comparison of spatial association approaches for landscape mapping of soil organic carbon stocks
Eddy covariance for quantifying trace gas fluxes from soils
Ali Sakhaee, Anika Gebauer, Mareike Ließ, and Axel Don
SOIL, 8, 587–604, https://doi.org/10.5194/soil-8-587-2022, https://doi.org/10.5194/soil-8-587-2022, 2022
Short summary
Short summary
As soil carbon has become a key component of climate-smart agriculture, the demand for high-resolution maps has increased drastically. Meanwhile, machine learning algorithms are becoming more widely used and are opening up new solutions in soil mapping. This paper shows which algorithms perform best, how soil inventory data can be most efficiently used for digital soil mapping, and the different available options and methods to derive high-resolution soil carbon data at the large regional scale.
István Dunkl and Mareike Ließ
SOIL, 8, 541–558, https://doi.org/10.5194/soil-8-541-2022, https://doi.org/10.5194/soil-8-541-2022, 2022
Short summary
Short summary
Digital soil mapping (DSM) allows us to regionalize soil properties by relating them to environmental covariates with the help of an empirical model. Legacy soil data provide a valuable basis to generate high-resolution soil maps with DSM. We studied the usefulness of data-clustering methods to tackle potential sampling bias in legacy soil data while applying DSM for soil texture regionalization. Clustering has proved to be useful in various steps of the DSM process.
Ulrich Weller, Lukas Albrecht, Steffen Schlüter, and Hans-Jörg Vogel
SOIL, 8, 507–515, https://doi.org/10.5194/soil-8-507-2022, https://doi.org/10.5194/soil-8-507-2022, 2022
Short summary
Short summary
Soil structure is of central importance for soil functions. It is, however, ill defined. With the increasing availability of X-ray CT scanners, more and more soils are scanned and an undisturbed image of the soil's structure is produced. Often, a qualitative description is all that is derived from these images. We provide now a web-based Soil Structure Library where these images can be evaluated in a standardized quantitative way and can be compared to a world-wide data set.
Brieuc Hardy, Nils Borchard, and Jens Leifeld
SOIL, 8, 451–466, https://doi.org/10.5194/soil-8-451-2022, https://doi.org/10.5194/soil-8-451-2022, 2022
Short summary
Short summary
Soil amendment with artificial black carbon (BC; biomass transformed by incomplete combustion) has the potential to mitigate climate change. Nevertheless, the accurate quantification of BC in soil remains a critical issue. Here, we successfully used dynamic thermal analysis (DTA) to quantify centennial BC in soil. We demonstrate that DTA is largely under-exploited despite providing rapid and low-cost quantitative information over the range of soil organic matter.
Yuanyuan Yang, Zefang Shen, Andrew Bissett, and Raphael A. Viscarra Rossel
SOIL, 8, 223–235, https://doi.org/10.5194/soil-8-223-2022, https://doi.org/10.5194/soil-8-223-2022, 2022
Short summary
Short summary
We present a new method to estimate the relative abundance of the dominant phyla and diversity of fungi in Australian soil. It uses state-of-the-art machine learning with publicly available data on soil and environmental proxies for edaphic, climatic, biotic and topographic factors, and visible–near infrared wavelengths. The estimates could serve to supplement the more expensive molecular approaches towards a better understanding of soil fungal abundance and diversity in agronomy and ecology.
Elad Levintal, Yonatan Ganot, Gail Taylor, Peter Freer-Smith, Kosana Suvocarev, and Helen E. Dahlke
SOIL, 8, 85–97, https://doi.org/10.5194/soil-8-85-2022, https://doi.org/10.5194/soil-8-85-2022, 2022
Short summary
Short summary
Do-it-yourself hardware is a new approach for improving measurement resolution in research. Here we present a new low-cost, wireless underground sensor network for soil monitoring. All data logging, power, and communication component cost is USD 150, much cheaper than other available commercial solutions. We provide the complete building guide to reduce any technical barriers, which we hope will allow easier reproducibility and open new environmental monitoring applications.
Philipp Baumann, Juhwan Lee, Emmanuel Frossard, Laurie Paule Schönholzer, Lucien Diby, Valérie Kouamé Hgaza, Delwende Innocent Kiba, Andrew Sila, Keith Sheperd, and Johan Six
SOIL, 7, 717–731, https://doi.org/10.5194/soil-7-717-2021, https://doi.org/10.5194/soil-7-717-2021, 2021
Short summary
Short summary
This work delivers openly accessible and validated calibrations for diagnosing 26 soil properties based on mid-infrared spectroscopy. These were developed for four regions in Burkina Faso and Côte d'Ivoire, including 80 fields of smallholder farmers. The models can help to site-specifically and cost-efficiently monitor soil quality and fertility constraints to ameliorate soils and yields of yam or other staple crops in the four regions between the humid forest and the northern Guinean savanna.
Laura Summerauer, Philipp Baumann, Leonardo Ramirez-Lopez, Matti Barthel, Marijn Bauters, Benjamin Bukombe, Mario Reichenbach, Pascal Boeckx, Elizabeth Kearsley, Kristof Van Oost, Bernard Vanlauwe, Dieudonné Chiragaga, Aimé Bisimwa Heri-Kazi, Pieter Moonen, Andrew Sila, Keith Shepherd, Basile Bazirake Mujinya, Eric Van Ranst, Geert Baert, Sebastian Doetterl, and Johan Six
SOIL, 7, 693–715, https://doi.org/10.5194/soil-7-693-2021, https://doi.org/10.5194/soil-7-693-2021, 2021
Short summary
Short summary
We present a soil mid-infrared library with over 1800 samples from central Africa in order to facilitate soil analyses of this highly understudied yet critical area. Together with an existing continental library, we demonstrate a regional analysis and geographical extrapolation to predict total carbon and nitrogen. Our results show accurate predictions and highlight the value that the data contribute to existing libraries. Our library is openly available for public use and for expansion.
Philipp Baumann, Anatol Helfenstein, Andreas Gubler, Armin Keller, Reto Giulio Meuli, Daniel Wächter, Juhwan Lee, Raphael Viscarra Rossel, and Johan Six
SOIL, 7, 525–546, https://doi.org/10.5194/soil-7-525-2021, https://doi.org/10.5194/soil-7-525-2021, 2021
Short summary
Short summary
We developed the Swiss mid-infrared spectral library and a statistical model collection across 4374 soil samples with reference measurements of 16 properties. Our library incorporates soil from 1094 grid locations and 71 long-term monitoring sites. This work confirms once again that nationwide spectral libraries with diverse soils can reliably feed information to a fast chemical diagnosis. Our data-driven reduction of the library has the potential to accurately monitor carbon at the plot scale.
Kpade O. L. Hounkpatin, Johan Stendahl, Mattias Lundblad, and Erik Karltun
SOIL, 7, 377–398, https://doi.org/10.5194/soil-7-377-2021, https://doi.org/10.5194/soil-7-377-2021, 2021
Short summary
Short summary
Forests store large amounts of carbon in soils. Implementing suitable measures to improve the sink potential of forest soils would require accurate data on the carbon stored in forest soils and a better understanding of the factors affecting this storage. This study showed that the prediction of soil carbon stock in Swedish forest soils can increase in accuracy when one divides a big region into smaller areas in combination with information collected locally and derived from satellites.
Hana Beitlerová, Jonas Lenz, Jan Devátý, Martin Mistr, Jiří Kapička, Arno Buchholz, Ilona Gerndtová, and Anne Routschek
SOIL, 7, 241–253, https://doi.org/10.5194/soil-7-241-2021, https://doi.org/10.5194/soil-7-241-2021, 2021
Short summary
Short summary
This study presents transfer functions for a calibration parameter of the Green–Ampt infiltration module of the EROSION-2D/3D model, which are significantly improving the model performance compared to the current state. The relationships found between calibration parameters and soil parameters however put the Green–Ampt implementation in the model and the state-of-the-art parametrization method in question. A new direction of the infiltration module development is proposed.
Anatol Helfenstein, Philipp Baumann, Raphael Viscarra Rossel, Andreas Gubler, Stefan Oechslin, and Johan Six
SOIL, 7, 193–215, https://doi.org/10.5194/soil-7-193-2021, https://doi.org/10.5194/soil-7-193-2021, 2021
Short summary
Short summary
In this study, we show that a soil spectral library (SSL) can be used to predict soil carbon at new and very different locations. The importance of this finding is that it requires less time-consuming lab work than calibrating a new model for every local application, while still remaining similar to or more accurate than local models. Furthermore, we show that this method even works for predicting (drained) peat soils, using a SSL with mostly mineral soils containing much less soil carbon.
Jennifer M. Rhymes, Irene Cordero, Mathilde Chomel, Jocelyn M. Lavallee, Angela L. Straathof, Deborah Ashworth, Holly Langridge, Marina Semchenko, Franciska T. de Vries, David Johnson, and Richard D. Bardgett
SOIL, 7, 95–106, https://doi.org/10.5194/soil-7-95-2021, https://doi.org/10.5194/soil-7-95-2021, 2021
Matthew A. Belanger, Carmella Vizza, G. Philip Robertson, and Sarah S. Roley
SOIL, 7, 47–52, https://doi.org/10.5194/soil-7-47-2021, https://doi.org/10.5194/soil-7-47-2021, 2021
Short summary
Short summary
Soil health is often assessed by re-wetting a dry soil and measuring CO2 production, but the potential bias introduced by soils of different moisture contents is unclear. Our study found that wetter soil tended to lose more carbon during drying than drier soil, thus affecting soil health interpretations. We developed a correction factor to account for initial soil moisture effects, which future studies may benefit from adapting for their soil.
Wartini Ng, Budiman Minasny, Wanderson de Sousa Mendes, and José Alexandre Melo Demattê
SOIL, 6, 565–578, https://doi.org/10.5194/soil-6-565-2020, https://doi.org/10.5194/soil-6-565-2020, 2020
Short summary
Short summary
The number of samples utilised to create predictive models affected model performance. This research compares the number of samples needed by a deep learning model to outperform the traditional machine learning models using visible near-infrared spectroscopy data for soil properties predictions. The deep learning model was found to outperform machine learning models when the sample size was above 2000.
José Padarian, Alex B. McBratney, and Budiman Minasny
SOIL, 6, 389–397, https://doi.org/10.5194/soil-6-389-2020, https://doi.org/10.5194/soil-6-389-2020, 2020
Short summary
Short summary
In this paper we introduce the use of game theory to interpret a digital soil mapping (DSM) model to understand the contribution of environmental factors to the prediction of soil organic carbon (SOC) in Chile. The analysis corroborated that the SOC model is capturing sensible relationships between SOC and climatic and topographical factors. We were able to represent them spatially (map) addressing the limitations of the current interpretation of models in DSM.
Yosra Ellili-Bargaoui, Brendan Philip Malone, Didier Michot, Budiman Minasny, Sébastien Vincent, Christian Walter, and Blandine Lemercier
SOIL, 6, 371–388, https://doi.org/10.5194/soil-6-371-2020, https://doi.org/10.5194/soil-6-371-2020, 2020
Anders Bjørn Møller, Amélie Marie Beucher, Nastaran Pouladi, and Mogens Humlekrog Greve
SOIL, 6, 269–289, https://doi.org/10.5194/soil-6-269-2020, https://doi.org/10.5194/soil-6-269-2020, 2020
Short summary
Short summary
Decision trees have become a widely adapted tool for mapping soil properties in geographic space. However, it is problematic to implement spatial relationships in the models. We present a new method which uses geographic coordinates along several axes tilted at oblique angles in the models. We test this method on four spatial datasets. The results show that the new method is at least as accurate as other proposed alternatives, has a computational advantage and is flexible and interpretable.
Anika Gebauer, Monja Ellinger, Victor M. Brito Gomez, and Mareike Ließ
SOIL, 6, 215–229, https://doi.org/10.5194/soil-6-215-2020, https://doi.org/10.5194/soil-6-215-2020, 2020
Short summary
Short summary
Pedotransfer functions (PTFs) for soil water retention were developed for two tropical soil landscapes using machine learning. The models corresponding to these PTFs had to be adjusted by tuning their parameters. The standard tuning approach was compared to mathematical optimization. The latter resulted in much better model performance. The PTFs derived are of particular importance for soil process and hydrological models.
Dominika Lewicka-Szczebak and Reinhard Well
SOIL, 6, 145–152, https://doi.org/10.5194/soil-6-145-2020, https://doi.org/10.5194/soil-6-145-2020, 2020
Short summary
Short summary
This study aimed at comparison of various experimental strategies for incubating soil samples to determine the N2 flux. Such experiments require addition of isotope tracer, i.e. nitrogen fertilizer enriched in heavy nitrogen isotopes (15N). Here we compared the impact of soil homogenization and mixing with the tracer and tracer injection to the intact soil cores. The results are well comparable: both techniques would provide similar conclusions on the magnitude of N2 flux.
José Padarian and Alex B. McBratney
SOIL, 6, 89–94, https://doi.org/10.5194/soil-6-89-2020, https://doi.org/10.5194/soil-6-89-2020, 2020
Short summary
Short summary
Data sharing and collaboration are critical to solving large-scale problems. The prevailing soil data-sharing model is of a centralized nature and, consequently, results in the participants ceding control and governance over their data to the lead party. Here we explore the use of a distributed ledger (blockchain) to solve the aforementioned issues. We also describe the potential use case of developing a global soil spectral library between multiple, international institutions.
José Padarian, Budiman Minasny, and Alex B. McBratney
SOIL, 6, 35–52, https://doi.org/10.5194/soil-6-35-2020, https://doi.org/10.5194/soil-6-35-2020, 2020
Short summary
Short summary
The application of machine learning (ML) has shown an accelerated adoption in soil sciences. It is a difficult task to manually review all papers on the application of ML. This paper aims to provide a review of the application of ML aided by topic modelling in order to find patterns in a large collection of publications. The objective is to gain insight into the applications and to discuss research gaps. We found 12 main topics and that ML methods usually perform better than traditional ones.
Sören Thiele-Bruhn, Michael Schloter, Berndt-Michael Wilke, Lee A. Beaudette, Fabrice Martin-Laurent, Nathalie Cheviron, Christian Mougin, and Jörg Römbke
SOIL, 6, 17–34, https://doi.org/10.5194/soil-6-17-2020, https://doi.org/10.5194/soil-6-17-2020, 2020
Short summary
Short summary
Soil quality depends on the functioning of soil microbiota. Only a few standardized methods are available to assess this as well as adverse effects of human activities. So we need to identify promising additional methods that target soil microbial function. Discussed are (i) molecular methods using qPCR for new endpoints, e.g. in N and P cycling and greenhouse gas emissions, (ii) techniques for fungal enzyme activities, and (iii) field methods on carbon turnover such as the litter bag test.
Jeroen H. T. Zethof, Martin Leue, Cordula Vogel, Shane W. Stoner, and Karsten Kalbitz
SOIL, 5, 383–398, https://doi.org/10.5194/soil-5-383-2019, https://doi.org/10.5194/soil-5-383-2019, 2019
Short summary
Short summary
A widely overlooked source of carbon (C) in the soil environment is organic C of geogenic origin, e.g. graphite. Appropriate methods are not available to quantify graphite and to differentiate it from other organic and inorganic C sources in soils. Therefore, we examined Fourier transform infrared spectroscopy, thermogravimetric analysis and the smart combustion method for their ability to identify and quantify graphitic C in soils. The smart combustion method showed the most promising results.
Monja Ellinger, Ines Merbach, Ulrike Werban, and Mareike Ließ
SOIL, 5, 275–288, https://doi.org/10.5194/soil-5-275-2019, https://doi.org/10.5194/soil-5-275-2019, 2019
Short summary
Short summary
Vis–NIR spectrometry is often applied to capture soil organic carbon (SOC). This study addresses the impact of the involved data and modelling aspects on SOC precision with a focus on the propagation of input data uncertainties. It emphasizes the necessity of transparent documentation of the measurement protocol and the model building and validation procedure. Particularly, when Vis–NIR spectrometry is used for soil monitoring, the aspect of uncertainty propagation becomes essential.
José Padarian and Ignacio Fuentes
SOIL, 5, 177–187, https://doi.org/10.5194/soil-5-177-2019, https://doi.org/10.5194/soil-5-177-2019, 2019
Short summary
Short summary
A large amount of descriptive information is available in geosciences. Considering the advances in natural language it is possible to
rescuethis information and transform it into a numerical form (embeddings). We used 280764 full-text scientific articles to train a language model capable of generating such embeddings. Our domain-specific embeddings (GeoVec) outperformed general domain embedding tasks such as analogies, relatedness, and categorisation, and can be used in novel applications.
Cathelijne R. Stoof, Jasper H. J. Candel, Laszlo A. G. M. van der Wal, and Gert Peek
SOIL, 5, 159–175, https://doi.org/10.5194/soil-5-159-2019, https://doi.org/10.5194/soil-5-159-2019, 2019
Short summary
Short summary
Teaching and outreach of soils is often done with real-life snapshots of soils and sediments in lacquer or glue peels. While it may seem hard, anyone can make such a peel. Illustrated with handmade drawings and an instructional video, we explain how to capture soils in peels using readily available materials. A new twist to old methods makes this safer, simpler, and more successful, and thus a true DIY (do-it-yourself) activity, highlighting the value and beauty of the ground below our feet.
Alexandre M. J.-C. Wadoux, José Padarian, and Budiman Minasny
SOIL, 5, 107–119, https://doi.org/10.5194/soil-5-107-2019, https://doi.org/10.5194/soil-5-107-2019, 2019
José Padarian, Budiman Minasny, and Alex B. McBratney
SOIL, 5, 79–89, https://doi.org/10.5194/soil-5-79-2019, https://doi.org/10.5194/soil-5-79-2019, 2019
Short summary
Short summary
Digital soil mapping has been widely used as a cost-effective method for generating soil maps. DSM models are usually calibrated using point observations and rarely incorporate contextual information of the landscape. Here, we use convolutional neural networks to incorporate spatial context. We used as input a 3-D stack of covariate images to simultaneously predict organic carbon content at multiple depths. In this study, our model reduced the error by 30 % compared with conventional techniques.
Mario Guevara, Guillermo Federico Olmedo, Emma Stell, Yusuf Yigini, Yameli Aguilar Duarte, Carlos Arellano Hernández, Gloria E. Arévalo, Carlos Eduardo Arroyo-Cruz, Adriana Bolivar, Sally Bunning, Nelson Bustamante Cañas, Carlos Omar Cruz-Gaistardo, Fabian Davila, Martin Dell Acqua, Arnulfo Encina, Hernán Figueredo Tacona, Fernando Fontes, José Antonio Hernández Herrera, Alejandro Roberto Ibelles Navarro, Veronica Loayza, Alexandra M. Manueles, Fernando Mendoza Jara, Carolina Olivera, Rodrigo Osorio Hermosilla, Gonzalo Pereira, Pablo Prieto, Iván Alexis Ramos, Juan Carlos Rey Brina, Rafael Rivera, Javier Rodríguez-Rodríguez, Ronald Roopnarine, Albán Rosales Ibarra, Kenset Amaury Rosales Riveiro, Guillermo Andrés Schulz, Adrian Spence, Gustavo M. Vasques, Ronald R. Vargas, and Rodrigo Vargas
SOIL, 4, 173–193, https://doi.org/10.5194/soil-4-173-2018, https://doi.org/10.5194/soil-4-173-2018, 2018
Short summary
Short summary
We provide a reproducible multi-modeling approach for SOC mapping across Latin America on a country-specific basis as required by the Global Soil Partnership of the United Nations. We identify key prediction factors for SOC across each country. We compare and test different methods to generate spatially explicit predictions of SOC and conclude that there is no best method on a quantifiable basis.
Louis-Pierre Comeau, Derrick Y. F. Lai, Jane Jinglan Cui, and Jenny Farmer
SOIL, 4, 141–152, https://doi.org/10.5194/soil-4-141-2018, https://doi.org/10.5194/soil-4-141-2018, 2018
Short summary
Short summary
To date, there are still many uncertainties and unknowns regarding the soil respiration partitioning procedures. This study compared the suitability and accuracy of five different respiration partitioning methods. A qualitative evaluation table of the partition methods with five performance parameters was produced. Overall, no systematically superior or inferior partition method was found and the combination of two or more methods optimizes assessment reliability.
Jacqueline R. England and Raphael A. Viscarra Rossel
SOIL, 4, 101–122, https://doi.org/10.5194/soil-4-101-2018, https://doi.org/10.5194/soil-4-101-2018, 2018
Short summary
Short summary
Proximal sensing can be used for soil C accounting, but the methods need to be standardized and procedural guidelines developed to ensure proficient measurement and accurate reporting. This is particularly important if there are financial incentives for landholders to adopt practices to sequester C. We review sensing for C accounting and discuss the requirements for the development of new soil C accounting methods based on sensing, including requirements for reporting, auditing and verification.
Madlene Nussbaum, Kay Spiess, Andri Baltensweiler, Urs Grob, Armin Keller, Lucie Greiner, Michael E. Schaepman, and Andreas Papritz
SOIL, 4, 1–22, https://doi.org/10.5194/soil-4-1-2018, https://doi.org/10.5194/soil-4-1-2018, 2018
Short summary
Short summary
This paper presents an extensive evaluation of digital soil mapping (DSM) tools. Recently, large sets of environmental covariates (e.g. from analysis of terrain on multiple scales) have become more common for DSM. Many DSM studies, however, only compared DSM methods using less than 30 covariates or tested approaches on few responses. We built DSM models from 300–500 covariates using six approaches that are either popular in DSM or promising for large covariate sets.
R. Murray Lark, Elliott M. Hamilton, Belinda Kaninga, Kakoma K. Maseka, Moola Mutondo, Godfrey M. Sakala, and Michael J. Watts
SOIL, 3, 235–244, https://doi.org/10.5194/soil-3-235-2017, https://doi.org/10.5194/soil-3-235-2017, 2017
Short summary
Short summary
An advantage of geostatistics for mapping soil properties is that, given a statistical model of the variable of interest, we can make a rational decision about how densely to sample so that the map is sufficiently precise. However, uncertainty about the statistical model affects this process. In this paper we show how Bayesian methods can be used to support decision making on sampling with an uncertain model, ensuring that the probability of meeting certain levels of precision is high enough.
Hannes Keck, Bjarne W. Strobel, Jon Petter Gustafsson, and John Koestel
SOIL, 3, 177–189, https://doi.org/10.5194/soil-3-177-2017, https://doi.org/10.5194/soil-3-177-2017, 2017
Short summary
Short summary
Several studies have shown that the cation adsorption sites in soils are heterogeneously distributed in space. In many soil system models this knowledge is not included yet. In our study we proposed a new method to map the 3-D distribution of cation adsorption sites in undisturbed soils. The method is based on three-dimensional X-ray scanning with a contrast agent and image analysis. We are convinced that this approach will strongly aid the development of more realistic soil system models.
Laura Arata, Katrin Meusburger, Alexandra Bürge, Markus Zehringer, Michael E. Ketterer, Lionel Mabit, and Christine Alewell
SOIL, 3, 113–122, https://doi.org/10.5194/soil-3-113-2017, https://doi.org/10.5194/soil-3-113-2017, 2017
Christopher Poeplau, Cora Vos, and Axel Don
SOIL, 3, 61–66, https://doi.org/10.5194/soil-3-61-2017, https://doi.org/10.5194/soil-3-61-2017, 2017
Short summary
Short summary
This paper shows that three out of four frequently used methods to calculate soil organic carbon stocks lead to systematic overestimation of those stocks. Stones, which can be assumed to be free of carbon, have to be corrected for in both bulk density and layer thickness. We used data of the German Agricultural Soil Inventory to illustrate the potential bias and suggest a unified and unbiased calculation method for stocks of soil organic carbon, which is the largest terrestrial carbon pool.
Jan M. van Mourik, Thomas V. Wagner, J. Geert de Boer, and Boris Jansen
SOIL, 2, 299–310, https://doi.org/10.5194/soil-2-299-2016, https://doi.org/10.5194/soil-2-299-2016, 2016
Ranjith P. Udawatta, Clark J. Gantzer, Stephen H. Anderson, and Shmuel Assouline
SOIL, 2, 211–220, https://doi.org/10.5194/soil-2-211-2016, https://doi.org/10.5194/soil-2-211-2016, 2016
Short summary
Short summary
Soil compaction degrades soil structure and affects water, heat, and gas exchange as well as root penetration and crop production. The objective of this study was to use X-ray computed microtomography (CMT) techniques to compare differences in geometrical soil pore parameters as influenced by compaction of two different aggregate size classes.
B. Reidy, I. Simo, P. Sills, and R. E. Creamer
SOIL, 2, 25–39, https://doi.org/10.5194/soil-2-25-2016, https://doi.org/10.5194/soil-2-25-2016, 2016
Short summary
Short summary
This study reviews pedotransfer functions from the literature for different soil and horizon types. It uses these formulae to predict bulk density (ρb) per horizon using measured data of other soil properties. These data were compared to known pb per horizon and recalibrated. These calculations were used to fill missing horizon data in the Irish soil database. This allowed the generation of a pb map to 50 cm. These pb data are at horizon level allowing more accurate estimation of C with depth.
J. J. Keizer, M. A. S. Martins, S. A. Prats, L. F. Santos, D. C. S. Vieira, R. Nogueira, and L. Bilro
SOIL, 1, 641–650, https://doi.org/10.5194/soil-1-641-2015, https://doi.org/10.5194/soil-1-641-2015, 2015
Short summary
Short summary
In this study, a novel plastic optical fibre turbidity sensor was exhaustively tested with a large set of runoff samples, mainly from a recently burnt area. The different types of samples from the distinct study sites revealed without exception an increase in normalized light loss with increasing sediment concentrations that agreed (reasonably) well with a power function. Nevertheless, sensor-based predictions of sediment concentration should ideally involve site-specific calibrations.
C. Rasmussen, R. E. Gallery, and J. S. Fehmi
SOIL, 1, 631–639, https://doi.org/10.5194/soil-1-631-2015, https://doi.org/10.5194/soil-1-631-2015, 2015
Short summary
Short summary
There is a need to understand the response of soil systems to predicted climate warming for modeling soil processes. Current experimental methods for soil warming include expensive and difficult to implement active and passive techniques. Here we test a simple, inexpensive in situ passive soil heating approach, based on easy to construct infrared mirrors that do not require automation or enclosures. Results indicated that the infrared mirrors yielded significant heating and drying of soils.
E. Nadal-Romero, J. Revuelto, P. Errea, and J. I. López-Moreno
SOIL, 1, 561–573, https://doi.org/10.5194/soil-1-561-2015, https://doi.org/10.5194/soil-1-561-2015, 2015
Short summary
Short summary
Geomatic techniques have been routinely applied in erosion studies, providing the opportunity to build high-resolution topographic models.The aim of this study is to assess and compare the functioning of terrestrial laser scanner and close range photogrammetry techniques to evaluate erosion and deposition processes in a humid badlands area.
Our results demonstrated that north slopes experienced more intense and faster dynamics than south slopes as well as the highest erosion rates.
L. M. Thomsen, J. E. M. Baartman, R. J. Barneveld, T. Starkloff, and J. Stolte
SOIL, 1, 399–410, https://doi.org/10.5194/soil-1-399-2015, https://doi.org/10.5194/soil-1-399-2015, 2015
B. A. Miller, S. Koszinski, M. Wehrhan, and M. Sommer
SOIL, 1, 217–233, https://doi.org/10.5194/soil-1-217-2015, https://doi.org/10.5194/soil-1-217-2015, 2015
Short summary
Short summary
There are many different strategies for mapping SOC, among which is to model the variables needed to calculate the SOC stock indirectly or to model the SOC stock directly. The purpose of this research was to compare these two approaches for mapping SOC stocks from multiple linear regression models applied at the landscape scale via spatial association. Although the indirect approach had greater spatial variation and higher R2 values, the direct approach had a lower total estimated error.
W. Eugster and L. Merbold
SOIL, 1, 187–205, https://doi.org/10.5194/soil-1-187-2015, https://doi.org/10.5194/soil-1-187-2015, 2015
Short summary
Short summary
The eddy covariance (EC) method has become increasingly popular in soil science. The basic concept of this method and its use in different types of experimental designs in the field are given, and we indicate where progress in advancing and extending the field of applications is made. The greatest strengths of EC measurements in soil science are (1) their uninterrupted continuous measurement of gas concentrations and fluxes and (2) spatial integration over
small-scale heterogeneity in the soil.
Cited articles
Adhikari, K., Kheir, R., Greve, M., Bøcher, P., Malone, B., Minasny, B., McBratney, A., and Greve, M.: High-resolution 3-D mapping of soil texture in Denmark, Soil Sci. Soc. Am. J., 77, 860–876, https://doi.org/10.2136/sssaj2012.0275, 2013.
ALN: Historische Feuchtgebiete der Wildkarte 1850. Amt für Landschaft und Natur des Kantons Zürich, available at: http://www.aln.zh.ch/internet/baudirektion/aln/de/naturschutz/naturschutzdaten/geodaten.html (last access: 29 March 2017), 2002.
ALN: Geologische Karte des Kantons Zürich nach Hantke et al. 1967, GIS-ZH Nr. 41. Amt für Landschaft und Natur des Kantons Zürich, available at: http://www.gis.zh.ch/Dokus/Geolion/gds_41.pdf (last access: 15 February 2015), 2014a.
ALN: Meliorationskataster des Kantons Zürich, GIS-ZH Nr. 148. Amt für Landschaft und Natur des Kantons Zürich, available at: http://www.geolion.zh.ch/geodatensatz/show?nbid=387 (last access: 29 March 2017), 2014b.
AWEL: Hinweisflächen für anthropogene Böden, GIS-ZH Nr. 260. Amt für Abfall, Wasser, Energie und Luft des Kanton Zürich, available at: http://www.geolion.zh.ch/geodatensatz/show?nbid=985 (last access: 29 March 2017), 2012.
AWEL: Grundwasservorkommen, GIS-ZH Nr. 327. Amt für Abfall, Wasser, Energie und Luft des Kanton Zürich, available at: http://www.geolion.zh.ch/geodatensatz/show?nbid=723 (last access: 29 March 2017), 2014.
AWEL: NO2-Immissionen, GIS-ZH Nr. 82, Amt für Abfall, Wasser, Energie und Luft des Kanton Zürich, available at: http://geolion.zh.ch/geodatensatz/show?nbid=783 (last access: 29 March 2017), 2015.
BAFU: Luftbelastung: Karten Jahreswerte, Ammoniak und Stickstoffdeposition, Jahresmittel 2007 (modelliert durch METEOTEST), available at: http://www.bafu.admin.ch/luft/luftbelas-tung/schadstoffkarten (last access: 15 February 2015), 2011.
Behrens, T., Schmidt, K., Zhu, A. X., and Scholten, T.: The ConMap approach for terrain-based digital soil mapping, Eur. J. Soil. Sci., 61, 133–143, https://doi.org/10.1111/j.1365-2389.2009.01205.x, 2010.
Behrens, T., Schmidt, K., Ramirez-Lopez, L., Gallant, J., Zhu, A.-X., and Scholten, T.: Hyper-scale digital soil mapping and soil formation analysis, Geoderma, 213, 578–588, https://doi.org/10.1016/j.geoderma.2013.07.031, 2014.
Ben-Dor, E., Chabrillat, S., Demattê, J. A. M., Taylor, G. R., Hill, J., Whiting, M. L., and Sommer, S.: Using imaging spectroscopy to study soil properties, Remote Sens. Environ., 113, S38–S55, https://doi.org/10.1016/j.rse.2008.09.019, 2009.
BFS: GEOSTAT Benützerhandbuch, Bundesamt für Statistik, Bern, 2001.
Bourennane, H., King, D., Chéry, P., and Bruand, A.: Improving the kriging of a soil variable using slope gradient as external drift, Eur. J. Soil. Sci., 47, 473–483, https://doi.org/10.1111/j.1365-2389.1996.tb01847.x, 1996.
Brassel, P. and Lischke, H. (Eds.): Swiss National Forest Inventory: Methods and models of the second assessment, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, 2001.
Breheny, P. and Huang, J.: Group descent algorithms for nonconvex penalized linear and logistic regression models with grouped predictors, Stat Comput, 25, 173–187, https://doi.org/10.1007/s11222-013-9424-2, 2015.
Brunner, J., Jäggli, F., Nievergelt, J., and Peyer, K.: Kartieren und Beurteilen von Landwirtschaftsböden, FAL Schriftenreihe 24, Eidgenössische Forschungsanstalt für Agrarökologie und Landbau, Zürich-Reckenholz (FAL), 1997.
Buchanan, S., Triantafilis, J., Odeh, I. O. A., and Subansinghe, R.: Digital soil mapping of compositional particle-size fractions using proximal and remotely sensed ancillary data, Geophysics, 77, WB201–WB211, https://doi.org/10.1190/geo2012-0053.1, 2012.
Bühlmann, P. and Hothorn, T.: Boosting algorithms: Regularization, prediction and model fitting, Stat. Sci., 22, 477–505, https://doi.org/10.1214/07-sts242, 2007.
Campling, P., Gobin, A., and Feyen, J.: Logistic modeling to spatially predict the probability of soil drainage classes, Soil Sci. Soc. Am. J., 66, 1390–1401, https://doi.org/10.2136/sssaj2002.1390, 2002.
Cleveland, W. S.: Robust Locally Weighted Regression and Smoothing Scatterplots, J. Am. Stat. Assoc., 74, 829–836, https://doi.org/10.2307/2286407, 1979.
Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L., Wehberg, J., Wichmann, V., and Böhner, J.: System for Automated Geoscientific Analyses (SAGA) v. 2.1.4, Geosci. Model Dev., 8, 1991–2007, https://doi.org/10.5194/gmd-8-1991-2015, 2015.
Cressie, N.: Block Kriging for Lognormal Spatial Processes, Math. Geol., 38, 413–443, https://doi.org/10.1007/s11004-005-9022-8, 2006.
Danner, C., Hensold, C., Blum, P., Weidenhammer, S., Aussendorf, M., Kraft, M., Weidenbacher, A., Holleis, P., and Kölling, C.: Das Schutzgut Boden in der Planung, Bewertung natürlicher Bodenfunktionen und Umsetzung in Planungs- und Genehmigungsverfahren, Bayerisches Landesamt für Umweltschutz, Bayerisches Geologisches Landesamt, available at: http://www.lfu.bayern.de/boden/bodenfunktionen/ertragsfaehigkeit/doc/arbeitshilfe_boden.pdf (last access: 29 March 2017), 2003.
Davison, A. C. and Hinkley, D. V.: Bootstrap Methods and Their Applications, Cambridge University Press, Cambridge, https://doi.org/10.1017/cbo9780511802843, 1997.
de Brogniez, D., Ballabio, C., Stevens, A., Jones, R. J. A., Montanarella, L., and van Wesemael, B.: A map of the topsoil organic carbon content of Europe generated by a generalized additive model, Eur. J. Soil Sci., 66, 121–134, https://doi.org/10.1111/ejss.12193, 2015.
Diek, S., Schaepman, M., and de Jong, R.: Creating multi-temporal composites of airborne imaging spectroscopy data in support of digital soil mapping, Remote Sens., 8, 906, https://doi.org/10.3390/rs8110906, 2016.
Dirichlet, G. L.: Über die Reduction der positiven quadratischen Formen mit drei unbestimmten ganzen Zahlen, J. reine angew. Math., 40, 209–227, https://doi.org/10.1017/cbo9781139237345.005, available at: http://eudml.org/doc/147457, 1850.
DMC: Disaster Monitoring Constellation International Imaging, available at: http://www.dmcii.com, last access: 3 February 2015.
Dobson, A. J.: An Introduction to GeneralIzed Linear Models, Chapman & Hall/CRC, Boca Raton, 2002.
ELF: Schweizerische Referenzmethoden der Forschungsanstalten Agroscope – Boden- und Substratuntersuchungen zur Düngeberatung, Loseblattordner E1.011.d 1, Forschungsanstalten Agroscope ART und ACW, Zürich und Changins, Ausgabe 1996 mit Änderungen von 1997 bis 2009, Version 2015, Methode “AAE-10”, 1996.
ESRI: ArcGIS Desktop: Release 10, ESRI Environmental Systems Research Institute, Redlands, California, USA., available at: www.esri.com (last access: 29 March 2017), 2010.
FAC: Methoden für Bodenuntersuchungen, no. 5 in Schriftenreihe der FAC, Liebefeld, Eidgenössische Forschungsanstalt für Agrikulturchemie und Umwelthygiene (FAC), 1989.
FAO and ITPS: Status of the World's Soil Resources (SWSR), Main report, Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils, Rome, Italy, 2015.
Faraway, J. J.: Linear Models with R, vol. 63 of: Texts in Statistical Science, Chapman & Hall/CRC, Boca Raton, 2005.
Fitzpatrick, B. R., Lamb, D. W., and Mengersen, K.: Ultrahigh Dimensional Variable Selection for Interpolation of Point Referenced Spatial Data: A Digital Soil Mapping Case Study, PLoS One, 11, 1–19, https://doi.org/10.1371/journal.pone.0162489, 2016.
Frigge, M., Hoaglin, D. C., and Iglewicz, B.: Some implementations of the boxplot, The American Statistician, 43, 50–54, https://doi.org/10.2307/2685173, 1989.
FSO: Swiss soil suitability map. BFS GEOSTAT. Swiss Federal Statistical Office, available at: http://www.bfs.admin.ch/bfs/portal/de/index/dienstleistungen/geostat/datenbeschreibung/digitale_bodeneignungskarte.html (last access: 15 February 2015), 2000a.
FSO: Tree composition of Swiss forests. BFS GEOSTAT. Swiss Federal Statistical Office, available at: http://www.bfs.admin.ch/bfs/portal/de/index/dienstleistungen/geostat/datenbeschreibung/waldmischungsgrad.html (last access: 15 February 2015), 2000b.
Gasser, U., Gubler, A., Hincapié, I., Karagiannis, D.-A., Schwierz, C., and Zimmermann, S.: Bestimmung der Austauschereigenschaften von Waldböden: Kostenoptimierung, Bulletin Bodenkundliche Gesellschaft der Schweiz, 32, 51–52, 2011.
Grimm, R., Behrens, T., Märker, M., and Elsenbeer, H.: Soil organic carbon concentrations and stocks on Barro Colorado Island – Digital soil mapping using Random Forests analysis, Geoderma, 146, 102–113, https://doi.org/10.1016/j.geoderma.2008.05.008, 2008.
Hantke, R. U.: Geologische Karte des Kantons Zürich und seiner Nachbargebiete, Kommissionsverlag Leemann, Zürich, Sonderdruck aus: Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich, 112: 91–122, 1967.
Hastie, T. J. and Tibshirani, R. J.: Generalized Additive Models, vol. 43 of: Monographs on Statistics and Applied Probability, Chapman and Hall, London, 1990.
Hastie, T., Tibshirani, R., and Friedman, J.: The Elements of Statistical Learning; Data Mining, Inference and Prediction, Springer, New York, 2 edn., 2009.
Henderson, B. L., Bui, E. N., Moran, C. J., and Simon, D. A. P.: Australia-wide predictions of soil properties using decision trees, Geoderma, 124, 383–398, https://doi.org/10.1016/j.geoderma.2004.06.007, 2005.
Hengl, T., de Jesus, J. M., MacMillan, R. A., Batjes, N. H., Heuvelink, G. B. M., Ribeiro, E., and Samuel-Rosa, A.: SoilGrids1km – Global Soil Information Based on Automated Mapping, PLoS One, 9, https://doi.org/10.1371/journal.pone.0105992, 2014.
Hengl, T., Mendes de Jesus, J., Heuvelink, G. B. M., Ruiperez Gonzalez, M., Kilibarda, M., Blagotić, A., Shangguan, W., Wright, M. N., Geng, X., Bauer-Marschallinger, B., Guevara, M. A., Vargas, R., MacMillan, R. A., Batjes, N. H., Leenaars, J. G. B., Ribeiro, E., Wheeler, I., Mantel, S., and Kempen, B.: SoilGrids250m: Global gridded soil information based on machine learning, PLoS One, 12, 1–40, https://doi.org/10.1371/journal.pone.0169748, 2017.
Heung, B., Ho, H. C., Zhang, J., Knudby, A., Bulmer, C. E., and Schmidt, M. G.: An overview and comparison of machine-learning techniques for classification purposes in digital soil mapping, Geoderma, 265, 62–77, https://doi.org/10.1016/j.geoderma.2015.11.014, 2016.
Hijmans, R. J., van Etten, J., Cheng, J., Mattiuzzi, M., Sumner, M., Greenberg, J. A., Lamigueiro, O. P., Bevan, A., Racine, E. B., and Shortridge, A.: raster: Geographic Data Analysis and Modeling, R package versoin 2.4-15, available at: http://CRAN.R-project.org/package=raster (last access: 29 March 2017), 2015.
Hofner, B., Hothorn, T., Kneib, T., and Schmid, M.: A Framework for Unbiased Model Selection Based on Boosting, J. Comput. Graph. Stat., 20, 956–971, https://doi.org/10.1198/jcgs.2011.09220, 2011.
Hofner, B., Mayr, A., Robinzonov, N., and Schmid, M.: Model-based boosting in R: A hands-on tutorial using the R package mboost, Computation. Stat., 29, 3–35, https://doi.org/10.1007/s00180-012-0382-5, 2014.
Hothorn, T., Müller, J., Schröder, B., Kneib, T., and Brandl, R.: Decomposing environmental, spatial, and spatiotemporal components of species distributions, Ecol. Monogr., 81, 329–347, 2011.
Hothorn, T., Buehlmann, P., Kneib, T., Schmid, M., and Hofner, B.: mboost: Model-Based Boosting, R package version 2.4-2, available at: http://CRAN.R-project.org/package=mboost (last access: 29 March 2017), 2015.
Hotz, M.-C., Weibel, F., Ringgenberg, B., Beyeler, A., Finger, A., Humbel, R., and Sager, J.: Arealstatistik Schweiz Zahlen – Fakten – Analysen, Bericht, Bundesamt für Statistik (BFS), Neuchâtel, 2005.
Jäggli, F., Peyer, K., Pazeller, A., and Schwab, P.: Grundlagenbericht zur Bodenkartierung des Kantons Zürich, Tech. rep., Volkswirtschaftsdirektion des Kantons Zürich und Eidg. Forschungsanstalt für Agrarökologie und Landbau Zürich Reckenholz FAL, 1998.
Johnson, C. E., Ruiz-Méndez, J. J., and Lawrence, G. B.: Forest soil chemistry and terrain attributes in a Catskills watershed, Soil Sci. Soc. Am. J., 64, 1804–1814, https://doi.org/10.2136/sssaj2000.6451804x, 2000.
Jolliffe, I. T. and Stephenson, D. B. (Eds.): Forecast verification: A practitioner's guide in atmospheric science, Wiley-Blackwell, Chichester, 2 edn., 2012.
Kammann, E. E. and Wand, M. P.: Geoadditive models, J. Roy. Stat. Soc. C-App., 52, 1–18, https://doi.org/10.1111/1467-9876.00385, 2003.
Kidd, D. B., Malone, B. P., McBratney, A. B., Minasny, B., and Webb, M. A.: Digital mapping of a soil drainage index for irrigated enterprise suitability in Tasmania, Australia, Soil Res., 52, 107–119, https://doi.org/10.1071/SR13100, 2014.
Kneib, T., Hothorn, T., and Tutz, G.: Variable selection and model choice in geoadditive regression models, Biometrics, 65, 626–634, https://doi.org/10.1111/j.1541-0420.2008.01112.x, 2009.
Kreuzwieser, J. and Rennberg, H.: Molecular and physiological responses of trees to waterlogging stress, Plant Cell Environ., 37, 2245–2259, https://doi.org/10.1111/pce.12310, 2014.
Lacoste, M., Mulder, V., de Forges, A. R., Martin, M., and Arrouays, D.: Evaluating large-extent spatial modeling approaches: A case study for soil depth for France, Geoderma Regional, 7, 137–152, https://doi.org/10.1016/j.geodrs.2016.02.006, 2016.
Lakanen, E. and Erviö, R.: A comparison of eight extractants for the determination of plant available micronutrients in soils, Acta Agralia Fennica, 123, 223–232, 1971.
Lemercier, B., Lacoste, M., Loum, M., and Walter, C.: Extrapolation at regional scale of local soil knowledge using boosted classification trees: A two-step approach, Geoderma, 171–172, 75–84, https://doi.org/10.1016/j.geoderma.2011.03.010, 2012.
Liddicoat, C., Maschmedt, D., Clifford, D., Searle, R., Herrmann, T., Macdonald, L., and Baldock, J.: Predictive mapping of soil organic carbon stocks in South Australia's agricultural zone, Soil Res., 53, 956–973, https://doi.org/10.1071/SR15100, 2015.
Liess, M., Glaser, B., and Huwe, B.: Uncertainty in the spatial prediction of soil texture. Comparison of regression tree and Random Forest models, Geoderma, 170, 70–79, https://doi.org/10.1016/j.geoderma.2011.10.010, 2012.
Litz, N.: Schutz vor Organika, in: Handbuch der Bodenkunde, edited by: Blume, H.-P., vol. 5, chap. 7.6.6, p. 28, Wiley-VCH, Landsberg, 1998.
Martin, M. P., Wattenbach, M., Smith, P., Meersmans, J., Jolivet, C., Boulonne, L., and Arrouays, D.: Spatial distribution of soil organic carbon stocks in France, Biogeosciences, 8, 1053–1065, https://doi.org/10.5194/bg-8-1053-2011, 2011.
Mathys, L. and Kellenberger, T.: Spot5 RadcorMosaic of Switzerland, Tech. rep., National Point of Contact for Satellite Images NPOC: Swisstopo; Remote Sensing Laboratories, University of Zurich, Zurich, 2009.
McBratney, A. B., Mendonça Santos, M. L., and Minasny, B.: On Digital Soil Mapping, Geoderma, 117, 3–52, https://doi.org/10.1016/S0016-7061(03)00223-4, 2003.
Meersmans, J., De Ridder, F., Canters, F., De Baets, S., and Van Molle, M.: A multiple regression approach to assess the spatial distribution of Soil Organic Carbon (SOC) at the regional scale (Flanders, Belgium), Geoderma, 143, 1–13, https://doi.org/10.1016/j.geoderma.2007.08.025, 2008.
Meinshausen, N.: Quantile regression forests, J. Mach. Learn. Res., 7, 983–999, 2006.
Miller, B. A., Koszinski, S., Wehrhan, M., and Sommer, M.: Impact of multi-scale predictor selection for modeling soil properties, Geoderma, 239–240, 97–106, https://doi.org/10.1016/j.geoderma.2014.09.018, 2015.
Moran, C. J. and Bui, E. N.: Spatial data mining for enhanced soil map modelling, Int. J. Geogr. Inf. Sci., 16, 533–549, https://doi.org/10.1080/13658810210138715, 2002.
Mulder, V. L., de Bruin, S., Schaepman, M. E., and Mayr, T. R.: The use of remote sensing in soil and terrain mapping – A review, Geoderma, 162, 1–19, https://doi.org/10.1016/j.geoderma.2010.12.018, 2011.
Mulder, V., Lacoste, M., de Forges, A. R., and Arrouays, D.: GlobalSoilMap France: High-resolution spatial modelling the soils of France up to two meter depth, Sci. Total Environ., 573, 1352–1369, https://doi.org/10.1016/j.scitotenv.2016.07.066, 2016.
Müller, L., Schinder, U., and Behrendt, A., Eulenstein, F., and Dannowski, R.: The Muencheberg Soil Quality Rating (SQR): Field manual for detecting and assessing properties and limitations of soils for cropping and grazing, Report, Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF), Müncheberg, Germany, 2007.
Nussbaum, M.: geoGAM: Select Sparse Geoadditive Models for Spatial Prediction, R package version 0.1-2, available at: https://CRAN.R-project.org/package=geoGAM, last access: 29 March 2017.
Nussbaum, M. and Papritz, A.: Transferfunktionen Nährstoffmesswerte, Bericht, ETH Zürich, Soil and Terrestrial Environmental Physics, https://doi.org/10.3929/ethz-a-010810702, Version 2, mit kl. Änderung 27 November 2016, 2015.
Nussbaum, M., Papritz, A., Baltensweiler, A., and Walthert, L.: Estimating soil organic carbon stocks of Swiss forest soils by robust external-drift kriging, Geosci. Model Dev., 7, 1197–1210, https://doi.org/10.5194/gmd-7-1197-2014, 2014.
Nussbaum, M., Spiess, K., Baltensweiler, A., Grob, U., Keller, A., Greiner, L., Schaepman, M. E., and Papritz, A.: Evaluation of digital soil mapping approaches with large sets of environmental covariates, SOIL Discuss., https://doi.org/10.5194/soil-2017-14, in review, 2017.
Omuto, C., Nachtergaele, F., and Vargas Rojas, R.: State of the Art Report on Global and Regional Soil Information : Where are we? Where to go?, Tech. rep., Food and Agriculture Organization of the United Nations, Rome, 2013.
Peng, W., Wheeler, D., Bell, J., and Krusemark, M.: Delineating patterns of soil drainage class on bare soils using remote sensing analyses, Geoderma, 115, 261–279, https://doi.org/10.1016/S0016-7061(03)00066-1, 2003.
Poggio, L. and Gimona, A.: National scale 3D modelling of soil organic carbon stocks with uncertainty propagation – An example from Scotland, Geoderma, 232–234, 284–299, https://doi.org/10.1016/j.geoderma.2014.05.004, 2014.
Poggio, L., Gimona, A., and Brewer, M.: Regional scale mapping of soil properties and their uncertainty with a large number of satellite-derived covariates, Geoderma, 209–210, 1–14, https://doi.org/10.1016/j.geoderma.2013.05.029, 2013.
R Core Team: R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, available at: http://www.R-project.org/ (last access: 29 March 2017), 2016.
Remund, J., Frehner, M., Walthert, L., Kägi, M., and Rihm, B.: Schätzung standortspezifischer Trockenstressrisiken in Schweizer Wäldern, 2011.
Schaepman, M., Jehle, M., Hueni, A., D'Odorico, P., Damm, A., Weyermann, J., Schneider, F., Laurent, V., Popp, C., Seidel, F., Lenhard, K., Gege, P., Küchler, C., Brazile, J., Kohler, P., Vos, L., Meuleman, K., Meynart, R., Schläpfer, D., and Itten, K.: Advanced radiometry measurements and Earth science applications with the Airborne Prism Experiment (APEX), Remote Sens. Environ., 158, 207–219, https://doi.org/10.1016/j.rse.2014.11.014, 2015.
Schmid, M., Hothorn, T., Maloney, K. O., Weller, D. E., and Potapov, S.: Geoadditive regression modeling of stream biological condition, Environ. Ecol. Stat., 18, 709–733, https://doi.org/10.1007/s10651-010-0158-4, 2011.
Schmider, P., Küper, M., Tschander, B., and Käser, B.: Die Waldstandorte im Kanton Zürich Waldgesellschaften, Waldbau Naturkunde, vdf Verlag der Fachvereine an den schweizerischen Hochschulen und Techniken, Zürich, 1993.
Scull, P., Franklin, J., Chadwick, O. A., and McArthur, D.: Predictive Soil Mapping: A review, Prog. Phys. Geogr., 27, 171–197, https://doi.org/10.1191/0309133303pp366ra, 2003.
Sindayihebura, A., Ottoy, S., Dondeyne, S., Meirvenne, M. V., and Orshoven, J. V.: Comparing digital soil mapping techniques for organic carbon and clay content: Case study in Burundi's central plateaus, CATENA, 156, 161–175, https://doi.org/10.1016/j.catena.2017.04.003, 2017.
Swisstopo: Switzerland during the Last Glacial Maximum 1:500 000, available at: http://www.swisstopo.admin.ch/internet/swisstopo/en/home/products/maps/geology/geomaps/LGM-map500.html (last access: 7 June 2016), 2009.
Swisstopo: Höhenmodelle, available at: http://www.swisstopo.admin.ch/internet/swisstopo/de/home/products/height.html (last access: 7 June 2016), 2011.
Swisstopo: swissTLM3D: Topographic Landscape Model 3D. Version 1.1, available at: http://www.swisstopo.admin.ch/internet/swisstopo/de/home/products/landscape/swissTLM3D.html (last access: 8 March 2016), 2013a.
Swisstopo: swissAlti3D. Das hoch aufgelöste Terrainmodell der Schweiz, available at: http://www.swisstopo.admin.ch/internet/swisstopo/de/home/products/height/swissALTI3D.html (last access: 7 June 2016), 2013b.
Swisstopo: swissBoundaries3D, available at: http://www.swisstopo.admin.ch/internet/swisstopo/de/home/products/landscape/swissBOUNDARIES3D.html (last access: 8 March 2016), 2016.
Tutz: Regression for Categorical Data, Cambridge University Press, https://doi.org/10.1017/cbo9780511842061, 2012.
USGS EROS: USGS Land Remote Sensing Program, Landsat 7 Scene 01.09.2013. U.S. Geological Survey's Earth Resources Observation and Science Center, 2013.
Vaysse, K. and Lagacherie, P.: Evaluating Digital Soil Mapping approaches for mapping GlobalSoilMap soil properties from legacy data in Languedoc-Roussillon (France), Geoderma Regional, 4, 20–30, https://doi.org/10.1016/j.geodrs.2014.11.003, 2015.
Venables, W. N. and Ripley, B. D.: Modern applied statistics with S-PLUS, Springer-Verlag, New York, 4 edn., 2002.
Viscarra Rossel, R., Webster, R., and Kidd, D.: Mapping gamma radiation and its uncertainty from weathering products in a Tasmanian landscape with a proximal sensor and random forest kriging, Earth Surf. Proc. Land., 39, 735–748, https://doi.org/10.1002/esp.3476, 2014.
Viscarra Rossel, R., Chen, C., Grundy, M., Searle, R., Clifford, D., and Campbell, P.: The Australian three-dimensional soil grid: Australia's contribution to the GlobalSoilMap project, Soil Res., 53, 845–864, https://doi.org/10.1071/SR14366, 2015.
Walthert, L., Zimmermann, S., Blaser, P., Luster, J., and Lüscher, P.: Waldböden der Schweiz. Band 1. Grundlagen und Region Jura, Eidg. Forschungsanstalt WSL and Hep Verlag, Birmensdorf and Bern, 2004.
Walthert, L., Pannatier, E. G., and Meier, E. S.: Shortage of nutrients and excess of toxic elements in soils limit the distribution of soil-sensitive tree species in temperate forests, For. Ecol. Manage., 297, 94–107, https://doi.org/10.1016/j.foreco.2013.02.008, 2013.
Walthert, L., Bridler, L., Keller, A., Lussi, M., and Grob, U.: Harmonisierung von Bodendaten im Projekt “Predictive mapping of soil properties for the evaluation of soil functions at regional scale (PMSoil)” des Nationalen Forschungsprogramms Boden (NFP 68), Bericht, Eidgenössische Forschungsanstalt WSL und Agroscope Reckenholz, Birmensdorf und Zürich, https://doi.org/10.3929/ethz-a-010801994, 2016.
Webster, R. and Lark, R.: Field Sampling for Environmental Science and Management, Environmental science/statistics, Routledge, 2013.
Wegelin, T.: Schadstoffbelastung des Bodens im Kanton Zürich Resultate des kantonalen Bodenrasternetzes, Bericht, Amt für Gewässerschutz und Wasserbau Fachstelle Bodenschutz, Zürich, 1989.
Wiesmeier, M., Barthold, F., Blank, B., and Kögel-Knabner, I.: Digital mapping of soil organic matter stocks using Random Forest modeling in a semi-arid steppe ecosystem, Plant Soil, 340, 7–24, https://doi.org/10.1007/s11104-010-0425-z, 2011.
Wilks, D. S.: Statistical Methods in the Atmospheric Sciences, Academic Press, 3 edn., 2011.
Wood, S. N.: Generalized Additive Models: An Introduction with R, Chapman and Hall/CRC, 2006.
Wood, S. N.: Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models, J. Roy. Stat. Soc. B, 73, 3–36, https://doi.org/10.1111/j.1467-9868.2010.00749.x, 2011.
Wüst-Galley, C., Grünig, A., and Leifeld, J.: Locating organic soils for the Swiss greenhouse gas inventory, Agroscope Science 26, Agroscope, Zurich, available at: https://www.bafu.admin.ch/dam/bafu/en/dokumente/klima/klima-climatereporting-referenzen-cp2/wuest-galley_c_gruenigaleifeldj2015.pdf.download.pdf (last access: 29 March 2017), 2015.
Zhao, Z., Irfan, A. M., and Fan-Rui, M.: Model prediction of soil drainage classes over a large area using a limited number of field samples: A case study in the province of Nova Scotia, Canada, Can. J. Soil Sci., 93, 73–83, https://doi.org/10.4141/cjss2011-095, 2013.
Zimmermann, N. E. and Kienast, F.: Predictive mapping of alpine grasslands in Switzerland: Species versus community approach, J. Veg. Sci., 10, 469–482, https://doi.org/10.2307/3237182, 1999.
Short summary
Digital soil mapping (DSM) relates soil property data to environmental data that describe soil-forming factors. With imagery sampled from satellites or terrain analysed at multiple scales, large sets of possible input to DSM are available. We propose a new statistical framework (geoGAM) that selects parsimonious models for DSM and illustrate the application of geoGAM to two study regions. Straightforward interpretation of the modelled effects likely improves end-user acceptance of DSM products.
Digital soil mapping (DSM) relates soil property data to environmental data that describe...