Articles | Volume 1, issue 2
SOIL, 1, 631–639, 2015
SOIL, 1, 631–639, 2015
Short communication
21 Sep 2015
Short communication | 21 Sep 2015

Passive soil heating using an inexpensive infrared mirror design – a proof of concept

C. Rasmussen et al.

Related authors

Soil minerals mediate climatic control of soil C cycling on annual to centennial timescales
Jeffrey Prescott Beem-Miller, Craig Rasmussen, Alison May Hoyt, Marion Schrumpf, Georg Guggenberger, and Susan Trumbore
EGUsphere,,, 2022
Short summary
An open-source database for the synthesis of soil radiocarbon data: International Soil Radiocarbon Database (ISRaD) version 1.0
Corey R. Lawrence, Jeffrey Beem-Miller, Alison M. Hoyt, Grey Monroe, Carlos A. Sierra, Shane Stoner, Katherine Heckman, Joseph C. Blankinship, Susan E. Crow, Gavin McNicol, Susan Trumbore, Paul A. Levine, Olga Vindušková, Katherine Todd-Brown, Craig Rasmussen, Caitlin E. Hicks Pries, Christina Schädel, Karis McFarlane, Sebastian Doetterl, Christine Hatté, Yujie He, Claire Treat, Jennifer W. Harden, Margaret S. Torn, Cristian Estop-Aragonés, Asmeret Asefaw Berhe, Marco Keiluweit, Ágatha Della Rosa Kuhnen, Erika Marin-Spiotta, Alain F. Plante, Aaron Thompson, Zheng Shi, Joshua P. Schimel, Lydia J. S. Vaughn, Sophie F. von Fromm, and Rota Wagai
Earth Syst. Sci. Data, 12, 61–76,,, 2020
Short summary
A probabilistic approach to quantifying soil physical properties via time-integrated energy and mass input
Christopher Shepard, Marcel G. Schaap, Jon D. Pelletier, and Craig Rasmussen
SOIL, 3, 67–82,,, 2017
Short summary
Influence of climate variability on water partitioning and effective energy and mass transfer in a semi-arid critical zone
Xavier Zapata-Rios, Paul D. Brooks, Peter A. Troch, Jennifer McIntosh, and Craig Rasmussen
Hydrol. Earth Syst. Sci., 20, 1103–1115,,, 2016
Short summary
Decadal-scale soil redistribution along hillslopes in the Mojave Desert
O. Crouvi, V. O. Polyakov, J. D. Pelletier, and C. Rasmussen
Earth Surf. Dynam., 3, 251–264,,, 2015

Related subject area

Soil and methods
Spatial prediction of organic carbon in German agricultural topsoil using machine learning algorithms
Ali Sakhaee, Anika Gebauer, Mareike Ließ, and Axel Don
SOIL, 8, 587–604,,, 2022
Short summary
On the benefits of clustering approaches in digital soil mapping: an application example concerning soil texture regionalization
István Dunkl and Mareike Ließ
SOIL, 8, 541–558,,, 2022
Short summary
An open Soil Structure Library based on X-ray CT data
Ulrich Weller, Lukas Albrecht, Steffen Schlüter, and Hans-Jörg Vogel
SOIL, 8, 507–515,,, 2022
Short summary
Identification of thermal signature and quantification of charcoal in soil using differential scanning calorimetry and benzene polycarboxylic acid (BPCA) markers
Brieuc Hardy, Nils Borchard, and Jens Leifeld
SOIL, 8, 451–466,,, 2022
Short summary
Estimating soil fungal abundance and diversity at a macroecological scale with deep learning spectrotransfer functions
Yuanyuan Yang, Zefang Shen, Andrew Bissett, and Raphael A. Viscarra Rossel
SOIL, 8, 223–235,,, 2022
Short summary

Cited articles

Aronson, E. L. and McNulty, S. G.: Appropriate experimental ecosystem warming methods by ecosystem, objective, and practicality, Agr. Forest Meteorol., 149, 1791–1799, 2009.
AZMET: The Arizona Meteorological Network, available at:, last access: 14 September 2015.
Beier, C., Emmett, B., Gundersen, P., Tietema, A., Penuelas, J., Estiarte, M., Gordon, C., Gorissen, A., Llorens, L., Roda, F., and Williams, D.: Novel approaches to study climate change effects on terrestrial ecosystems in the field: Drought and passive nighttime warming, Ecosystems, 7, 583–597, 2004.
Eppelbaum, L. V., Kutasov, I. M., and Pilchin, A.: Applied geothermics, Lecture Notes in Earth System Sciences, Springer-Verlag, Berlin Heidelberg, 751 pp.,, 2014.
Hanson, P. J., Childs, K. W., Wullschleger, S. D., Riggs, J. S., Thomas, W. K., Todd, D. E., and Warren, J. M.: A method for experimental heating of intact soil profiles for application to climate change experiments, Global Change Biol., 17, 1083–1096, 2011.
Short summary
There is a need to understand the response of soil systems to predicted climate warming for modeling soil processes. Current experimental methods for soil warming include expensive and difficult to implement active and passive techniques. Here we test a simple, inexpensive in situ passive soil heating approach, based on easy to construct infrared mirrors that do not require automation or enclosures. Results indicated that the infrared mirrors yielded significant heating and drying of soils.