Articles | Volume 10, issue 2
https://doi.org/10.5194/soil-10-487-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/soil-10-487-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Investigating the synergistic potential of Si and biochar to immobilize Ni in a Ni-contaminated calcareous soil after Zea mays L. cultivation
Hamid Reza Boostani
CORRESPONDING AUTHOR
Department of Soil Science, College of Agriculture and Natural Resources of Darab, Shiraz University, Darab 74591, Iran
Ailsa G. Hardie
Department of Soil Science, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
Mahdi Najafi-Ghiri
Department of Soil Science, College of Agriculture and Natural Resources of Darab, Shiraz University, Darab 74591, Iran
Ehsan Bijanzadeh
Department of Agroecology, College of Agriculture and Natural Resources of Darab, Shiraz University, Darab 74591, Iran
Dariush Khalili
Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71454, Iran
Esmaeil Farrokhnejad
Department of Soil Science, College of Agriculture and Natural Resources of Darab, Shiraz University, Darab 74591, Iran
Related authors
Hamid Reza Boostani, Zahra Jalalpour, Ali Behpouri, Ehsan Bijanzadeh, and Mahdi Najafi-Ghiri
EGUsphere, https://doi.org/10.5194/egusphere-2025-2147, https://doi.org/10.5194/egusphere-2025-2147, 2025
Short summary
Short summary
This study demonstrates that municipal solid waste biochar (MB) is a highly effective amendment for Ni immobilization in contaminated calcareous soils, outperforming both individual and combined applications of compost and bentonite. These findings provide valuable insights for developing remediation strategies in Ni-contaminated agricultural soils, emphasizing the potential of biochar as a sustainable and efficient immobilization agent.
Hamid Reza Boostani, Zahra Jalalpour, Ali Behpouri, Ehsan Bijanzadeh, and Mahdi Najafi-Ghiri
EGUsphere, https://doi.org/10.5194/egusphere-2025-2147, https://doi.org/10.5194/egusphere-2025-2147, 2025
Short summary
Short summary
This study demonstrates that municipal solid waste biochar (MB) is a highly effective amendment for Ni immobilization in contaminated calcareous soils, outperforming both individual and combined applications of compost and bentonite. These findings provide valuable insights for developing remediation strategies in Ni-contaminated agricultural soils, emphasizing the potential of biochar as a sustainable and efficient immobilization agent.
Cited articles
Abdelhafez, A. A., Li, J., and Abbas, M. H.: Feasibility of biochar manufactured from organic wastes on the stabilization of heavy metals in a metal smelter contaminated soil, Chemosphere, 117, 66–71, 2014.
Adrees, M., Ali, S., Rizwan, M., Zia-ur-Rehman, M., Ibrahim, M., Abbas, F., Farid, M., Qayyum, M. F., and Irshad, M. K.: Mechanisms of silicon-mediated alleviation of heavy metal toxicity in plants: a review, Ecotox. Environ. Safe., 119, 186–197, 2015.
Ahmad, M., Rajapaksha, A. U., Lim, J. E., Zhang, M., Bolan, N., Mohan, D., Vithanage, M., Lee, S. S., and Ok, Y. S.: Biochar as a sorbent for contaminant management in soil and water: a review, Chemosphere, 99, 19–33, 2014.
Alam, M. S., Gorman-Lewis, D., Chen, N., Flynn, S. L., Ok, Y. S., Konhauser, K. O., and Alessi, D. S.: Thermodynamic analysis of nickel (II) and zinc (II) adsorption to biochar, Environ. Sci. Technol., 52, 6246–6255, 2018.
Anand, A., Gautam, S., and Ram, L. C.: Feedstock and pyrolysis conditions affect suitability of biochar for various sustainable energy and environmental applications, J. Anal. Appl. Pyrol., 170, 105881, https://doi.org/10.1016/j.jaap.2023.105881, 2023.
Ankita Rao, K., Nair, V., Divyashri, G., Krishna Murthy, T., Dey, P., Samrat, K., Chandraprabha, M., and Hari Krishna, R.: Role of Lignocellulosic Waste in Biochar Production for Adsorptive Removal of Pollutants from Wastewater, in: Advanced and Innovative Approaches of Environmental Biotechnology in Industrial Wastewater Treatment, Springer Nature Singapore, 221–238, https://doi.org/10.1007/978-981-99-2598-8, 2023.
Antoniadis, V., Levizou, E., Shaheen, S. M., Ok, Y. S., Sebastian, A., Baum, C., Prasad, M. N., Wenzel, W. W., and Rinklebe, J.: Trace elements in the soil-plant interface: Phytoavailability, translocation, and phytoremediation–A review, Earth-Sci. Rev., 171, 621–645, 2017.
Bandara, T., Franks, A., Xu, J., Bolan, N., Wang, H., and Tang, C.: Chemical and biological immobilization mechanisms of potentially toxic elements in biochar-amended soils, Crit. Rev. Env. Sci. Tec., 50, 903–978, 2020.
Belton, D. J., Deschaume, O., and Perry, C. C.: An overview of the fundamentals of the chemistry of silica with relevance to biosilicification and technological advances, FEBS J., 279, 1710–1720, 2012.
Bharti, K. P., Pradhan, A. K., Singh, M., Beura, K., Behera, S. K., and Paul, S. C.: Effect of mycorrhizal co-Inoculation with selected rhizobacteria on soil zinc dynamics, International Journal of Current Microbiology and Applied Sciences, 7, 1961–1970, 2018.
Bhat, J. A., Shivaraj, S., Singh, P., Navadagi, D. B., Tripathi, D. K., Dash, P. K., Solanke, A. U., Sonah, H., and Deshmukh, R.: Role of silicon in mitigation of heavy metal stresses in crop plants, Plants, 8, 71, https://doi.org/10.3390/plants8030071, 2019.
Boostani, H., Hardie, A., Najafi-Ghiri, M., and Khalili, D.: Investigation of cadmium immobilization in a contaminated calcareous soil as influenced by biochars and natural zeolite application, Int. J. Environ. Sci. Te., 15, 2433–2446, 2018.
Boostani, H. R., Najafi-Ghiri, M., and Mirsoleimani, A.: The effect of biochars application on reducing the toxic effects of nickel and growth indices of spinach (Spinacia oleracea L.) in a calcareous soil, Environ. Sci. Pollut. R., 26, 1751–1760, 2019a.
Boostani, H. R., Najafi-Ghiri, M., Amin, H., and Mirsoleimani, A.: Zinc desorption kinetics from some calcareous soils of orange (Citrus sinensis L.) orchards, southern Iran, Soil Sci. Plant Nutr., 65, 20–27, 2019b.
Boostani, H. R., Hardie, A. G., Najafi-Ghiri, M., and Khalili, D.: The effect of soil moisture regime and biochar application on lead (Pb) stabilization in a contaminated soil, Ecotox. Environ. Safe., 208, 111626, https://doi.org/10.1016/j.ecoenv.2020.111626, 2021.
Boostani, H. R., Hardie, A. G., and Najafi-Ghiri, M.: Lead stabilization in a polluted calcareous soil using cost-effective biochar and zeolite amendments after spinach cultivation, Pedosphere, 33, 321–330, 2023a.
Boostani, H. R., Hardie, A. G., and Najafi-Ghiri, M.: Chemical fractions, mobility and release kinetics of Cadmium in a light-textured calcareous soil as affected by crop residue biochars and Cd-contamination levels, Chem. Ecol., 39, 525–538, https://doi.org/10.1080/02757540.2023.2206807, 2023b.
Boostani, H. R., Hardie, A. G., Najafi-Ghiri, M., and Zare, M.: Chemical speciation and release kinetics of Ni in a Ni-contaminated calcareous soil as affected by organic waste biochars and soil moisture regime, Environ. Geochem. Hlth., 45, 199–213, 2023c.
Chatterjee, R., Sajjadi, B., Chen, W.-Y., Mattern, D. L., Hammer, N., Raman, V., and Dorris, A.: Effect of pyrolysis temperature on physicochemical properties and acoustic-based amination of biochar for efficient CO2 adsorption, Frontiers in Energy Research, 8, 85, https://doi.org/10.3389/fenrg.2020.00085, 2020.
Claoston, N., Samsuri, A., Ahmad Husni, M., and Mohd Amran, M.: Effects of pyrolysis temperature on the physicochemical properties of empty fruit bunch and rice husk biochars, Waste Manage. Res., 32, 331–339, 2014.
Dalal, R.: Comparative prediction of yield response and phosphorus uptake from soil using anion-and cation-anion-exchange resins, Soil Sci., 139, 227–231, 1985.
Dang, Y., Dalal, R., Edwards, D., and Tiller, K.: Kinetics of zinc desorption from Vertisols, Soil Sci. Soc. Am. J., 58, 1392–1399, 1994.
Deng, Y., Huang, S., Laird, D. A., Wang, X., and Meng, Z.: Adsorption behaviour and mechanisms of cadmium and nickel on rice straw biochars in single-and binary-metal systems, Chemosphere, 218, 308–318, 2019.
Derakhshan Nejad, Z., Jung, M. C., and Kim, K.-H.: Remediation of soils contaminated with heavy metals with an emphasis on immobilization technology, Environ. Geochem. Hlth., 40, 927–953, 2018.
Dey, D., Sarangi, D., and Mondal, P.: Biochar: Porous Carbon Material, Its Role to Maintain Sustainable Environment, in: Handbook of Porous Carbon Materials, Springer Nature Singapore, 595–621, https://doi.org/10.1007/978-981-19-7188-4_22, 2023.
El-Naggar, A., Rajapaksha, A. U., Shaheen, S. M., Rinklebe, J., and Ok, Y. S.: Potential of biochar to immobilize nickel in contaminated soils, in: Nickel in Soils and Plants, CRC Press, Taylor and Francis Group, 293–318, https://doi.org/10.1201/9781315154664, 2018.
El-Naggar, A., Chang, S. X., Cai, Y., Lee, Y. H., Wang, J., Wang, S.-L., Ryu, C., Rinklebe, J., and Ok, Y. S.: Mechanistic insights into the (im) mobilization of arsenic, cadmium, lead, and zinc in a multi-contaminated soil treated with different biochars, Environ. Int., 156, 106638, https://doi.org/10.1016/j.envint.2021.106638, 2021.
Gao, W., He, W., Zhang, J., Chen, Y., Zhang, Z., Yang, Y., and He, Z.: Effects of biochar-based materials on nickel adsorption and bioavailability in soil, Sci. Rep., 13, 8488, https://doi.org/10.1038/s41598-023-35684-6, 2023.
Gee, G. W. and Bauder, J. W.: Particle-size analysis, in: Methods of Soil Analysis: Part 1. Physical and Mineralogical Methods, American Society of Agronomy, 5, 383–411, ISBN: 978-0891188117, 1986.
Ghasemi-Fasaei, R., Maftoun, M., Ronaghi, A., Karimian, N., Yasrebi, J., Assad, M., and Ippolito, J.: Kinetics of copper desorption from highly calcareous soils, Commun. Soil Sci. Plan., 37, 797–809, 2006.
Ghiri, M. N., Abtahi, A., Owliaie, H., Hashemi, S. S., and Koohkan, H.: Factors affecting potassium pools distribution in calcareous soils of southern Iran, Arid Land Res. Manag., 25, 313–327, 2011.
Hossain, M. A., Piyatida, P., da Silva, J. A. T., and Fujita, M.: Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation, J. Bot., 2012, 1–37, https://doi.org/10.1155/2012/872875, 2012.
Ippolito, J., Berry, C., Strawn, D., Novak, J., Levine, J., and Harley, A.: Biochars reduce mine land soil bioavailable metals, J. Environ. Qual., 46, 411–419, 2017.
Jalali, M., Beygi, M., Jalali, M., and Buss, W.: Background levels of DTPA-extractable trace elements in calcareous soils and prediction of trace element availability based on common soil properties, J. Geochem. Explor., 241, 107073, https://doi.org/10.1016/j.gexplo.2022.107073, 2022.
Kamali, S., Ronaghi, A., and Karimian, N.: Soil zinc transformations as affected by applied zinc and organic materials, Commun. Soil Sci. Plan., 42, 1038–1049, 2011.
Kameyama, K., Miyamoto, T., and Iwata, Y.: The preliminary study of water-retention related properties of biochar produced from various feedstock at different pyrolysis temperatures, Materials, 12, 1732, https://doi.org/10.3390/ma12111732, 2019.
Kandpal, G., Srivastava, P., and Ram, B.: Kinetics of desorption of heavy metals from polluted soils: Influence of soil type and metal source, Water Air Soil Poll., 161, 353–363, 2005.
Keiluweit, M., Nico, P. S., Johnson, M. G., and Kleber, M.: Dynamic molecular structure of plant biomass-derived black carbon (biochar), Environ. Sci. Technol., 44, 1247–1253, 2010.
Khaliq, A., Ali, S., Hameed, A., Farooq, M. A., Farid, M., Shakoor, M. B., Mahmood, K., Ishaque, W., and Rizwan, M.: Silicon alleviates nickel toxicity in cotton seedlings through enhancing growth, photosynthesis, and suppressing Ni uptake and oxidative stress, Arch. Agron. Soil Sci., 62, 633–647, 2016.
Li, X.: Technical solutions for the safe utilization of heavy metal-contaminated farmland in China: a critical review, Land Degrad. Dev., 30, 1773–1784, 2019.
Liang, Y., Wong, J., and Wei, L.: Silicon-mediated enhancement of cadmium tolerance in maize (Zea mays L.) grown in cadmium contaminated soil, Chemosphere, 58, 475–483, 2005.
Lindsay, W. L. and Norvell, W.: Development of a DTPA soil test for zinc, iron, manganese, and copper, Soil Sci. Soc. Am. J., 42, 421–428, 1978.
Liu, L., Guo, X., Wang, S., Li, L., Zeng, Y., and Liu, G.: Effects of wood vinegar on properties and mechanism of heavy metal competitive adsorption on secondary fermentation based composts, Ecotox. Environ. Safe., 150, 270–279, 2018.
Loeppert, R. H. and Suarez, D. L.: Carbonate and gypsum, in: Methods of Soil Analysis: Part 3 Chemical Methods, 5, 437–474, 1996.
Lu, K., Yang, X., Gielen, G., Bolan, N., Ok, Y. S., Niazi, N. K., Xu, S., Yuan, G., Chen, X., and Zhang, X.: Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil, J. Environ. Manage., 186, 285–292, 2017.
Ma, C., Ci, K., Zhu, J., Sun, Z., Liu, Z., Li, X., Zhu, Y., Tang, C., Wang, P., and Liu, Z.: Impacts of exogenous mineral silicon on cadmium migration and transformation in the soil-rice system and on soil health, Sci. Total Environ., 759, 143501, https://doi.org/10.1016/j.scitotenv.2020.143501, 2021.
Mailakeba, C. D. and BK, R. R.: Biochar application alters soil Ni fractions and phytotoxicity of Ni to pakchoi (Brassica rapa L. ssp. chinensis L.) plants, Environmental Technology & Innovation, 23, 101751, https://doi.org/10.1016/j.eti.2021.101751, 2021.
Maruyama, M., Sawada, K. P., Tanaka, Y., Okada, A., Momma, K., Nakamura, M., Mori, R., Furukawa, Y., Sugiura, Y., and Tajiri, R.: Quantitative analysis of calcium oxalate monohydrate and dihydrate for elucidating the formation mechanism of calcium oxalate kidney stones, PLOS ONE, 18, e0282743, https://doi.org/10.1371/journal.pone.0282743, 2023.
Maryam, H., Abbasi, G. H., Waseem, M., Ahmed, T., and Rizwan, M.: Preparation and characterization of green silicon nanoparticles and their effects on growth and lead (Pb) accumulation in maize (Zea mays L.), Environ. Pollut., 346, 123691, https://doi.org/10.1016/j.envpol.2024.123691, 2024.
Myszka, B., Schüßler, M., Hurle, K., Demmert, B., Detsch, R., Boccaccini, A. R., and Wolf, S. E.: Phase-specific bioactivity and altered Ostwald ripening pathways of calcium carbonate polymorphs in simulated body fluid, RSC Adv., 9, 18232–18244, 2019.
Nasrabadi, M., Omid, M. H., and Mazdeh, A. M.: Experimental Study of Flow Turbulence Effect on Cadmium Desorption Kinetics from Riverbed Sands, Environmental Processes, 9, 10, https://doi.org/10.1007/s40710-022-00558-y, 2022.
Nelson, D. W. and Sommers, L. E.: Total carbon, organic carbon, and organic matter, in: Methods of Soil Analysis: Part 3 Chemical Methods, American Society of Agronomy, 5, 961–1010, ISBN: 978-0891188254, 1996.
Poznanović Spahić, M. M., Sakan, S. M., Glavaš-Trbić, B. M., Tančić, P. I., Škrivanj, S. B., Kovačević, J. R., and Manojlović, D. D.: Natural and anthropogenic sources of chromium, nickel and cobalt in soils impacted by agricultural and industrial activity (Vojvodina, Serbia), J. Environ. Sci. Heal. A, 54, 219–230, 2019.
Rassaei, F., Hoodaji, M., and Abtahi, S. A.: Fractionation and mobility of cadmium and zinc in calcareous soils of Fars Province, Iran, Arab. J. Geosci., 13, 1–7, 2020.
Rhoades, J.: Salinity: Electrical conductivity and total dissolved solids, Methods of Soil Analysis: Part 3 Chemical Methods, 5, 417–435, 1996.
Rizwan, M., Ali, S., Qayyum, M. F., Ibrahim, M., Zia-ur-Rehman, M., Abbas, T., and Ok, Y. S.: Mechanisms of biochar-mediated alleviation of toxicity of trace elements in plants: a critical review, Environ. Sci. Pollut. R., 23, 2230–2248, 2016.
Sachdeva, S., Kumar, R., Sahoo, P. K., and Nadda, A. K.: Recent advances in biochar amendments for immobilization of heavy metals in an agricultural ecosystem: A systematic review, Environ. Pollut., 319, 120937, 2023.
Saffari, M., Karimian, N., Ronaghi, A., Yasrebi, J., and Ghasemi-Fasaei, R.: Stabilization of nickel in a contaminated calcareous soil amended with low-cost amendments, J. Soil Sci. Plant Nut., 15, 896–913, 2015.
Sajadi Tabar, S. and Jalali, M.: Kinetics of Cd release from some contaminated calcareous soils, Natural Resources Research, 22, 37–44, 2013.
Shahbazi, K., Marzi, M., and Rezaei, H.: Heavy metal concentration in the agricultural soils under the different climatic regions: a case study of Iran, Environ. Earth Sci., 79, 324, https://doi.org/10.1007/s12665-020-09072-6, 2020.
Shahbazi, K., Fathi-Gerdelidani, A., and Marzi, M.: Investigation of the status of heavy metals in soils of Iran: A comprehensive and critical review of reported studies, Iranian Journal of Soil and Water Research, 53, 1163–1212, https://doi.org/10.22059/ijswr.2022.341586.669245, 2022.
Shahzad, B., Tanveer, M., Rehman, A., Cheema, S. A., Fahad, S., Rehman, S., and Sharma, A.: Nickel; whether toxic or essential for plants and environment – A review, Plant Physiol. Bioch., 132, 641–651, 2018.
Shen, B., Wang, X., Zhang, Y., Zhang, M., Wang, K., Xie, P., and Ji, H.: The optimum pH and Eh for simultaneously minimizing bioavailable cadmium and arsenic contents in soils under the organic fertilizer application, Sci. Total Environ., 711, 135229, https://doi.org/10.1016/j.scitotenv.2019.135229, 2020.
Singh, J., Karwasra, S., and Singh, M.: Distribution and forms of copper, iron, manganese, and zinc in calcareous soils of India, Soil Sci., 146, 359–366, 1988.
Sparks, D. L., Singh, B., and Siebecker, M. G.: Environmental soil chemistry, Elsevier, Academic Press, eBook ISBN: 9780443140358, 2022.
Sparrow, L. and Uren, N.: Manganese oxidation and reduction in soils: effects of temperature, water potential, pH and their interactions, Soil Res., 52, 483–494, 2014.
Sumner, M. E. and Miller, W. P.: Cation exchange capacity and exchange coefficients, in: Methods of Soil Analysis: Part 3 Chemical Methods, 5, 1201–1229, 1996.
Sun, L., Zhang, G., Li, X., Zhang, X., Hang, W., Tang, M., and Gao, Y.: Effects of biochar on the transformation of cadmium fractions in alkaline soil, Heliyon, 9, e12949, https://doi.org/10.1016/j.heliyon.2023.e12949, 2023.
Sun, Y., Gao, B., Yao, Y., Fang, J., Zhang, M., Zhou, Y., Chen, H., and Yang, L.: Effects of feedstock type, production method, and pyrolysis temperature on biochar and hydrochar properties, Chem. Eng. J., 240, 574–578, 2014.
Tomczyk, A., Sokołowska, Z., and Boguta, P.: Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects, Rev. Environ. Sci. Bio., 19, 191–215, 2020.
Uchimiya, M., Lima, I. M., Thomas Klasson, K., Chang, S., Wartelle, L. H., and Rodgers, J. E.: Immobilization of heavy metal ions (CuII, CdII, NiII, and PbII) by broiler litter-derived biochars in water and soil, J. Agr. Food Chem., 58, 5538–5544, 2010.
Vickers, N. J.: Animal Communication: When I'm Calling You, Will You Answer Too?, Curr. Biol., 27, R713–R715, 2017.
Xiao, Z., Peng, M., Mei, Y., Tan, L., and Liang, Y.: Effect of organosilicone and mineral silicon fertilizers on chemical forms of cadmium and lead in soil and their accumulation in rice, Environ. Pollut., 283, 117107, 2021.
Yan, G.-C., Nikolic, M., Ye, M.-J., Xiao, Z.-X., and Liang, Y.-C.: Silicon acquisition and accumulation in plant and its significance for agriculture, J. Integr. Agr., 17, 2138–2150, 2018.
Yuan, J.-H., Xu, R.-K., and Zhang, H.: The forms of alkalis in the biochar produced from crop residues at different temperatures, Bioresource Technol., 102, 3488–3497, 2011.
Zemnukhova, L. A., Panasenko, A. E., Artem'yanov, A. P., and Tsoy, E. A.: Dependence of porosity of amorphous silicon dioxide prepared from rice straw on plant variety, BioResources, 10, 3713–3723, 2015.
Zeng, X., Xiao, Z., Zhang, G., Wang, A., Li, Z., Liu, Y., Wang, H., Zeng, Q., Liang, Y., and Zou, D.: Speciation and bioavailability of heavy metals in pyrolytic biochar of swine and goat manures, J. Anal. Appl. Pyrol., 132, 82–93, 2018.
Zhao, S.-X., Ta, N., and Wang, X.-D.: Effect of temperature on the structural and physicochemical properties of biochar with apple tree branches as feedstock material, Energies, 10, 1–15, 2017.
Zhu, Q., Wu, J., Wang, L., Yang, G., and Zhang, X.: Effect of biochar on heavy metal speciation of paddy soil, Water Air Soil Pollut., 226, 1–10, 2015.
Short summary
In this work, the combined SM500 + S2 treatment was the most effective with respect to reducing the Ni water-soluble and exchangeable fraction. Application of Si and biochars decreased the soil Ni diethylenetriaminepentaacetic acid and corn Ni shoot content. The study shows the synergistic potential of Si and sheep manure biochars for immobilizing soil Ni.
In this work, the combined SM500 + S2 treatment was the most effective with respect to reducing...