Articles | Volume 9, issue 2
https://doi.org/10.5194/soil-9-545-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/soil-9-545-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Sequestering carbon in the subsoil benefits crop transpiration at the onset of drought
Maria Eliza Turek
CORRESPONDING AUTHOR
Agroscope, Division of Agroecology and Environment, Zurich, Switzerland
Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
Attila Nemes
Faculty of Environment and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
Norwegian Institute of Bioeconomy Research (NIBIO), Division of Environment and Natural Resources, Ås, Norway
Annelie Holzkämper
Agroscope, Division of Agroecology and Environment, Zurich, Switzerland
Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
Related authors
Malve Heinz, Maria Eliza Turek, Bettina Schaefli, Andreas Keiser, and Annelie Holzkämper
Hydrol. Earth Syst. Sci., 29, 1807–1827, https://doi.org/10.5194/hess-29-1807-2025, https://doi.org/10.5194/hess-29-1807-2025, 2025
Short summary
Short summary
Potato farmers in Switzerland are facing drier conditions and water restrictions. We explored how improving soil health and planting early-maturing potato varieties might help them to adapt. Using a computer model, we simulated potato yields and irrigation water needs under water scarcity. Our results show that earlier-maturing potato varieties reduce the reliance on irrigation but result in lower yields. However, improving soil health can significantly reduce yield losses.
Malve Heinz, Annelie Holzkämper, Rohini Kumar, Sélène Ledain, Pascal Horton, and Bettina Schaefli
EGUsphere, https://doi.org/10.5194/egusphere-2025-5447, https://doi.org/10.5194/egusphere-2025-5447, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
Droughts increasingly threaten agriculture. Improving soils to store more water, for example by increasing soil organic carbon, can help. We simulated this in a Swiss catchment and found that more soil carbon slightly increased soil water storage and evapotranspiration, modestly reduced floods, and shortened periods with very little streamflow. However in warmer, drier areas, these periods with little streamflow could sometimes last longer.
Malve Heinz, Maria Eliza Turek, Bettina Schaefli, Andreas Keiser, and Annelie Holzkämper
Hydrol. Earth Syst. Sci., 29, 1807–1827, https://doi.org/10.5194/hess-29-1807-2025, https://doi.org/10.5194/hess-29-1807-2025, 2025
Short summary
Short summary
Potato farmers in Switzerland are facing drier conditions and water restrictions. We explored how improving soil health and planting early-maturing potato varieties might help them to adapt. Using a computer model, we simulated potato yields and irrigation water needs under water scarcity. Our results show that earlier-maturing potato varieties reduce the reliance on irrigation but result in lower yields. However, improving soil health can significantly reduce yield losses.
Brigitta Szabó, Piroska Kassai, Svajunas Plunge, Attila Nemes, Péter Braun, Michael Strauch, Felix Witing, János Mészáros, and Natalja Čerkasova
SOIL, 10, 587–617, https://doi.org/10.5194/soil-10-587-2024, https://doi.org/10.5194/soil-10-587-2024, 2024
Short summary
Short summary
This research introduces methods and tools for obtaining soil input data in European case studies for environmental models like SWAT+. With various available soil datasets and prediction methods, determining the most suitable is challenging. The study aims to (i) catalogue open-access datasets and prediction methods for Europe, (ii) demonstrate and quantify differences between prediction approaches, and (iii) offer a comprehensive workflow with open-source R codes for deriving missing soil data.
Tobias Karl David Weber, Lutz Weihermüller, Attila Nemes, Michel Bechtold, Aurore Degré, Efstathios Diamantopoulos, Simone Fatichi, Vilim Filipović, Surya Gupta, Tobias L. Hohenbrink, Daniel R. Hirmas, Conrad Jackisch, Quirijn de Jong van Lier, John Koestel, Peter Lehmann, Toby R. Marthews, Budiman Minasny, Holger Pagel, Martine van der Ploeg, Shahab Aldin Shojaeezadeh, Simon Fiil Svane, Brigitta Szabó, Harry Vereecken, Anne Verhoef, Michael Young, Yijian Zeng, Yonggen Zhang, and Sara Bonetti
Hydrol. Earth Syst. Sci., 28, 3391–3433, https://doi.org/10.5194/hess-28-3391-2024, https://doi.org/10.5194/hess-28-3391-2024, 2024
Short summary
Short summary
Pedotransfer functions (PTFs) are used to predict parameters of models describing the hydraulic properties of soils. The appropriateness of these predictions critically relies on the nature of the datasets for training the PTFs and the physical comprehensiveness of the models. This roadmap paper is addressed to PTF developers and users and critically reflects the utility and future of PTFs. To this end, we present a manifesto aiming at a paradigm shift in PTF research.
Benjamin Guillaume, Hanane Aroui Boukbida, Gerben Bakker, Andrzej Bieganowski, Yves Brostaux, Wim Cornelis, Wolfgang Durner, Christian Hartmann, Bo V. Iversen, Mathieu Javaux, Joachim Ingwersen, Krzysztof Lamorski, Axel Lamparter, András Makó, Ana María Mingot Soriano, Ingmar Messing, Attila Nemes, Alexandre Pomes-Bordedebat, Martine van der Ploeg, Tobias Karl David Weber, Lutz Weihermüller, Joost Wellens, and Aurore Degré
SOIL, 9, 365–379, https://doi.org/10.5194/soil-9-365-2023, https://doi.org/10.5194/soil-9-365-2023, 2023
Short summary
Short summary
Measurements of soil water retention properties play an important role in a variety of societal issues that depend on soil water conditions. However, there is little concern about the consistency of these measurements between laboratories. We conducted an interlaboratory comparison to assess the reproducibility of the measurement of the soil water retention curve. Results highlight the need to harmonize and standardize procedures to improve the description of unsaturated processes in soils.
Cited articles
Agroscope: Sortenversuche – Resultate Mais, https://www.agroscope.admin.ch/agroscope/de/home/themen/pflanzenbau/ackerbau/kulturarten/mais/sortenversuche-resultate.html (last access: 7 November 2023), 2023 (in German).
Alcántara, V., Don, A., Well, R., and Nieder, R.: Deep ploughing increases agricultural soil organic matter stocks, Glob. Change Biol., 22, 2939–2956, https://doi.org/10.1111/gcb.13289, 2016.
Angers, D. A. and Eriksen-Hamel, N. S.: Full-Inversion Tillage and Organic Carbon Distribution in Soil Profiles: A Meta-Analysis, Soil Sci. Soc. Am. J., 72, 1370–1374, https://doi.org/10.2136/sssaj2007.0342, 2008.
Ankenbauer, K. J. and Loheide, S. P.: The effects of soil organic matter on soil water retention and plant water use in a meadow of the Sierra Nevada, CA, Hydrol. Process., 31, 891–901, https://doi.org/10.1002/hyp.11070, 2017.
Arthur, E., Tuller, M., Moldrup, P., and de Jonge, L. W.: Effects of biochar and manure amendments on water vapor sorption in a sandy loam soil, Geoderma, 243–244, 175–182, https://doi.org/10.1016/j.geoderma.2015.01.001, 2015.
BAFU: Hitze und Trockenheit im Sommer 2015, Auswirkungen auf Mensch und Umwelt, Bern, BAFU, https://www.bafu.admin.ch/bafu/de/home/themen/klima/publikationen-studien/publikationen/hitze-und-trockenheit.html (last access: 1 November 2023), 2016.
BAFU: Hitze und Trockenheit im Sommer 2018, Bern, BAFU, https://www.bafu.admin.ch/bafu/de/home/themen/klima/publikationen-studien/publikationen/hitze-und-trockenheit.html (last access: 1 November 2023), 91 pp., 2019.
Bai, X., Huang, Y., Ren, W., Coyne, M., Jacinthe, P.-A., Tao, B., Hui, D., Yang, J., and Matocha, C.: Responses of soil carbon sequestration to climate-smart agriculture practices: A meta-analysis, Glob. Change Biol., 25, 2591–2606, https://doi.org/10.1111/gcb.14658, 2019.
Blanchy, G., Bragato, G., Di Bene, C., Jarvis, N., Larsbo, M., Meurer, K., and Garré, S.: Soil and crop management practices and the water regulation functions of soils: a qualitative synthesis of meta-analyses relevant to European agriculture, SOIL, 9, 1–20, https://doi.org/10.5194/soil-9-1-2023, 2023.
Bonfante, A., Terribile, F., and Bouma, J.: Refining physical aspects of soil quality and soil health when exploring the effects of soil degradation and climate change on biomass production: an Italian case study, SOIL, 5, 1–14, https://doi.org/10.5194/soil-5-1-2019, 2019.
Bonfante, A., Basile, A., and Bouma, J.: Exploring the effect of varying soil organic matter contents on current and future moisture supply capacities of six Italian soils, Geoderma, 361, 114079, https://doi.org/10.1016/j.geoderma.2019.114079, 2020.
Caplan, J. S., Giménez, D., Hirmas, D. R., Brunsell, N. A., Blair, J. M., and Knapp, A. K.: Decadal-scale shifts in soil hydraulic propertiesas induced by altered precipitation, Sci. Adv., 5, eaau6635, https://doi.org/10.1126/sciadv.aau6635, 2019.
Carter, M. R. and Gregorich, E. G.: Carbon and nitrogen storage by deep-rooted tall fescue (Lolium arundinaceum) in the surface and subsurface soil of a fine sandy loam in eastern Canada, Agr. Ecosyst. Environ., 136, 125–132, https://doi.org/10.1016/j.agee.2009.12.005, 2010.
CH2018 Project Team: CH2018 – Climate Scenarios for Switzerland, National Centre for Climate Services, https://doi.org/10.18751/Climate/Scenarios/CH2018/1.0, 2018.
Coban, O., De Deyn, G. B., and van der Ploeg, M.: Soil microbiota as game-changers in restoration of degraded lands, Science, 375, abe0725, https://doi.org/10.1126/science.abe0725, 2022.
Crystal-Ornelas, R., Thapa, R., and Tully, K. L.: Soil organic carbon is affected by organic amendments, conservation tillage, and cover cropping in organic farming systems: A meta-analysis, Agr. Ecosyst. Environ., 312, 107356, https://doi.org/10.1016/j.agee.2021.107356, 2021.
de Wit, A., Boogaard, H., Fumagalli, D., Janssen, S., Knapen, R., van Kraalingen, D., Supit, I., van der Wijngaart, R., and van Diepen, K.: 25 years of the WOFOST cropping systems model, Agr. Syst., 168, 154–167, https://doi.org/10.1016/j.agsy.2018.06.018, 2019.
Edeh, I. G., Mašek, O., and Buss, W.: A meta-analysis on biochar's effects on soil water properties – New insights and future research challenges, Sci. Total Environ., 714, 136857, https://doi.org/10.1016/j.scitotenv.2020.136857, 2020.
Eden, M., Gerke, H. H., and Houot, S.: Organic waste recycling in agriculture and related effects on soil water retention and plant available water: a review, Agron. Sustain. Dev., 37, 11, https://doi.org/10.1007/s13593-017-0419-9, 2017.
FAO: World reference base for soil resources 2014, International soil classification system for naming soils and creating legends for soil maps, edited by: Schad, P., van Huyssteen, C., and Michéli, E., FAO, ISBN 978-92-5-108369-7, 2015.
Fatichi, S., Or, D., Walko, R., Vereecken, H., Young, M. H., Ghezzehei, T. A., Hengl, T., Kollet, S., Agam, N., and Avissar, R.: Soil structure is an important omission in Earth System Models, Nat. Commun., 11, 522, https://doi.org/10.1038/s41467-020-14411-z, 2020.
Feng, P., Wang, B., Harrison, M. T., Wang, J., Liu, K., Huang, M., Liu, D. L., Yu, Q., and Hu, K.: Soil properties resulting in superior maize yields upon climate warming, Agron. Sustain. Dev., 42, 85, https://doi.org/10.1007/s13593-022-00818-z, 2022.
Guillaume, T., Bragazza, L., Levasseur, C., Libohova, Z., and Sinaj, S.: Long-term soil organic carbon dynamics in temperate cropland-grassland systems, Agr. Ecosyst. Environ., 305, 107184, https://doi.org/10.1016/j.agee.2020.107184, 2021.
Guillaume, T., Makowski, D., Libohova, Z., Bragazza, L., Sallaku, F., and Sinaj, S.: Soil organic carbon saturation in cropland-grassland systems: Storage potential and soil quality, Geoderma, 406, 115529, https://doi.org/10.1016/j.geoderma.2021.115529, 2022.
Hartge, K. H.: Feddes, R. A., Kowalik, P. I. und Zaradny, H.: simulation of field water use and crop yield. Pudoc (Centre for agricultural publishing and documentation) Wageningen, Niederlande, 195 Seiten, 13 Abbildungen, Paperback. Preis: hfl 30, Z. Pflanzenernaehr. Bodenk., 143, 254–255, https://doi.org/10.1002/jpln.19801430219, 1980.
Holzkämper, A.: Varietal adaptations matter for agricultural water use – a simulation study on grain maize in Western Switzerland, Agr. Water Manage., 237, 106202, https://doi.org/10.1016/j.agwat.2020.106202, 2020.
Holzkämper, A., Calanca, P., and Fuhrer, J.: Identifying climatic limitations to grain maize yield potentials using a suitability evaluation approach, Agr. Forest Meteorol., 168, 149–159, https://doi.org/10.1016/j.agrformet.2012.09.004, 2013.
Holzkämper, A., Calanca, P., Honti, M., and Fuhrer, J.: Projecting climate change impacts on grain maize based on three different crop model approaches, Agr. Forest Meteorol., 214–215, 219–230, https://doi.org/10.1016/j.agrformet.2015.08.263, 2015a.
Holzkämper, A., Fossati, D., Hiltbrunner, J., and Fuhrer, J.: Spatial and temporal trends in agro-climatic limitations to production potentials for grain maize and winter wheat in Switzerland, Reg. Environ. Change, 15, 109–122, https://doi.org/10.1007/s10113-014-0627-7, 2015b.
IPCC: Technical Summary, in: Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems, edited by: Shukla, P. R., Skea, J., Buendia, E. C., Masson-Delmotte, V., Pörtner, H.-O., Roberts, D. C., Zhai, P., Slade, R., Connors, S., Diemen, R. v., Ferrat, M., Haughey, E., Luz, S., Neogi, S., Pathak, M., Petzold, J., Pereira, J. P., Vyas, P., Huntley, E., Kissick, K., Belkacemi, M., and Malley, J., Cambridge University Press, https://doi.org/10.1017/9781009157988.002, 2022.
Jarvis, N., Koestel, J., Messing, I., Moeys, J., and Lindahl, A.: Influence of soil, land use and climatic factors on the hydraulic conductivity of soil, Hydrol. Earth Syst. Sci., 17, 5185–5195, https://doi.org/10.5194/hess-17-5185-2013, 2013.
Kallenbach, C. and Grandy, A. S.: Controls over soil microbial biomass responses to carbon amendments in agricultural systems: A meta-analysis, Agr. Ecosyst. Environ., 144, 241–252, https://doi.org/10.1016/j.agee.2011.08.020, 2011.
Kan, Z.-R., Ma, S.-T., Liu, Q.-Y., Liu, B.-Y., Virk, A. L., Qi, J.-Y., Zhao, X., Lal, R., and Zhang, H.-L.: Carbon sequestration and mineralization in soil aggregates under long-term conservation tillage in the North China Plain, CATENA, 188, 104428, https://doi.org/10.1016/j.catena.2019.104428, 2020.
Krauss, M., Wiesmeier, M., Don, A., Cuperus, F., Gattinger, A., Gruber, S., Haagsma, W. K., Peigné, J., Palazzoli, M. C., Schulz, F., van der Heijden, M. G. A., Vincent-Caboud, L., Wittwer, R. A., Zikeli, S., and Steffens, M.: Reduced tillage in organic farming affects soil organic carbon stocks in temperate Europe, Soil Till. Res., 216, 105262, https://doi.org/10.1016/j.still.2021.105262, 2022.
Kroes, J. G., Dam, J. C. V., Bartholomeus, R. P., Groenendijk, P., Heinen, M., Hendriks, R. F. A., Mulder, H. M., Supit, I., and Walsum, P. E. V. V.: SWAP version 4 Theory description and user manual, Report 2780, Wageningen Environmental Research, https://doi.org/10.18174/416321, 2017.
Lal, R.: World cropland soils as a source or sink for atmospheric carbon, in: Advances in Agronomy, Academic Press, 71, 145–191, https://doi.org/10.1016/S0065-2113(01)71014-0, 2001.
Lal, R.: Soil carbon sequestration to mitigate climate change, Geoderma, 123, 1–22, https://doi.org/10.1016/j.geoderma.2004.01.032, 2004.
Larsbo, M., Koestel, J., Kätterer, T., and Jarvis, N.: Preferential Transport in Macropores is Reduced by Soil Organic Carbon, Vadose Zone J., 15, 1–7, https://doi.org/10.2136/vzj2016.03.0021, 2016.
Libohova, Z., Seybold, C., Wysocki, D., Wills, S., Schoeneberger, P., Williams, C., Lindbo, D., Stott, D., and Owens, P. R.: Reevaluating the effects of soil organic matter and other properties on available water-holding capacity using the National Cooperative Soil Survey Characterization Database, J. Soil Water Conserv., 73, 411–421, https://doi.org/10.2489/jswc.73.4.411, 2018.
Liu, S., Lei, Y., Zhao, J., Yu, S., and Wang, L.: Research on ecosystem services of water conservation and soil retention: a bibliometric analysis, Environ. Sci. Pollut. R., 28, 2995–3007, https://doi.org/10.1007/s11356-020-10712-4, 2021.
Lu, J., Zhang, Q., Werner, A. D., Li, Y., Jiang, S., and Tan, Z.: Root-induced changes of soil hydraulic properties – A review, J. Hydrol., 589, 125203, https://doi.org/10.1016/j.jhydrol.2020.125203, 2020.
Maharjan, G. R., Prescher, A.-K., Nendel, C., Ewert, F., Mboh, C. M., Gaiser, T., and Seidel, S. J.: Approaches to model the impact of tillage implements on soil physical and nutrient properties in different agro-ecosystem models, Soil Till. Res., 180, 210–221, https://doi.org/10.1016/j.still.2018.03.009, 2018.
Meurer, K. H. E., Chenu, C., Coucheney, E., Herrmann, A. M., Keller, T., Kätterer, T., Nimblad Svensson, D., and Jarvis, N.: Modelling dynamic interactions between soil structure and the storage and turnover of soil organic matter, Biogeosciences, 17, 5025–5042, https://doi.org/10.5194/bg-17-5025-2020, 2020a.
Meurer, K. H. E., Barron, J., Chenu, C., Coucheney, E., Fielding, M., Hallett, P., Herrmann, A. M., Keller, T., Koestel, J., Larsbo, M., Lewan, E., Or, D., Parsons, D., Parvin, N., Taylor, A., Vereecken, H., and Jarvis, N.: A framework for modelling soil structure dynamics induced by biological activity, Glob. Change Biol., 26, 5382–5403, https://doi.org/10.1111/gcb.15289, 2020b.
Minasny, B. and McBratney, A. B.: Limited effect of organic matter on soil available water capacity, Eur. J. Soil Sci., 69, 39–47, https://doi.org/10.1111/ejss.12475, 2017.
Minasny, B., Malone, B. P., McBratney, A. B., Angers, D. A., Arrouays, D., Chambers, A., Chaplot, V., Chen, Z.-S., Cheng, K., Das, B. S., Field, D. J., Gimona, A., Hedley, C. B., Hong, S. Y., Mandal, B., Marchant, B. P., Martin, M., McConkey, B. G., Mulder, V. L., O'Rourke, S., Richer-de-Forges, A. C., Odeh, I., Padarian, J., Paustian, K., Pan, G., Poggio, L., Savin, I., Stolbovoy, V., Stockmann, U., Sulaeman, Y., Tsui, C.-C., Vågen, T.-G., van Wesemael, B., and Winowiecki, L.: Soil carbon 4 per mille, Geoderma, 292, 59–86, https://doi.org/10.1016/j.geoderma.2017.01.002, 2017.
Modak, K., Ghosh, A., Bhattacharyya, R., Biswas, D. R., Das, T. K., Das, S., and Singh, G.: Response of oxidative stability of aggregate-associated soil organic carbon and deep soil carbon sequestration to zero-tillage in subtropical India, Soil Till. Res., 195, 104370, https://doi.org/10.1016/j.still.2019.104370, 2019.
Mualem, Y.: A new model for predicting the hydraulic conductivity of unsaturated porous media, Water Resour. Res., 12, 513–522, https://doi.org/10.1029/WR012i003p00513, 1976.
Murphy, B.: Key soil functional properties affected by soil organic matter – evidence from published literature, IOP C. Ser. Earth Env., 25, 012008, https://doi.org/10.1088/1755-1315/25/1/012008, 2015.
Nasta, P., Szabó, B., and Romano, N.: Evaluation of pedotransfer functions for predicting soil hydraulic properties: A voyage from regional to field scales across Europe, J. Hydrol., 37, 100903, https://doi.org/10.1016/j.ejrh.2021.100903, 2021.
Nemes, A., Rawls, W. J., and Pachepsky, Y. A.: Influence of Organic Matter on the Estimation of Saturated Hydraulic Conductivity, Soil Sci. Soc. Am. J., 69, 1330–1337, https://doi.org/10.2136/sssaj2004.0055, 2005.
Prasuhn, V., Humphys, C., and Spiess, E.: Seventy-Two Lysimeters for Measuring Water Flows and Nitrate Leaching under Arable Land, NAS International Workshop on Applying the Lysimeter Systems to Water and Nutrient Dynamics, Wanju, Korea, 1–24, https://link.ira.agroscope.ch/en-US/publication/36079 (last access: 1 November 2023), 2016.
Rawls, W. J., Nemes, A., and Pachepsky, Y.: Effect of soil organic carbon on soil hydraulic properties, in: Developments in Soil Science, edited by: Pachepsky, Y. and Rawls, W. J., Elsevier, 95–114, https://doi.org/10.1016/S0166-2481(04)30006-1, 2004.
Renwick, L. L. R., Deen, W., Silva, L., Gilbert, M. E., Maxwell, T., Bowles, T. M., and Gaudin, A. C. M.: Long-term crop rotation diversification enhances maize drought resistance through soil organic matter, Environn Resn Lettn, 16, 084067, https://doi.org/10.1088/1748-9326/ac1468, 2021.
Rivier, P.-A., Jamniczky, D., Nemes, A., Makó, A., Barna, G., Uzinger, N., Rékási, M., and Farkas, C.: Short-term effects of compost amendments to soil on soil structure, hydraulic properties, and water regime, J. Hydrol. Hydromech., 70, 74–88, https://doi.org/10.2478/johh-2022-0004, 2022.
Smith, P., Martino, D., Cai, Z., Gwary, D., Janzen, H., Kumar, P., McCarl, B., Ogle, S., O'Mara, F., Rice, C., Scholes, B., Sirotenko, O., Howden, M., McAllister, T., Pan, G., Romanenkov, V., Schneider, U., Towprayoon, S., Wattenbach, M., and Smith, J.: Greenhouse gas mitigation in agriculture, Philos. T. R. Soc. B, 363, 789–813, https://doi.org/10.1098/rstb.2007.2184, 2008.
Szabó, B., Weynants, M., and Weber, T. K. D.: Updated European hydraulic pedotransfer functions with communicated uncertainties in the predicted variables (euptfv2), Geosci. Model Dev., 14, 151–175, https://doi.org/10.5194/gmd-14-151-2021, 2021.
Topa, D., Cara, I. G., and Jităreanu, G.: Long term impact of different tillage systems on carbon pools and stocks, soil bulk density, aggregation and nutrients: A field meta-analysis, CATENA, 199, 105102, https://doi.org/10.1016/j.catena.2020.105102, 2021.
Turek, M. E. and Holzkämper, A.: Supporting data to Turek et al. 2023 SOIL (Version 1), Zenodo [data set], https://doi.org/10.5281/zenodo.10068907, 2023.
University of Wageningen: SWAP Soil Water Atmosphere Plant, https://www.swap.alterra.nl/, last access: 7 November 2023.
van Genuchten, M. T.: A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils, Soil Sci. Soc. Am. J., 44, 892–898, https://doi.org/10.2136/sssaj1980.03615995004400050002x, 1980.
Van Looy, K., Bouma, J., Herbst, M., Koestel, J., Minasny, B., Mishra, U., Montzka, C., Nemes, A., Pachepsky, Y. A., Padarian, J., Schaap, M. G., Tóth, B., Verhoef, A., Vanderborght, J., van der Ploeg, M. J., Weihermüller, L., Zacharias, S., Zhang, Y., and Vereecken, H.: Pedotransfer Functions in Earth System Science: Challenges and Perspectives, Rev. Geophys., 55, 1199–1256, https://doi.org/10.1002/2017RG000581, 2017.
Wagner, B., Tarnawski, V. R., and Stöckl, M.: Evaluation of pedotransfer functions predicting hydraulic properties of soils and deeper sediments, J. Plant Nutr. Soil Sc., 167, 236–245, https://doi.org/10.1002/jpln.200321251, 2004.
Wang, T., Wedin, D., and Zlotnik, V. A.: Field evidence of a negative correlation between saturated hydraulic conductivity and soil carbon in a sandy soil, Water Resour. Res., 45, W07503, https://doi.org/10.1029/2008WR006865, 2009.
Weber, T. K. D., Weynants, M., and Szabó, B.: R package of updated European hydraulic pedotransfer functions (euptf2), Zenodo [code], https://doi.org/10.5281/zenodo.4281045, 2020.
Zhang, X., Jia, J., Chen, L., Chu, H., He, J.-S., Zhang, Y., and Feng, X.: Aridity and NPP constrain contribution of microbial necromass to soil organic carbon in the Qinghai-Tibet alpine grasslands, Soil Biol. Biochem., 156, 108213, https://doi.org/10.1016/j.soilbio.2021.108213, 2021.
Short summary
In this study, we systematically evaluated prospective crop transpiration benefits of sequestering soil organic carbon (SOC) under current and future climatic conditions based on the model SWAP. We found that adding at least 2% SOC down to at least 65 cm depth could increase transpiration annually by almost 40 mm, which can play a role in mitigating drought impacts in rain-fed cropping. Beyond this threshold, additional crop transpiration benefits of sequestering SOC are only marginal.
In this study, we systematically evaluated prospective crop transpiration benefits of...