Articles | Volume 9, issue 2
https://doi.org/10.5194/soil-9-381-2023
https://doi.org/10.5194/soil-9-381-2023
Original research article
 | 
05 Jul 2023
Original research article |  | 05 Jul 2023

Pesticide transport through the vadose zone under sugarcane in the Wet Tropics, Australia

Rezaul Karim, Lucy Reading, Les Dawes, Ofer Dahan, and Glynis Orr

Related authors

Optimized fertilization using online soil nitrate data
Yonatan Yekutiel, Yuval Rotem, Shlomi Arnon, and Ofer Dahan
SOIL, 10, 335–347, https://doi.org/10.5194/soil-10-335-2024,https://doi.org/10.5194/soil-10-335-2024, 2024
Short summary
Quantification of In-situ Remediation of Deep Unsaturated Zone and Groundwater
Ilil Levakov, Zeev Ronen, Tuvia Turkeltaub, and Ofer Dahan
EGUsphere, https://doi.org/10.5194/egusphere-2022-1179,https://doi.org/10.5194/egusphere-2022-1179, 2022
Preprint withdrawn
Short summary
A novel analytical approach for the simultaneous measurement of nitrate and dissolved organic carbon in soil water
Elad Yeshno, Ofer Dahan, Shoshana Bernstain, and Shlomi Arnon
Hydrol. Earth Syst. Sci., 25, 2159–2168, https://doi.org/10.5194/hess-25-2159-2021,https://doi.org/10.5194/hess-25-2159-2021, 2021
Short summary
Real-time monitoring of nitrate in soils as a key for optimization of agricultural productivity and prevention of groundwater pollution
Elad Yeshno, Shlomi Arnon, and Ofer Dahan
Hydrol. Earth Syst. Sci., 23, 3997–4010, https://doi.org/10.5194/hess-23-3997-2019,https://doi.org/10.5194/hess-23-3997-2019, 2019
Short summary
Transport and degradation of perchlorate in deep vadose zone: implications from direct observations during bioremediation treatment
Ofer Dahan, Idan Katz, Lior Avishai, and Zeev Ronen
Hydrol. Earth Syst. Sci., 21, 4011–4020, https://doi.org/10.5194/hess-21-4011-2017,https://doi.org/10.5194/hess-21-4011-2017, 2017
Short summary

Related subject area

Soils and water
Optimized fertilization using online soil nitrate data
Yonatan Yekutiel, Yuval Rotem, Shlomi Arnon, and Ofer Dahan
SOIL, 10, 335–347, https://doi.org/10.5194/soil-10-335-2024,https://doi.org/10.5194/soil-10-335-2024, 2024
Short summary
Depth-extrapolation of field-scale soil moisture time series derived with cosmic-ray neutron sensing using the SMAR model
Daniel Rasche, Theresa Blume, and Andreas Güntner
EGUsphere, https://doi.org/10.5194/egusphere-2024-170,https://doi.org/10.5194/egusphere-2024-170, 2024
Short summary
Intensive agricultural management-induced subsurface accumulation of water-extractable colloidal P in a Vertisol
Shouhao Li, Shuiqing Chen, Shanshan Bai, Jinfang Tan, and Xiaoqian Jiang
SOIL, 10, 49–59, https://doi.org/10.5194/soil-10-49-2024,https://doi.org/10.5194/soil-10-49-2024, 2024
Short summary
Perspectives on the misconception of levitating soil aggregates
Gina Garland, John Koestel, Alice Johannes, Olivier Heller, Sebastian Doetterl, Dani Or, and Thomas Keller
SOIL, 10, 23–31, https://doi.org/10.5194/soil-10-23-2024,https://doi.org/10.5194/soil-10-23-2024, 2024
Short summary
Combining lime and organic amendments based on titratable alkalinity for efficient amelioration of acidic soils
Birhanu Iticha, Luke M. Mosley, and Petra Marschner
SOIL, 10, 33–47, https://doi.org/10.5194/soil-10-33-2024,https://doi.org/10.5194/soil-10-33-2024, 2024
Short summary

Cited articles

Adeoye, P. A., Abubakar, S. K., Adeolu, A. R., El-Mohsen, A. A. A., Sabbour, M., Farhadi, A., Hamidi, R., and Pirasteh-Anosheh, H.: Effect of agrochemicals on groundwater quality: A review, Sci. Agr., 1, 1–7, 2013. 
Aharoni, I., Siebner, H., and Dahan, O.: Application of vadose-zone monitoring system for real-time characterization of leachate percolation in and under a municipal landfill, Waste Manage., 67, 203–213, https://doi.org/10.1016/j.wasman.2017.05.012, 2017. 
Armour, J. D., Hateley, L. R., and Pitt, G. L.: Catchment modelling of sediment, nitrogen and phosphorus nutrient loads with SedNet/ANNEX in the Tully-Murray basin, Mar. Freshw. Res., 60, 1091–1096, https://doi.org/10.1071/Mf08345, 2009. 
Arora, T. and Ahmed, S.: Characterization of recharge through complex vadose zone of a granitic aquifer by time-lapse electrical resistivity tomography, J. Appl. Geophys., 73, 35–44, https://doi.org/10.1016/j.jappgeo.2010.11.003, 2011. 
Australian Government and Queensland Government: The Reef 2050 Water Quality Improvement Plan 2017–2022, 56 pp., 2018. 
Download
Short summary
The study was performed using continuous measurement of temporal variations in soil saturation and of the concentration of pesticides along the vadose zone profile and underlying alluvial aquifers at sugarcane fields in the Wet Tropics of Australia. A vadose zone monitoring system was set up to enable the characterization of pesticide (non-PS II herbicides) migration with respect to pesticide application, sugarcane growing period, and, finally, rainwater infiltration.