Articles | Volume 2, issue 1
https://doi.org/10.5194/soil-2-41-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/soil-2-41-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Quantification of the inevitable: the influence of soil macrofauna on soil water movement in rehabilitated open-cut mined lands
S. Arnold
CORRESPONDING AUTHOR
Centre for Water in the Minerals Industry, Sustainable
Minerals Institute, The University of Queensland, St. Lucia, 4072, QLD,
Australia
E. R. Williams
Centre for Mined Land Rehabilitation, Sustainable Minerals
Institute, The University of Queensland, St. Lucia, 4072, QLD, Australia
Agri-Science Queensland, Department of Agriculture and
Fisheries, Kingaroy 4610, QLD, Australia
Related authors
Devanmini Halwatura, Neil McIntyre, Alex M. Lechner, and Sven Arnold
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-467, https://doi.org/10.5194/hess-2016-467, 2016
Manuscript not accepted for further review
Short summary
Short summary
Droughts indices that only use rainfall/evaporation may not reliably detect soil moisture droughts. Few comparative studies have been published to guide the decision on the most appropriate method for describe soil moisture droughts. We evaluate the performance of drought indices in predicting soil moisture droughts by comparing drought indices with soil water pressure. The failure and false alarm rates of drought indices showed, indices performed reasonably well in detecting soil moist drought.
D. Halwatura, A. M. Lechner, and S. Arnold
Hydrol. Earth Syst. Sci., 19, 1069–1091, https://doi.org/10.5194/hess-19-1069-2015, https://doi.org/10.5194/hess-19-1069-2015, 2015
P. Audet, S. Arnold, A. M. Lechner, and T. Baumgartl
Biogeosciences, 10, 6545–6557, https://doi.org/10.5194/bg-10-6545-2013, https://doi.org/10.5194/bg-10-6545-2013, 2013
Devanmini Halwatura, Neil McIntyre, Alex M. Lechner, and Sven Arnold
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-467, https://doi.org/10.5194/hess-2016-467, 2016
Manuscript not accepted for further review
Short summary
Short summary
Droughts indices that only use rainfall/evaporation may not reliably detect soil moisture droughts. Few comparative studies have been published to guide the decision on the most appropriate method for describe soil moisture droughts. We evaluate the performance of drought indices in predicting soil moisture droughts by comparing drought indices with soil water pressure. The failure and false alarm rates of drought indices showed, indices performed reasonably well in detecting soil moist drought.
D. Halwatura, A. M. Lechner, and S. Arnold
Hydrol. Earth Syst. Sci., 19, 1069–1091, https://doi.org/10.5194/hess-19-1069-2015, https://doi.org/10.5194/hess-19-1069-2015, 2015
P. Audet, S. Arnold, A. M. Lechner, and T. Baumgartl
Biogeosciences, 10, 6545–6557, https://doi.org/10.5194/bg-10-6545-2013, https://doi.org/10.5194/bg-10-6545-2013, 2013
Related subject area
Soils and water
Optimized fertilization using online soil nitrate data
Depth-extrapolation of field-scale soil moisture time series derived with cosmic-ray neutron sensing using the SMAR model
Intensive agricultural management-induced subsurface accumulation of water-extractable colloidal P in a Vertisol
Perspectives on the misconception of levitating soil aggregates
Combining lime and organic amendments based on titratable alkalinity for efficient amelioration of acidic soils
Addressing soil data needs and data-gaps in catchment scale environmental modelling: the European perspective
Sequestering carbon in the subsoil benefits crop transpiration at the onset of drought
Pesticide transport through the vadose zone under sugarcane in the Wet Tropics, Australia
Reproducibility of the wet part of the soil water retention curve: a European interlaboratory comparison
The higher relative concentration of K+ to Na+ in saline water improves soil hydraulic conductivity, salt-leaching efficiency and structural stability
Agricultural use of compost under different irrigation strategies in a hedgerow olive grove under Mediterranean conditions – a comparison with traditional systems
Potential of natural language processing for metadata extraction from environmental scientific publications
Soil and crop management practices and the water regulation functions of soils: a qualitative synthesis of meta-analyses relevant to European agriculture
Effects of innovative long-term soil and crop management on topsoil properties of a Mediterranean soil based on detailed water retention curves
Polyester microplastic fibers affect soil physical properties and erosion as a function of soil type
Modelling the effect of catena position and hydrology on soil chemical weathering
Long-term impact of cover crop and reduced disturbance tillage on soil pore size distribution and soil water storage
Effective hydraulic properties of 3D virtual stony soils identified by inverse modeling
Biochar alters hydraulic conductivity and impacts nutrient leaching in two agricultural soils
Impact of freeze–thaw cycles on soil structure and soil hydraulic properties
Added value of geophysics-based soil mapping in agro-ecosystem simulations
Particulate macronutrient exports from tropical African montane catchments point to the impoverishment of agricultural soils
A review of the global soil property maps for Earth system models
Saturated and unsaturated salt transport in peat from a constructed fen
Sensitivity analysis of point and parametric pedotransfer functions for estimating water retention of soils in Algeria
Water in the critical zone: soil, water and life from profile to planet
Deriving pedotransfer functions for soil quartz fraction in southern France from reverse modeling
Morphological dynamics of gully systems in the subhumid Ethiopian Highlands: the Debre Mawi watershed
Characterization of stony soils' hydraulic conductivity using laboratory and numerical experiments
Quantification of the impact of hydrology on agricultural production as a result of too dry, too wet or too saline conditions
Sediment concentration rating curves for a monsoonal climate: upper Blue Nile
Nonstationarity of the electrical resistivity and soil moisture relationship in a heterogeneous soil system: a case study
Interactions between organisms and parent materials of a constructed Technosol shape its hydrostructural properties
Potential effects of vinasse as a soil amendment to control runoff and soil loss
Coupled cellular automata for frozen soil processes
Yonatan Yekutiel, Yuval Rotem, Shlomi Arnon, and Ofer Dahan
SOIL, 10, 335–347, https://doi.org/10.5194/soil-10-335-2024, https://doi.org/10.5194/soil-10-335-2024, 2024
Short summary
Short summary
A new soil nitrate monitoring system that was installed in a cultivated field enabled us, for the first-time, to control nitrate concentration across the soil profile. Frequent adjustment of fertilizer and water application followed the actual dynamic variation in nitrate concentration across the soil profile. Hence, a significant reduction in fertilizer application was achieved while preserving optimal crop yield.
Daniel Rasche, Theresa Blume, and Andreas Güntner
EGUsphere, https://doi.org/10.5194/egusphere-2024-170, https://doi.org/10.5194/egusphere-2024-170, 2024
Short summary
Short summary
Soil moisture measurements at the field scale are highly beneficial for numerous (soil) hydrological applications. Cosmic-ray neutron sensing (CRNS) allows for the non-invasive monitoring of field-scale soil moisture across several hectares but only for the first few tens of centimeters of the soil. In this study, we modify and test a simple modelling approach to extrapolate CRNS-derived surface soil moisture information down to 450 cm depth and compare calibrated and uncalibrated model results.
Shouhao Li, Shuiqing Chen, Shanshan Bai, Jinfang Tan, and Xiaoqian Jiang
SOIL, 10, 49–59, https://doi.org/10.5194/soil-10-49-2024, https://doi.org/10.5194/soil-10-49-2024, 2024
Short summary
Short summary
The distribution of water-extractable colloids with soil profiles of 0–120 cm was investigated in a Vertisol under high-intensity agricultural management. A large number of experimental data show that colloidal phosphorus plays an important role in apatite transport throughout the profile. Thus, it is crucial to consider the impact of colloidal P when predicting surface-to-subsurface P loss in Vertisols.
Gina Garland, John Koestel, Alice Johannes, Olivier Heller, Sebastian Doetterl, Dani Or, and Thomas Keller
SOIL, 10, 23–31, https://doi.org/10.5194/soil-10-23-2024, https://doi.org/10.5194/soil-10-23-2024, 2024
Short summary
Short summary
The concept of soil aggregates is hotly debated, leading to confusion about their function or relevancy to soil processes. We propose that the use of conceptual figures showing detached and isolated aggregates can be misleading and has contributed to this skepticism. Here, we conceptually illustrate how aggregates can form and dissipate within the context of undisturbed soils, highlighting the fact that aggregates do not necessarily need to have distinct physical boundaries.
Birhanu Iticha, Luke M. Mosley, and Petra Marschner
SOIL, 10, 33–47, https://doi.org/10.5194/soil-10-33-2024, https://doi.org/10.5194/soil-10-33-2024, 2024
Short summary
Short summary
Little effort has been made to develop methods to calculate the application rates of lime combined with organic amendments (OAs) needed to neutralise soil acidity and achieve the desired pH for plant growth. The previous approach of estimating appropriate lime and OA combinations based on field trials is time-consuming and costly. Hence, we developed and successfully validated a new method to calculate the amount of lime or OAs in combined applications required to ameliorate acidity.
Brigitta Szabó, Piroska Kassai, Svajunas Plunge, Attila Nemes, Péter Braun, Michael Strauch, Felix Witing, János Mészáros, and Natalja Čerkasova
EGUsphere, https://doi.org/10.5194/egusphere-2023-3104, https://doi.org/10.5194/egusphere-2023-3104, 2024
Short summary
Short summary
This research introduces methods and tools for obtaining soil input data in European case studies for environmental models like SWAT+. With various available soil datasets and prediction methods, determining the most suitable is challenging. The study aims to i) catalogue open access datasets and prediction methods for Europe, ii) demonstrate and quantify differences between prediction approaches, and iii) offer a comprehensive workflow with open-source R codes for deriving missing soil data.
Maria Eliza Turek, Attila Nemes, and Annelie Holzkämper
SOIL, 9, 545–560, https://doi.org/10.5194/soil-9-545-2023, https://doi.org/10.5194/soil-9-545-2023, 2023
Short summary
Short summary
In this study, we systematically evaluated prospective crop transpiration benefits of sequestering soil organic carbon (SOC) under current and future climatic conditions based on the model SWAP. We found that adding at least 2% SOC down to at least 65 cm depth could increase transpiration annually by almost 40 mm, which can play a role in mitigating drought impacts in rain-fed cropping. Beyond this threshold, additional crop transpiration benefits of sequestering SOC are only marginal.
Rezaul Karim, Lucy Reading, Les Dawes, Ofer Dahan, and Glynis Orr
SOIL, 9, 381–398, https://doi.org/10.5194/soil-9-381-2023, https://doi.org/10.5194/soil-9-381-2023, 2023
Short summary
Short summary
The study was performed using continuous measurement of temporal variations in soil saturation and of the concentration of pesticides along the vadose zone profile and underlying alluvial aquifers at sugarcane fields in the Wet Tropics of Australia. A vadose zone monitoring system was set up to enable the characterization of pesticide (non-PS II herbicides) migration with respect to pesticide application, sugarcane growing period, and, finally, rainwater infiltration.
Benjamin Guillaume, Hanane Aroui Boukbida, Gerben Bakker, Andrzej Bieganowski, Yves Brostaux, Wim Cornelis, Wolfgang Durner, Christian Hartmann, Bo V. Iversen, Mathieu Javaux, Joachim Ingwersen, Krzysztof Lamorski, Axel Lamparter, András Makó, Ana María Mingot Soriano, Ingmar Messing, Attila Nemes, Alexandre Pomes-Bordedebat, Martine van der Ploeg, Tobias Karl David Weber, Lutz Weihermüller, Joost Wellens, and Aurore Degré
SOIL, 9, 365–379, https://doi.org/10.5194/soil-9-365-2023, https://doi.org/10.5194/soil-9-365-2023, 2023
Short summary
Short summary
Measurements of soil water retention properties play an important role in a variety of societal issues that depend on soil water conditions. However, there is little concern about the consistency of these measurements between laboratories. We conducted an interlaboratory comparison to assess the reproducibility of the measurement of the soil water retention curve. Results highlight the need to harmonize and standardize procedures to improve the description of unsaturated processes in soils.
Sihui Yan, Tibin Zhang, Binbin Zhang, Tonggang Zhang, Yu Cheng, Chun Wang, Min Luo, Hao Feng, and Kadambot H. M. Siddique
SOIL, 9, 339–349, https://doi.org/10.5194/soil-9-339-2023, https://doi.org/10.5194/soil-9-339-2023, 2023
Short summary
Short summary
The paper provides some new information about the effects of different relative concentrations of K+ to Na+ at constant electrical conductivity (EC) on soil hydraulic conductivity, salt-leaching efficiency and pore size distribution. In addition to Ca2+ and Mg2+, K+ plays an important role in soil structure stability. These findings can provide a scientific basis and technical support for the sustainable use of saline water and control of soil quality deterioration.
Laura L. de Sosa, María José Martín-Palomo, Pedro Castro-Valdecantos, and Engracia Madejón
SOIL, 9, 325–338, https://doi.org/10.5194/soil-9-325-2023, https://doi.org/10.5194/soil-9-325-2023, 2023
Short summary
Short summary
Olive groves are subject to enormous pressure to meet the social demands of production. In this work, we assess how an additional source of organic carbon and an irrigation control can somehow palliate the effect of olive grove intensification by comparing olive groves under different management and tree densities. We observed that a reduced irrigation regimen in combination with compost from the oil industry's own waste was able to enhance soil fertility under a water conservation strategy.
Guillaume Blanchy, Lukas Albrecht, John Koestel, and Sarah Garré
SOIL, 9, 155–168, https://doi.org/10.5194/soil-9-155-2023, https://doi.org/10.5194/soil-9-155-2023, 2023
Short summary
Short summary
Adapting agricultural practices to future climatic conditions requires us to synthesize the effects of management practices on soil properties with respect to local soil and climate. We showcase different automated text-processing methods to identify topics, extract metadata for building a database and summarize findings from publication abstracts. While human intervention remains essential, these methods show great potential to support evidence synthesis from large numbers of publications.
Guillaume Blanchy, Gilberto Bragato, Claudia Di Bene, Nicholas Jarvis, Mats Larsbo, Katharina Meurer, and Sarah Garré
SOIL, 9, 1–20, https://doi.org/10.5194/soil-9-1-2023, https://doi.org/10.5194/soil-9-1-2023, 2023
Short summary
Short summary
European agriculture is vulnerable to weather extremes. Nevertheless, by choosing well how to manage their land, farmers can protect themselves against drought and peak rains. More than a thousand observations across Europe show that it is important to keep the soil covered with living plants, even in winter. A focus on a general reduction of traffic on agricultural land is more important than reducing tillage. Organic material needs to remain or be added on the field as much as possible.
Alaitz Aldaz-Lusarreta, Rafael Giménez, Miguel A. Campo-Bescós, Luis M. Arregui, and Iñigo Virto
SOIL, 8, 655–671, https://doi.org/10.5194/soil-8-655-2022, https://doi.org/10.5194/soil-8-655-2022, 2022
Short summary
Short summary
This study shows how an innovative soil and crop management including no-tillage, cover crops and organic amendments is able to improve the topsoil physical quality compared to conventional management for rainfed cereal cropping in a semi-arid Mediterranean area in Navarre (Spain).
Rosolino Ingraffia, Gaetano Amato, Vincenzo Bagarello, Francesco G. Carollo, Dario Giambalvo, Massimo Iovino, Anika Lehmann, Matthias C. Rillig, and Alfonso S. Frenda
SOIL, 8, 421–435, https://doi.org/10.5194/soil-8-421-2022, https://doi.org/10.5194/soil-8-421-2022, 2022
Short summary
Short summary
The presence of microplastics in soil environments has received increased attention, but little research exists on the effects on different soil types and soil water erosion. We performed two experiments on the effects of polyester microplastic fiber on soil properties, soil aggregation, and soil erosion in three agricultural soils. Results showed that polyester microplastic fibers affect the formation of new aggregates and soil erosion and that such effects are strongly dependent on soil type.
Vanesa García-Gamero, Tom Vanwalleghem, Adolfo Peña, Andrea Román-Sánchez, and Peter A. Finke
SOIL, 8, 319–335, https://doi.org/10.5194/soil-8-319-2022, https://doi.org/10.5194/soil-8-319-2022, 2022
Short summary
Short summary
Short-scale soil variability has received much less attention than at the regional scale. The chemical depletion fraction (CDF), a proxy for chemical weathering, was measured and simulated with SoilGen along two opposite slopes in southern Spain. The results show that differences in CDF could not be explained by topography alone but by hydrological parameters. The model sensitivity test shows the maximum CDF value for intermediate precipitation has similar findings to other soil properties.
Samuel N. Araya, Jeffrey P. Mitchell, Jan W. Hopmans, and Teamrat A. Ghezzehei
SOIL, 8, 177–198, https://doi.org/10.5194/soil-8-177-2022, https://doi.org/10.5194/soil-8-177-2022, 2022
Short summary
Short summary
We studied the long-term effects of no-till (NT) and winter cover cropping (CC) practices on soil hydraulic properties. We measured soil water retention and conductivity and also conducted numerical simulations to compare soil water storage abilities under the different systems. Soils under NT and CC practices had improved soil structure. Conservation agriculture practices showed marginal improvement with respect to infiltration rates and water storage.
Mahyar Naseri, Sascha C. Iden, and Wolfgang Durner
SOIL, 8, 99–112, https://doi.org/10.5194/soil-8-99-2022, https://doi.org/10.5194/soil-8-99-2022, 2022
Short summary
Short summary
We simulated stony soils with low to high volumes of rock fragments in 3D using evaporation and multistep unit-gradient experiments. Hydraulic properties of virtual stony soils were identified under a wide range of soil matric potentials. The developed models for scaling the hydraulic conductivity of stony soils were evaluated under unsaturated flow conditions.
Danielle L. Gelardi, Irfan H. Ainuddin, Devin A. Rippner, Janis E. Patiño, Majdi Abou Najm, and Sanjai J. Parikh
SOIL, 7, 811–825, https://doi.org/10.5194/soil-7-811-2021, https://doi.org/10.5194/soil-7-811-2021, 2021
Short summary
Short summary
Biochar is purported to alter soil water dynamics and reduce nutrient loss when added to soils, though the mechanisms are often unexplored. We studied the ability of seven biochars to alter the soil chemical and physical environment. The flow of ammonium through biochar-amended soil was determined to be controlled through chemical affinity, and nitrate, to a lesser extent, through physical entrapment. These data will assist land managers in choosing biochars for specific agricultural outcomes.
Frederic Leuther and Steffen Schlüter
SOIL, 7, 179–191, https://doi.org/10.5194/soil-7-179-2021, https://doi.org/10.5194/soil-7-179-2021, 2021
Short summary
Short summary
Freezing and thawing cycles are an important agent of soil structural transformation during the winter season in the mid-latitudes. This study shows that it promotes a well-connected pore system, fragments dense soil clods, and, hence, increases the unsaturated conductivity by a factor of 3. The results are important for predicting the structure formation and hydraulic properties of soils, with the prospect of milder winters due to climate change, and for farmers preparing the seedbed in spring.
Cosimo Brogi, Johan A. Huisman, Lutz Weihermüller, Michael Herbst, and Harry Vereecken
SOIL, 7, 125–143, https://doi.org/10.5194/soil-7-125-2021, https://doi.org/10.5194/soil-7-125-2021, 2021
Short summary
Short summary
There is a need in agriculture for detailed soil maps that carry quantitative information. Geophysics-based soil maps have the potential to deliver such products, but their added value has not been fully investigated yet. In this study, we compare the use of a geophysics-based soil map with the use of two commonly available maps as input for crop growth simulations. The geophysics-based product results in better simulations, with improvements that depend on precipitation, soil, and crop type.
Jaqueline Stenfert Kroese, John N. Quinton, Suzanne R. Jacobs, Lutz Breuer, and Mariana C. Rufino
SOIL, 7, 53–70, https://doi.org/10.5194/soil-7-53-2021, https://doi.org/10.5194/soil-7-53-2021, 2021
Short summary
Short summary
Particulate macronutrient concentrations were up to 3-fold higher in a natural forest catchment compared to fertilized agricultural catchments. Although the particulate macronutrient concentrations were lower in the smallholder agriculture catchment, because of higher sediment loads from that catchment, the total particulate macronutrient loads were higher. Land management practices should be focused on agricultural land to reduce the loss of soil carbon and nutrients to the stream.
Yongjiu Dai, Wei Shangguan, Nan Wei, Qinchuan Xin, Hua Yuan, Shupeng Zhang, Shaofeng Liu, Xingjie Lu, Dagang Wang, and Fapeng Yan
SOIL, 5, 137–158, https://doi.org/10.5194/soil-5-137-2019, https://doi.org/10.5194/soil-5-137-2019, 2019
Short summary
Short summary
Soil data are widely used in various Earth science fields. We reviewed soil property maps for Earth system models, which can also offer insights to soil data developers and users. Old soil datasets are often based on limited observations and have various uncertainties. Updated and comprehensive soil data are made available to the public and can benefit related research. Good-quality soil data are identified and suggestions on how to improve and use them are provided.
Reuven B. Simhayov, Tobias K. D. Weber, and Jonathan S. Price
SOIL, 4, 63–81, https://doi.org/10.5194/soil-4-63-2018, https://doi.org/10.5194/soil-4-63-2018, 2018
Short summary
Short summary
Lab experiments were performed to understand solute transport in peat from an experimental fen. Transport was analyzed under saturated and unsaturated conditions using NaCl (salt). We tested the applicability of a physical-based model which finds a wide consensus vs. alternative models. Evidence indicated that Cl transport can be explained using a simple transport model. Hence, use of the physical transport mechanism in peat should be evidence based and not automatically assumed.
Sami Touil, Aurore Degre, and Mohamed Nacer Chabaca
SOIL, 2, 647–657, https://doi.org/10.5194/soil-2-647-2016, https://doi.org/10.5194/soil-2-647-2016, 2016
M. J. Kirkby
SOIL, 2, 631–645, https://doi.org/10.5194/soil-2-631-2016, https://doi.org/10.5194/soil-2-631-2016, 2016
Short summary
Short summary
The review paper surveys the state of the art with respect to water in the critical zone, taking a broad view that concentrates on the global range of natural soils, identifying some areas of currently active research.
Jean-Christophe Calvet, Noureddine Fritz, Christine Berne, Bruno Piguet, William Maurel, and Catherine Meurey
SOIL, 2, 615–629, https://doi.org/10.5194/soil-2-615-2016, https://doi.org/10.5194/soil-2-615-2016, 2016
Short summary
Short summary
Soil thermal conductivity in wet conditions can be retrieved together with the soil quartz content using a reverse modelling technique based on sub-hourly soil temperature observations at three depths below the soil surface.
A pedotransfer function is proposed for quartz, for the considered region in France.
Gravels have a major impact on soil thermal conductivity, and omitting the soil organic matter information tends to enhance this impact.
Assefa D. Zegeye, Eddy J. Langendoen, Cathelijne R. Stoof, Seifu A. Tilahun, Dessalegn C. Dagnew, Fasikaw A. Zimale, Christian D. Guzman, Birru Yitaferu, and Tammo S. Steenhuis
SOIL, 2, 443–458, https://doi.org/10.5194/soil-2-443-2016, https://doi.org/10.5194/soil-2-443-2016, 2016
Short summary
Short summary
Gully erosion rehabilitation programs in the humid Ethiopian highlands have not been effective, because the gully formation process and its controlling factors are not well understood. In this manuscript, the severity of gully erosion (onsite and offsite effect), the most controlling factors (e.g., ground water elevation) for gully formation, and their arresting mechanisms are discussed in detail. Most data were collected from the detailed measurements of 13 representative gullies.
Eléonore Beckers, Mathieu Pichault, Wanwisa Pansak, Aurore Degré, and Sarah Garré
SOIL, 2, 421–431, https://doi.org/10.5194/soil-2-421-2016, https://doi.org/10.5194/soil-2-421-2016, 2016
Short summary
Short summary
Determining the behaviour of stony soils with respect to infiltration and storage of water is of major importance, since stony soils are widespread across the globe. The most common procedure to overcome this difficulty is to describe the hydraulic characteristics of a stony soils in terms of the fine fraction of soil corrected for the volume of stones present. Our study suggests that considering this hypothesis might be ill-founded, especially for saturated soils.
Mirjam J. D. Hack-ten Broeke, Joop G. Kroes, Ruud P. Bartholomeus, Jos C. van Dam, Allard J. W. de Wit, Iwan Supit, Dennis J. J. Walvoort, P. Jan T. van Bakel, and Rob Ruijtenberg
SOIL, 2, 391–402, https://doi.org/10.5194/soil-2-391-2016, https://doi.org/10.5194/soil-2-391-2016, 2016
Short summary
Short summary
For calculating the effects of hydrological measures on agricultural production in the Netherlands a new comprehensive and climate proof method is being developed: WaterVision Agriculture (in Dutch: Waterwijzer Landbouw). End users have asked for a method that considers current and future climate, which can quantify the differences between years and also the effects of extreme weather events.
Mamaru A. Moges, Fasikaw A. Zemale, Muluken L. Alemu, Getaneh K. Ayele, Dessalegn C. Dagnew, Seifu A. Tilahun, and Tammo S. Steenhuis
SOIL, 2, 337–349, https://doi.org/10.5194/soil-2-337-2016, https://doi.org/10.5194/soil-2-337-2016, 2016
Short summary
Short summary
In tropical monsoonal Africa, sediment concentration data in rivers are lacking. Using occasional historically observed sediment loads, we developed a simple method for prediction sediment concentrations. Unlike previous methods, our techniques take into account that sediment concentrations decrease with the progression of the monsoon rains. With more testing, the developed method could improve sediment predictions in monsoonal climates.
Didier Michot, Zahra Thomas, and Issifou Adam
SOIL, 2, 241–255, https://doi.org/10.5194/soil-2-241-2016, https://doi.org/10.5194/soil-2-241-2016, 2016
Short summary
Short summary
This study focuses on temporal and spatial soil moisture changes along a toposequence crossed by a hedgerow, using ERT and occasional measurements. We found that the relationship between ER and soil moisture had two behaviors depending on soil heterogeneities. ER values were consistent with occasional measurements outside the root zone. The shift in this relationship was controlled by root system density and a particular topographical context in the proximity of the hedgerow.
Maha Deeb, Michel Grimaldi, Thomas Z. Lerch, Anne Pando, Agnès Gigon, and Manuel Blouin
SOIL, 2, 163–174, https://doi.org/10.5194/soil-2-163-2016, https://doi.org/10.5194/soil-2-163-2016, 2016
Short summary
Short summary
This paper addresses the evolution of engineered soils (i.e., Technosols). The formation of such soils begins with proportional mixing of urban waste. Technosols are particularly well suited for investigating the role of organisms in soil function development. This is because they provide a controlled environment where the soil development can be monitored over time.
Organisms and their interaction with parent materials positively affect the structure of Technosols.
Z. Hazbavi and S. H. R. Sadeghi
SOIL, 2, 71–78, https://doi.org/10.5194/soil-2-71-2016, https://doi.org/10.5194/soil-2-71-2016, 2016
Short summary
Short summary
This study evaluates the influences of vinasse waste of sugarcane industries on runoff and soil loss at small plot scale. Laboratory results indicated that the vinasse at different levels could not significantly (P > 0.05) decrease the runoff amounts and soil loss rates in the study plots compared to untreated plots. The average amounts of minimum runoff volume and soil loss were about 3985 mL and 46 g for the study plot at a 1 L m−2 level of vinasse application.
R. M. Nagare, P. Bhattacharya, J. Khanna, and R. A. Schincariol
SOIL, 1, 103–116, https://doi.org/10.5194/soil-1-103-2015, https://doi.org/10.5194/soil-1-103-2015, 2015
Cited articles
Albright, W. H., Benson, C. H., Gee, G. W., Roesler, A. C., Abichou, T.,
Apiwantragoon, P., Lyles, B. F., and Rock, S. A.: Field water balance of
landfill final covers, J. Environ. Qual., 33, 2317–2332,
2004.
Arnold, S., Lechner, A., and Baumgartl, T.: Merging modelling and
experimental approaches to advance ecohydrological system understanding.,
in: Revisiting experimental catchment studies in forest hydrology, edited
by: Webb, A. A., Bonell, M., Bren, L., Lane, P. N. J., McGuire, D., Neary,
D. G., Nettles, J., Scott, D. F., Stednick, J. D., and Wang, Y., IAHS
Publications, 117–124, 2012a.
Arnold, S., Thornton, C., and Baumgartl, T.: Ecohydrological feedback as a
land restoration tool in the semi-arid Brigalow Belt, QLD, Australia,
Agriculture, Ecosyst. Environ., 163, 61–71, https://doi.org/10.1016/j.agee.2012.05.020, 2012b.
Arnold, S., Audet, P., Doley, D., and Baumgartl, T.: Hydropedology and
Ecohydrology of the Brigalow Belt, Australia: Opportunities for Ecosystem
Rehabilitation in Semiarid Environments, gsvadzone, 12,
https://doi.org/10.2136/vzj2013.03.0052, 2013.
Arnold, S., Attinger, S., Frank, K., Baxter, P., Possingham, H., and
Hildebrandt, A.: Ecosystem management along ephemeral rivers: Trading off
socio-economic water supply and vegetation conservation under flood regime
uncertainty, River Res. Appl., https://doi.org/10.1002/rra.2853,
2014.
Arnold, S., Schneider, A., Doley, D., and Baumgartl, T.: The limited impact
of vegetation on the water balance of mine waste cover systems in semi-arid
Australia, Ecohydrology, 8, 355–367, https://doi.org/10.1002/eco.1485, 2015.
Aronson, J., Floret, C., Le Floc'h, E., Ovalle, C., and Pontanier, R.:
Restoration and Rehabilitation of Degraded Ecosystems in Arid and Semi-Arid
Lands. I. A View from the South, Restor. Ecol., 1, 8–17,
https://doi.org/10.1111/j.1526-100X.1993.tb00004.x, 1993.
Audet, P., Gravina, A., Glenn, V., McKenna, P., Vickers, H., Gillespie, M.,
and Mulligan, D.: Structure of vegetation development on rehabilitated North
Stradbroke Island: above/belowground feedback may facilitate alternative
ecological outcomes, Ecol. Process, 2, p. 20, 2013.
Bargués Tobella, A., Reese, H., Almaw, A., Bayala, J., Malmer, A.,
Laudon, H., and Ilstedt, U.: The effect of trees on preferential flow and
soil infiltrability in an agroforestry parkland in semiarid Burkina Faso,
Water Resour. Res., 50, 3342–3354, https://doi.org/10.1002/2013wr015197, 2014.
Bengough, A. G., Bransby, M. F., Hans, J., McKenna, S. J., Roberts, T. J.,
and Valentine, T. A.: Root responses to soil physical conditions; growth
dynamics from field to cell, J. Exp. Bot., 57, 437–447,
https://doi.org/10.1093/jxb/erj003, 2006.
Bengough, A. G., McKenzie, B. M., Hallett, P. D., and Valentine, T. A.: Root
elongation, water stress, and mechanical impedance: a review of limiting
stresses and beneficial root tip traits, J. Exp. Bot., 62,
59–68, https://doi.org/10.1093/jxb/erq350, 2011.
Benson, C. H.: Liners and covers for waste containment, 4th Kansai
International Geotechnical Forum, Japan, 1–40, 2000.
Blouin, M., Hodson, M. E., Delgado, E. A., Baker, G., Brussaard, L., Butt,
K. R., Dai, J., Dendooven, L., Peres, G., Tondoh, J. E., Cluzeau, D., and
Brun, J. J.: A review of earthworm impact on soil function and ecosystem
services, Eur. J. Soil Sci., 64, 161–182, 2013.
Blüthgen, N. and Feldhaar, H.: Food and shelter: How resources
influence ant ecology, in: Ant ecology, edited by: Lach, L., Parr, C., and
Abbott, K., Oxford University Press, Oxford, 2009.
Bottinelli, N., Jouquet, P., Capowiez, Y., Podwojewski, P., Grimaldi, M.,
and Peng, X.: Why is the influence of soil macrofauna on soil structure only
considered by soil ecologists?, Soil Till. Res., 146,
118–124, https://doi.org/10.1016/j.still.2014.01.007, 2015.
Brooks, R. H. and Corey, A. T.: Hydraulic properties of porous media,
Hydrol. Paper No. 3, Colorado State University, Fort Collins, CO, 1964.
Cammeraat, E. L. H. and Risch, A. C.: The impact of ants on mineral soil
properties and processes at different spatial scales, J. Appl.
Entomol., 132, 285–294, https://doi.org/10.1111/j.1439-0418.2008.01281.x, 2008.
Cammeraat, E. L. H., Willott, S. J., Compton, S. G., and Incoll, L. D.: The
effects of ants' nests on the physical, chemical and hydrological properties
of a rangeland soil in semi-arid Spain, Geoderma, 105, 1–20, https://doi.org/10.1016/S0016-7061(01)00085-4, 2002.
Carminati, A., Schneider, C. L., Moradi, A. B., Zarebanadkouki, M.,
Vetterlein, D., Vogel, H.-J., Hildebrandt, A., Weller, U., Schüler, L.,
and Oswald, S. E.: How the Rhizosphere May Favor Water Availability to Roots,
gsvadzone, 10, 988–998, https://doi.org/10.2136/vzj2010.0113, 2011.
Cerdà, A. and Jurgensen, M. F.: The influence of ants on soil and water
losses from an orange orchard in eastern Spain, J. Appl.
Entomol., 132, 306–314, https://doi.org/10.1111/j.1439-0418.2008.01267.x, 2008.
Cerdà, A., Jurgensen, M. F., and Bodi, M. B.: Effects of ants on water and
soil losses from organically-managed citrus orchards in eastern Spain,
Biologia, 3, 527–531, https://doi.org/10.2478/s11756-009-0114-7, 2009.
Czarnes, S., Hallett, P. D., Bengough, A. G., and Young, I. M.: Root- and
microbial-derived mucilages affect soil structure and water transport,
Eur. J. Soil Sci., 51, 435–443,
https://doi.org/10.1046/j.1365-2389.2000.00327.x, 2000.
De Bruyn, L. and Conacher, A.: The role of termites and ants in soil
modification – a review, Soil Res., 28, 55–93, https://doi.org/10.1071/SR9900055, 1990.
De Bruyn, L. and Conacher, A.: The bioturbation activity of ants in
agricultural and naturally vegetated habitats in semiarid environments, Soil
Res., 32, 555–570, https://doi.org/10.1071/SR9940555,
1994.
Doley, D. and Audet, P.: Adopting novel ecosystems as suitable
rehabilitation alternatives for former mine sites, Ecol. Process., 2,
https://doi.org/10.1186/2192-1709-2-33,
2013.
Dostál, P., Březnová, M., Kozlíčková, V., Herben,
T., and Kovář, P.: Ant-induced soil modification and its effect on
plant below-ground biomass, Pedobiologia, 49, 127–137, https://doi.org/10.1016/j.pedobi.2004.09.004, 2005.
Durner, W.: Hydraulic conductivity estimation for soils with heterogeneous
pore structure, Water Resour. Res., 30, 211–223, https://doi.org/10.1029/93wr02676,
1994.
Edwards, W. M., Shipitalo, M. J., Owens, L. B., and Norton, L. D.: Effect of
Lumbricus terrestris L. burrows on hydrology of continuous no-till corn
fields, Geoderma, 46, 73–84, https://doi.org/10.1016/0016-7061(90)90008-W, 1990.
Eldridge, D.: Effect of ants on sandy soils in semi-arid eastern Australia
–
Local distribution of nest entrances and their effect on infiltration of
water, Soil Res., 31, 509–518, https://doi.org/10.1071/SR9930509, 1993.
Eldridge, D. J.: Nests of ants and termites influence infiltration in a
semiarid woodland, Pedobiologia, 38, 481–492, 1994.
Erskine, P. and Fletcher, A.: Novel ecosystems created by coal mines in
central Queensland's Bowen Basin, Ecol. Process., 2, 965–981, 2013.
Folgarait, P.: Ant biodiversity and its relationship to ecosystem
functioning: a review, Biodivers. Conserv., 7, 1221–1244,
https://doi.org/10.1023/a:1008891901953, 1998.
Fourie, A. and Tibbett, M.: Post-mining landforms – engineering a
biological system, Mine Closure Santiago, Chile, 2007.
Frouz, J. and Kuraz, V.: Soil fauna and soil physical properties, in: Soil
Biota and Ecosystem Development in Post Mining Sites, edited by: Frouz, J.,
CRC Press, Boca Raton, 265–278, 2013.
Frouz, J., Elhottová, D., Kuráž, V., and Šourková, M.:
Effects of soil macrofauna on other soil biota and soil formation in
reclaimed and unreclaimed post mining sites: Results of a field microcosm
experiment, Appl. Soil Ecol., 33, 308–320,
https://doi.org/10.1016/j.apsoil.2005.11.001, 2006.
Gould, S. F.: Comparison of Post-mining Rehabilitation with Reference
Ecosystems in Monsoonal Eucalypt Woodlands, Northern Australia, Restoration
Ecol., 20, 250–259, https://doi.org/10.1111/j.1526-100X.2010.00757.x, 2012.
Gwenzi, W., Hinz, C., Bleby, T. M., and Veneklaas, E. J.: Transpiration and
water relations of evergreen shrub species on an artificial landform for
mine waste storage versus an adjacent natural site in semi-arid Western
Australia, Ecohydrology, 7, 965–981, https://doi.org/10.1002/eco.1422, 2013.
Hauser, V., Weand, B., and Gill, M.: Natural Covers for Landfills and Buried
Waste, J. Environ. Eng., 127, 768–775,
https://doi.org/10.1061/(asce)0733-9372(2001)127:9(768), 2001.
Hinsinger, P., Bengough, A. G., Vetterlein, D., and Young, I.: Rhizosphere:
biophysics, biogeochemistry and ecological relevance, Plant Soil, 321,
117–152, https://doi.org/10.1007/s11104-008-9885-9, 2009.
Hobbs, R. J., Arico, S., Aronson, J., Baron, J. S., Bridgewater, P., Cramer,
V. A., Epstein, P. R., Ewel, J. J., Klink, C. A., Lugo, A. E., Norton, D.,
Ojima, D., Richardson, D. M., Sanderson, E. W., Valladares, F., Vilà,
M., Zamora, R., and Zobel, M.: Novel ecosystems: theoretical and management
aspects of the new ecological world order, Global Ecol. Biogeogr.,
15, 1–7, https://doi.org/10.1111/j.1466-822X.2006.00212.x, 2006.
Hölldobler, B. and Wilson, E.: The Ants, Harvard University Press,
Cambridge, 1990.
Javaux, M., Schröder, T., Vanderborght, J., and Vereecken, H.: Use of a
Three-Dimensional Detailed Modeling Approach for Predicting Root Water
Uptake, Vadose Zone J., 7, 1079–1088, https://doi.org/10.2136/vzj2007.0115, 2008.
Jones, C. G., Lawton, J. H., and Shachak, M.: Organisms as ecosystem
engineers, Oikos, 69, 373–386, 1994.
Joschko, M., Diestel, H., and Larink, O.: Assessment of earthworm burrowing
efficiency in compacted soil with a combination of morphological and soil
physical measurements, Biol. Fert. Soils, 8, 191–196, https://doi.org/10.1007/BF00266478,
1989.
Joschko, M., Söchtig, W., and Larink, O.: Functional relationship
between earthworm burrows and soil water movement in column experiments,
Soil Biol. Biochem., 24, 1545–1547,
https://doi.org/10.1016/0038-0717(92)90148-Q, 1992.
Jouquet, P., Blanchart, E., and Capowiez, Y.: Utilization of earthworms and
termites for the restoration of ecosystem functioning, Appl. Soil Ecol.,
73, 34–40, 2014.
Kosugi, K. I.: Lognormal Distribution Model for Unsaturated Soil Hydraulic
Properties, Water Resour. Res., 32, 2697–2703, https://doi.org/10.1029/96wr01776,
1996.
Lavelle, P., Decaëns, T., Aubert, M., Barot, S., Blouin, M., Bureau, F.,
Margerie, P., Mora, P., and Rossi, J. P.: Soil invertebrates and ecosystem
services, Eur. J. Soil Biol., 42, S3–S15,
https://doi.org/10.1016/j.ejsobi.2006.10.002, 2006.
Lee, K. and Foster, R.: Soil fauna and soil structure, Soil Res., 29,
745–775, https://doi.org/10.1071/SR9910745, 1991.
Léonard, J., Perrier, E., and Rajot, J. L.: Biological macropores effect
on runoff and infiltration: a combined experimental and modelling approach,
Agriculture, Ecosyst. Environ., 104, 277–285, https://doi.org/10.1016/j.agee.2003.11.015, 2004.
Levin, S. and Hammod, M.: Application of PVC in a “Top Cap” application in:
Geosynthetic Testing for Waste Containment Applications, edited by: Robert,
M., American Society for Testing and Materials, Philadelphia, PA, 1990.
Lottermoser, B.: Mine Wastes: Characterization, Treatment and Environmental
Impacts, 3rd Edn., Springer, Berlin Heidelberg, 400 pp., 2010.
Manassero, M., Dominijanni, A., Foti, S., and Musso, G.: Coupled phenomena
in environmental geotechnics, CRC Press, 2013.
Miller, C., Franklin, J., and Buckley, D.: Effects of soil amendment
treatments on American chestnut performance and physiology on an East
Tennessee surface mine, National Meeting of the American Society of Mining
and Reclamation, Bismarck, ND, 2011.
Mitsch, W. J. and Jorgensen, S. E.: Introduction to Ecological Engineering,
in: Ecological Engineering: An Introduction to Ecotechnology, edited by:
Mitsch, W. J. and Jorgensen, S. E., John Wiley & Sons, New York, 3–12,
1989.
Navarro, J. G. and Jaffe, K.: On the Adaptive Value of Nest Features in the
Grass-Cutting Ant Acromyrmex landolti, Biotropica, 17, 347–348,
https://doi.org/10.2307/2388602, 1985.
Ngugi, M. R., Neldner, V. J., Doley, D., Kusy, B., Moore, D., and Richter,
C.: Soil moisture dynamics and restoration of self-sustaining native
vegetation ecosystem on an open-cut coal mine, Restor. Ecol., 23,
615–624, https://doi.org/10.1111/rec.12221, 2015.
O'Kane, M. and Wels, C.: Mine waste cover system design – linking predicted
performance to groundwater and surface water impacts, 6th International
Conference on Acid Rock Drainage (ICARD), Cairns, 2003.
O'Kane Consultants Inc.: Evaluation of the long-term performance of dry
cover systems – Phase 2 Final Report, 2003.
Oo, A. N., Iwai, C. B., and Saenjan, P.: Soil properties and maize growth in
saline and nonsaline soils using cassava-industrial waste compost and
vermicompost with or without earthworms, Land Degrad. Dev.,
26, 300–310, https://doi.org/10.1002/ldr.2208, 2013.
Othman, M., Benson, C., Chamberlain, E., and Zimmie, T.: Laboratory testing
to evaluate changes in hydraulic conductivity caused by freeze thaw: state
of the art, in: Hydraulic Conductivity and Waste Containment Transport in
Soils, edited by: Trautwein, S. and Daniel, D., 227–254, 1994.
Pallavicini, Y., Alday, J. G., and Martínez-Ruiz, C.: Factors affecting
herbaceous richness and biomass accumulation patterns of reclaimed coal
mines, Land Degrad. Dev., 26, 211–217, https://doi.org/10.1002/ldr.2198,
2015.
Peeters, C. and Molet, M.: Colonial reproduction and life histories, in:
Ant ecology, edited by: Lach, L., Parr, C., and Abbott, K., Oxford
University Press, Oxford, 2009.
Perring, M., Audet, P., and Lamb, D.: Novel ecosystems in ecological
restoration and rehabilitation: Innovative planning or lowering the bar?,
Ecol. Process., 3,
https://doi.org/10.1186/2192-1709-3-8, 2014.
Potter, K. N., Carter, F. S., and Doll, E. C.: Physical properties of
constructed and undisturbed soils, Soil Sci. Soc. Am. J.,
52, 1435–1438, 1988.
Ranatunga, K., Nation, E. R., and Barratt, D. G.: Review of soil water
models and their applications in Australia, Environ. Model.
Softw., 23, 1182–1206, https://doi.org/10.1016/j.envsoft.2008.02.003, 2008.
Richards, L. A.: Capillary conduction of liquids through porous mediums,
J. Appl. Phys., 1, 318–333, https://doi.org/10.1063/1.1745010, 1931.
Rives, C., Bajwa, M., Liberta, A., and Miller, R.: Effect of topsoil storage
during surface mining on the viability of VA Mycorrhiza, Soil Sci., 129,
253–257, 1980.
Rock, S.: Evapotranspiration covers for landfills, in: Application of
Phytotechnologies for Cleanup of Industrial, Agricultural, and Wastewater
Contamination, edited by: Kulakow, P., and Pidlisnyuk, V., Springer,
Dordrecht, 189–198, 2010.
Salt, M., Lightbody, P., Stuart, R., Albright, W., and Yeates, R.:
Guidelines for the assessment, design, construction and maintenance of
phytocaps as final covers for landfills, United States Environmental Protection Agency
report number, REF No. 20100260RA3F, 2011.
Sarr, M., Agbogba, C., Russell-Smith, A., and Masse, D.: Effects of soil
faunal activity and woody shrubs on water infiltration rates in a semi-arid
fallow of Senegal, Appl. Soil Ecol., 16, 283–290, https://doi.org/10.1016/S0929-1393(00)00126-8, 2001.
Schröder, T., Javaux, M., Vanderborght, J., Körfgen, B., and
Vereecken, H.: Effect of Local Soil Hydraulic Conductivity Drop Using a
Three-Dimensional Root Water Uptake Model, Vadose Zone J., 7, 1089–1098,
https://doi.org/10.2136/vzj2007.0114, 2008.
Seastedt, T. R., Hobbs, R. J., and Suding, K. N.: Management of novel
ecosystems: are novel approaches required?, Front. Ecol.
Environ., 6, 547–553, https://doi.org/10.1890/070046, 2008.
Smith, P., Cotrufo, M. F., Rumpel, C., Paustian, K., Kuikman, P. J., Elliott,
J. A., McDowell, R., Griffiths, R. I., Asakawa, S., Bustamante, M., House, J.
I., Sobocká, J., Harper, R., Pan, G., West, P. C., Gerber, J. S., Clark, J.
M., Adhya, T., Scholes, R. J., and Scholes, M. C.: Biogeochemical cycles and
biodiversity as key drivers of ecosystem services provided by soils, SOIL, 1,
665–685, https://doi.org/10.5194/soil-1-665-2015, 2015.
Taylor, G., Spain, A., Nefiodovas, A., Timms, G., Kuznetsov, V., and Bennet,
J.: Determination of the reasons for deterioration of the Rum Jungle waste
rock cover, Brisbane, Australian Centre for Mining Environmental Research,
2003.
van Genuchten, M. T.: A Closed-form Equation for Predicting the Hydraulic
Conductivity of Unsaturated Soils, Soil Sci. Soc. Am. J., 44, 892–898,
https://doi.org/10.2136/sssaj1980.03615995004400050002x, 1980.
Venkatraman, K. and Ashwath, N.: Field performance of a phytocap at Lakes
Creek landfill, Rockhampton, Australia, Management of Environmental Quality:
An International Journal, 21, 237–252, https://doi.org/10.1108/14777831011025571, 2010.
Vogel, T., Cislerova, M., and Hopmans, J. W.: Porous Media With Linearly
Variable Hydraulic Properties, Water Resour. Res., 27, 2735–2741,
https://doi.org/10.1029/91wr01676, 1991.
Wang, D., McSweeney, K., Lowery, B., and Norman, J. M.: Nest structure of
ant Lasius neoniger Emery and its implications to soil modification,
Geoderma, 66, 259–272, https://doi.org/10.1016/0016-7061(94)00082-L, 1995.
Williams, E.: Ant community response to management practices on
rehabilitated mine sites, Doctorate of Philosophy Thesis, The University of
Queensland, 2011.
Wilson, G. W., Williams, D. G., and Rykaart, E. M.: Integrity on Cover
Systems – An Update, 6th International Conference on Acid Rock Drainage,
Cairns, Australia, available at:
https://www.ausimm.com.au/publications/epublication.aspx?ID=1031 (last
access: 6 January 2016), 2003.
Short summary
Soil water models are used to design cover systems for containing hazardous waste following mining. Often, soil invertebrates are omitted from these calculations, despite playing a major role in soil development (nutrient cycling) and water pathways (seepage, infiltration). As such, soil invertebrates can influence the success of waste cover systems. We propose that experiments in glasshouses, laboratories and field trials on mined lands be undertaken to provide knowledge for these models.
Soil water models are used to design cover systems for containing hazardous waste following...