Articles | Volume 5, issue 1
https://doi.org/10.5194/soil-5-15-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/soil-5-15-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Global meta-analysis of the relationship between soil organic matter and crop yields
Emily E. Oldfield
CORRESPONDING AUTHOR
School of Forestry and Environmental Studies, Yale University, 370
Prospect Street, New Haven, CT 06511, USA
Mark A. Bradford
School of Forestry and Environmental Studies, Yale University, 370
Prospect Street, New Haven, CT 06511, USA
Stephen A. Wood
School of Forestry and Environmental Studies, Yale University, 370
Prospect Street, New Haven, CT 06511, USA
The Nature Conservancy, Arlington, VA 22201, USA
Related subject area
Soils and food security
Soil: the great connector of our lives now and beyond COVID-19
Targeting the soil quality and soil health concepts when aiming for the United Nations Sustainable Development Goals and the EU Green Deal
Soil fertility along toposequences of the East India Plateau and implications for productivity, fertiliser use, and sustainability
Refining physical aspects of soil quality and soil health when exploring the effects of soil degradation and climate change on biomass production: an Italian case study
Organic wastes from bioenergy and ecological sanitation as a soil fertility improver: a field experiment in a tropical Andosol
Rosa M. Poch, Lucia H. C. dos Anjos, Rafla Attia, Megan Balks, Adalberto Benavides-Mendoza, Martha M. Bolaños-Benavides, Costanza Calzolari, Lydia M. Chabala, Peter C. de Ruiter, Samuel Francke-Campaña, Fernando García Préchac, Ellen R. Graber, Siosiua Halavatau, Kutaiba M. Hassan, Edmond Hien, Ke Jin, Mohammad Khan, Maria Konyushkova, David A. Lobb, Matshwene E. Moshia, Jun Murase, Generose Nziguheba, Ashok K. Patra, Gary Pierzynski, Natalia Rodríguez Eugenio, and Ronald Vargas Rojas
SOIL, 6, 541–547, https://doi.org/10.5194/soil-6-541-2020, https://doi.org/10.5194/soil-6-541-2020, 2020
Short summary
Short summary
Humanity depends on the existence of healthy soils, both for the production of food and for ensuring a healthy, biodiverse environment. In the face of global crises like the COVID-19 pandemic, a sustainable soil management strategy is essential to ensure food security based on more diverse, locally oriented, and resilient food production systems through improving access to land, sound land use planning, sustainable soil management, enhanced research, and investment in education and extension.
Antonello Bonfante, Angelo Basile, and Johan Bouma
SOIL, 6, 453–466, https://doi.org/10.5194/soil-6-453-2020, https://doi.org/10.5194/soil-6-453-2020, 2020
Short summary
Short summary
Soil health is an important term in the international policy arena when considering soil contributions to sustainable development. We propose a measurement method, lacking so far, and explore differences within the term soil quality. The latter describes the inherent properties of soils, while soil health focuses on actual health. The procedure is illustrated for three Italian soil types, also showing the effects of climate change, demonstrating that each soil is significantly different.
Peter S. Cornish, Ashok Kumar, and Sudipta Das
SOIL, 6, 325–336, https://doi.org/10.5194/soil-6-325-2020, https://doi.org/10.5194/soil-6-325-2020, 2020
Short summary
Short summary
We evaluated soil fertility in seven watersheds on the East India Plateau, finding that soils are acid and infertile, with low chemical fertiliser use, and organic nutrient recycling is insufficient to maintain soil fertility. This leads to inefficient rainfall use and low yields. Fertiliser rates need to increase greatly, notably in P and K. This will challenge risk-averse subsistence farmers. Field-specific fertiliser regimes are needed despite consistent fertility trends along toposequences.
Antonello Bonfante, Fabio Terribile, and Johan Bouma
SOIL, 5, 1–14, https://doi.org/10.5194/soil-5-1-2019, https://doi.org/10.5194/soil-5-1-2019, 2019
Short summary
Short summary
This study is restricted to soil physical aspects of soil quality and health with the objective to define procedures with worldwide rather than only regional applicability, reflecting modern developments in soil physical research and focusing on important questions regarding possible effects of soil degradation and climate change.
Ariane Krause, Thomas Nehls, Eckhard George, and Martin Kaupenjohann
SOIL, 2, 147–162, https://doi.org/10.5194/soil-2-147-2016, https://doi.org/10.5194/soil-2-147-2016, 2016
Short summary
Short summary
In a field experiment in Tanzania, we used substrates from local projects as soil amenders for intercropping relevant local crops, aiming to advance the practical application of known principles for smallholder agriculture in SSA, i.e. biochar and biogas application and EcoSan practices. We studied the short-term effects on crop productivity, plant nutrition and soil properties. By mitigating P scarcity and acidification, yields were increased by up to 400 % compared to the control.
Cited articles
Adhikari, K. and Hartemink, A. E.: Linking soils to ecosystem services – A
global review, Geoderma, 262, 101–111, https://doi.org/10.1016/j.geoderma.2015.08.009,
2016.
Adiku, S. G. K., Jones, J. W., Kumaga, F. K., and Tonyigah, A.: Effects of
crop rotation and fallow residue management on maize growth, yield and soil
carbon in a savannah-forest transition zone of Ghana, J. Agr. Sci., 147,
313–322, https://doi.org/10.1017/s002185960900851x, 2009.
Agegnehu, G., Bass, A. M., Nelson, P. N., and Bird, M. I.: Benefits of
biochar, compost and biochar-compost for soil quality, maize yield and
greenhouse gas emissions in a tropical agricultural soil, Sci. Total
Environ., 543, 295–306, https://doi.org/10.1016/j.scitotenv.2015.11.054, 2016.
Albizua, A., Williams, A., Hedlund, K., and Pascual, U.: Crop rotations
including ley and manure can promote ecosystem services in conventional
farming systems, Appl. Soil Ecol., 95, 54–61,
https://doi.org/10.1016/j.apsoil.2015.06.003, 2015.
Alijani, K., Bahrani, M. J., and Kazemeini, S. A.: Short-term responses of
soil and wheat yield to tillage, corn residue management and nitrogen
fertilization, Soil Till. Res., 124, 78–82, https://doi.org/10.1016/j.still.2012.05.005,
2012.
Araya, T., Cornelis, W. M., Nyssen, J., Govaerts, B., Getnet, F., Bauer, H.,
Amare, K., Raes, D., Haile, M., and Deckers, J.: Medium-term effects of
conservation agriculture based cropping systems for sustainable soil and
water management and crop productivity in the Ethiopian highlands, Field Crop
Res., 132, 53–62, https://doi.org/10.1016/j.fcr.2011.12.009, 2012.
Atreya, K., Sharma, S., Bajracharya, R. M., and Rajbhandari, N. P.:
Applications of reduced tillage in hills of central Nepal, Soil Till. Res.,
88, 16–29, https://doi.org/10.1016/j.still.2005.04.003, 2006.
Bai, Y. H., He, J., Li, H. W., Wang, Q. J., Chen, H., Kuhn, N. J., Hikel, H.,
Chen, F., and Gong, Y. S.: Soil Structure and Crop Performance After 10 Years
of Controlled Traffic and Traditional Tillage Cropping in the Dryland Loess
Plateau in China, Soil Sci., 174, 113–119, https://doi.org/10.1097/SS.0b013e3181981ddc,
2009.
Banwart, S. S., Black, H. B., Cai, Z. Z., Gicheru, P. G., Joosten, H. J.,
Victoria, R. V., Milne, E. E., Noellemeyer, E. N., Pascual, U. P., Nziguheba,
G. G., Vargas, R. R., Bationo, A. B., Buschiazzo, D. B., de-Brogniez, D. D.,
Melillo, J. M., Richter, D. R., Termansen, M. T., van Noordwijk, M. N.,
Goverse, T. G., Ballabio, C. C., Bhattacharyya, T. B., Goldhaber, M. M.,
Nikolaidis, N. N., Zhao, Y. Z., Funk, R. F., Duffy, C. C., Pan, G. P., la
Scala, N. L., Gottschalk, P. G., Batjes, N. B., Six, J., van Wesemael, B. W.,
Stocking, M. S., Bampa, F. B., Bernoux, M. B., Feller, C. C., Lemanceau, P.
P., and Montanarella, L. L.: Benefits of soil carbon: report on the outcomes
of an international scientific committee on problems of the environment rapid
assessment workshop, Carbon Manag., 5, 185–192, 2014.
Bauer, A. and Black, A. L.: Organic carbon effects on available water
capacity of three soil textural groups, Soil Sci. Soc. Am. J., 56, 248–254,
1992.
Bauer, A. and Black, A. L.: Quantification of the Effect of Soil Organic
Matter Content on Soil Productivity, Soil Sci. Soc. Am. J., 58, 185,
https://doi.org/10.2136/sssaj1994.03615995005800010027x, 1994.
Bedada, W., Karltun, E., Lemenih, M., and Tolera, M.: Long-term addition of
compost and NP fertilizer increases crop yield and improves soil quality in
experiments on smallholder farms, Agr. Ecosyst. Environ., 195, 193–201,
https://doi.org/10.1016/j.agee.2014.06.017, 2014.
Bhardwaj, A. K., Jasrotia, P., Hamilton, S. K., and Robertson, G. P.:
Ecological management of intensively cropped agro-ecosystems improves soil
quality with sustained productivity, Agr. Ecosyst. Environ., 140, 419–429,
https://doi.org/10.1016/j.agee.2011.01.005, 2011.
Bhattacharyya, R., Das, T. K., Sudhishri, S., Dudwal, B., Sharma, A. R.,
Bhatia, A., and Singh, G.: Conservation agriculture effects on soil organic
carbon accumulation and crop productivity under a rice-wheat cropping system
in the western Indo-Gangetic Plains, Eur. J. Agron., 70, 11–21,
https://doi.org/10.1016/j.eja.2015.06.006, 2015.
Birkhofer, K., Bezemer, T. M., Bloem, J., Bonkowski, M., Christensen, S.,
Dubois, D., Ekelund, F., Fließbach, A., Gunst, L., Hedlund, K.,
Mäder, P., Mikola, J., Robin, C., Setala, H., Tatin-Froux, F., van der
Putten, W. H., and Scheu, S.: Long-term organic farming fosters below and
aboveground biota: Implications for soil quality, biological control and
productivity, Soil Biol. Biochem., 40, 2297–2308,
https://doi.org/10.1016/j.soilbio.2008.05.007, 2008.
Boddey, R. M., Jantalia, C. P., Conceia à O, P. C., Zanatta, J. A.,
Bayer, C. L., Mielniczuk, J. O., Dieckow, J., Santos, dos, H. P., Denardin,
J. E., Aita, C., Giacomini, S. J., Alves, B. J. R., and Urquiaga, S.: Carbon
accumulation at depth in Ferralsols under zero-till subtropical agriculture,
Glob. Change Biol., 16, 784–795, https://doi.org/10.1111/j.1365-2486.2009.02020.x, 2010.
Bolker, B. M., Brooks, M. E., Clark, C. J., Geange, S. W., Poulsen, J. R.,
Stevens, M. H. H., and White, J.-S. S.: Generalized linear mixed models: a
practical guide for ecology and evolution, Trends Ecol. Evol., 24, 127–135,
https://doi.org/10.1016/j.tree.2008.10.008, 2009.
Boulal, H., Gomez-Macpherson, H., and Villalobos, F. J.: Permanent bed
planting in irrigated Mediterranean conditions: Short-term effects on soil
quality, crop yield and water use efficiency, Field Crop Res., 130, 120–127,
https://doi.org/10.1016/j.fcr.2012.02.026, 2012.
Bremer, E., Janzen, H. H., and Johnston, A. M.: Sensitivity of total, light
fraction and mineralizable organic matter to management practices in a
Lethbridge soil, Can. J. Soil Sci., 74, 131–138, 1994.
Calegari, A., Hargrove, W. L., Rheinheimer, D. D. S., Ralisch, R., Tessier,
D., de Tourdonnet, S., and de Fatima Guimarães, M.: Impact of Long-Term
No-Tillage and Cropping System Management on Soil Organic Carbon in an
Oxisol: A Model for Sustainability, Agron. J., 100, 1013–1017,
https://doi.org/10.2134/agronj2007.0121, 2008.
Cambardella, C. A., Gajda, A. M., Doran, J. W., Wienhold, B. J., and Kettler,
T. A.: Assessment Methods for Soil Carbon, edited by: Lal, R., Kimble, J. M.,
Follett, R. F., and Stewart, B. A., CRC Press, Boca Raton, 2001.
Campbell, C. A., VandenBygaart, A. J., Zentner, R. P., McConkey, B. G.,
Smith, W., Lemke, R., Grant, B., and Jefferson, P. G.: Quantifying carbon
sequestration in a minimum tillage crop rotation study in semiarid
southwestern Saskatchewan, Can. J. Soil Sci., 87, 235–250, 2007.
Cassman, K. G.: Ecological intensification of cereal production systems:
Yield potential, soil quality, and precision agriculture, P. Natl. Acad. Sci.
USA, 96, 5952–5959, https://doi.org/10.1073/pnas.96.11.5952, 1999.
Castellano, M. J., Mueller, K. E., Olk, D. C., Sawyer, J. E., and Six, J.:
Integrating plant litter quality, soil organic matter stabilization, and the
carbon saturation concept, Glob. Change Biol., 21, 1–10,
https://doi.org/10.1111/gcb.12982, 2015.
Castellanos-Navarrete, A., Rodríguez-Aragonés, C., De Goede, R. G.
M., Kooistra, M. J., Sayre, K. D., Brussaard, L., and Pulleman, M. M.:
Earthworm activity and soil structural changes under conservation agriculture
in central Mexico, Soil Till. Res., 123, 61–70,
https://doi.org/10.1016/j.still.2012.03.011, 2012.
Celik, I., Gunal, H., Budak, M., and Akpinar, C.: Effects of long-term
organic and mineral fertilizers on bulk density and penetration resistance in
semi-arid Mediterranean soil conditions, Geoderma, 160, 236–243,
https://doi.org/10.1016/j.geoderma.2010.09.028, 2010.
Chabbi, A., Lehmann, J., Ciais, P., Loescher, H. W., Cotrufo, M. F., Don, A.,
SanClements, M., Schipper, L., Six, J., Smith, P., and Rumpel, C.: Aligning
agriculture and climate policy, Nature Clim. Change, 7, 307–309, 2017.
Chen, H. X., Zhao, Y., Feng, H., Li, H. J., and Sun, B. H.: Assessment of
climate change impacts on soil organic carbon and crop yield based on
long-term fertilization applications in Loess Plateau, China, Plant Soil,
390, 401–417, https://doi.org/10.1007/s11104-014-2332-1, 2015.
Chirinda, N., Olesen, J. E., Porter, J. R., and Schjønning, P.: Soil
properties, crop production and greenhouse gas emissions from organic and
inorganic fertilizer-based arable cropping systems, Agr. Ecosyst. Environ.,
139, 584–594, https://doi.org/10.1016/j.agee.2010.10.001, 2010.
Cid, P., Carmona, I., Murillo, J. M., and Gomez-Macpherson, H.: No-tillage
permanent bed planting and controlled traffic in a maize-cotton irrigated
system under Mediterranean conditions: Effects on soil compaction, crop
performance and carbon sequestration, Eur. J. Agron., 61, 24–34,
https://doi.org/10.1016/j.eja.2014.08.002, 2014.
Costa, S. E. V. G. A., Souza, E. D., Anghinoni, I., Flores, J. P. C., Vieira,
F. C. B., Martins, A. P., and Ferreira, E. V. O.: Patterns in phosphorus and
corn root distribution and yield in long-term tillage systems with fertilizer
application, Soil Till. Res., 109, 41–49, https://doi.org/10.1016/j.still.2010.04.003,
2010.
Culman, S. W., Snapp, S. S., Green, J. M., and Gentry, L. E.: Short- and
long-term labile soil carbon and nitrogen dynamics reflect management and
predict corn agronomic performance, Agron. J., 105, 493–502,
https://doi.org/10.2134/agronj2012.0382, 2013.
Datta, S. P., Rattan, R. K., and Chandra, S.: Labile soil organic carbon,
soil fertility, and crop productivity as influenced by manure and mineral
fertilizers in the tropics, J. Plant Nutr. Soil Sc., 173, 715–726,
https://doi.org/10.1002/jpln.200900010, 2010.
DeMaria, I. C., Nnabude, P. C., and de Castro, O. M.: Long-term tillage and
crop rotation effects on soil chemical properties of a Rhodic Ferralsol in
southern Brazil, Soil Till. Res., 51, 71–79,
https://doi.org/10.1016/S0167-1987(99)00025-2, 1999.
de Moraes Sa, J. C., Tivet, F., Lal, R., Briedis, C., Hartman, D. C., Santos,
dos, J. Z., and dos Santos, J. B.: Long-term tillage systems impacts on soil
C dynamics, soil resilience and agronomic productivity of a Brazilian Oxisol,
Soil Till. Res., 136, 38–50, https://doi.org/10.1016/j.still.2013.09.010, 2014.
D'Hose, T., Cougnon, M., De Vliegher, A., Vandecasteele, B., Viaene, N.,
Cornelis, W., Van Bockstaele, E., and Reheul, D.: The positive relationship
between soil quality and crop production: A case study on the effect of farm
compost application, Appl. Soil Ecol., 75, 189–198,
https://doi.org/10.1016/j.apsoil.2013.11.013, 2014.
Diacono, M., Ferri, D., Ciaccia, C., Tittarelli, F., Ceglie, F., Verrastro,
V., Ventrella, D., Vitti, C., and Montemurro, F.: Bioassays and application
of olive pomace compost on emmer: effects on yield and soil properties in
organic farming, Acta. Agr. Scand. B-S. P., 62, 510–518,
https://doi.org/10.1080/09064710.2012.663785, 2012.
Drinkwater, L. E., Wagoner, P., and Sarrantonio, M.: Legume-based cropping
systems have reduced carbon and nitrogen losses, Nature, 396, 262–265, 1998.
Edmeades, D. C.: The long-term effects of manures and fertilisers on soil
productivity and quality: a review, Nutr. Cycl. Agroecosys., 66, 165–180,
2003.
FAO: Underpinning conservation agriculture's benefits: the roots of soil
health and function, Food and Agriculture Organization of the United Nations,
Rome, 2008.
Foley, J. A., Ramankutty, N., Brauman, K. A., Cassidy, E. S., Gerber, J. S.,
Johnston, M., Mueller, N. D., O'Connell, C., Ray, D. K., West, P. C., Balzer,
C., Bennett, E. M., Carpenter, S. R., Hill, J., Monfreda, C., Polasky, S.,
Rockström, J., Sheehan, J., Siebert, S., Tilman, D., and Zaks, D. P. M.:
Solutions for a cultivated planet, Nature, 478, 337–342,
https://doi.org/10.1038/nature10452, 2011.
Friedl, M. A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N.,
Sibley, A., and Huang, X.: MODIS Collection 5 global land cover: Algorithm
refinements and characterization of new datasets, Remote Sens. Environ., 114,
168–182, https://doi.org/10.1016/j.rse.2009.08.016, 2010.
Gelman, A.: Scaling regression inputs by dividing by two standard deviations,
Stat. Med., 27, 2865–2873, https://doi.org/10.1002/sim.3107, 2008.
Giller, K. E., Witter, E., Corbeels, M., and Tittonell, P.: Conservation
agriculture and smallholder farming in Africa: The heretics' view, Field Crop
Res., 114, 23–34, 2009.
Godfray, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D.,
Muir, J. F., Pretty, J., Robinson, S., Thomas, S. M., and Toulmin, C.: Food
Security: The Challenge of Feeding 9 Billion People, Science, 327, 812–818,
https://doi.org/10.1126/science.1185383, 2010.
Grandy, A. S., Loecke, T. D., Parr, S., and Robertson, G. P.: Long-term
trends in nitrous oxide emissions, soil nitrogen, and crop yields of till and
no-till cropping systems, J. Environ. Qual., 35, 1487–1495,
https://doi.org/10.2134/jeq2005.0166, 2006.
Guo, S. L., Wu, J. S., Coleman, K., Zhu, H. H., Li, Y., and Liu, W. Z.: Soil
organic carbon dynamics in a dryland cereal cropping system of the Loess
Plateau under long-term nitrogen fertilizer applications, Plant Soil, 353,
321–332, https://doi.org/10.1007/s11104-011-1034-1, 2012.
Guo, Z. L., Cai, C. F., Li, Z. X., Wang, T. W., and Zheng, M. J.: Crop
residue effect on crop performance, soil N2O and CO2
emissions in alley cropping systems in subtropical China, Agroforest. Sys.,
76, 67–80, https://doi.org/10.1007/s10457-008-9170-1, 2009.
Haddaway, N. R., Hedlund, K., Jackson, L. E., Kätterer, T., Lugato, E.,
Thomsen, I. K., Jørgensen, H. B., and Söderström, B.: What are the
effects of agricultural management on soil organic carbon in boreo-temperate
systems?, Environmental Evidence, 4, 23, https://doi.org/10.1186/s13750-015-0049-0, 2015.
Hatfield, J. L., Sauer, T. J., and Cruse, R. M.: Soil: The Forgotten Piece of
the Water, Food, Energy Nexus, Adv. Agron., 143, 1–46,
https://doi.org/10.1016/bs.agron.2017.02.001, 2017.
He, J., Li, H. W., Rasaily, R. G., Wang, Q. J., Cai, G. H., Su, Y. B., Qiao,
X. D., and Liu, L. J.: Soil properties and crop yields after 11 years of no
tillage farming in wheat-maize cropping system in North China Plain, Soil
Till. Res., 113, 48–54, https://doi.org/10.1016/j.still.2011.01.005, 2011.
Hengl, T., de Jesus, J. M., MacMillan, R. A., Batjes, N. H., Heuvelink, G. B.
M., Ribeiro, E., Samuel-Rosa, A., Kempen, B., Leenaars, J. G. B., Walsh, M.
G., and Gonzalez, M. R.: SoilGrids1km – Global Soil Information Based on
Automated Mapping, edited by B. Bond-Lamberty, Plos One, 9, e105992,
https://doi.org/10.1371/journal.pone.0105992, 2014.
Herrick, J. E.: Soil quality: an indicator of sustainable land management?,
Appl. Soil Ecol., 15, 75–83, 2000.
Hijbeek, R., van Ittersum, M. K., ten Berge, H. F. M., Gort, G., Spiegel, H.,
and Whitmore, A. P.: Do organic inputs matter – a meta-analysis of
additional yield effects for arable crops in Europe, Plant Soil, 411,
293–303, https://doi.org/10.1007/s11104-016-3031-x, 2017.
Hobbs, N. T. and Hilborn, R.: Alternatives to statistical hypothesis testing
in ecology: A guide to self teaching, Ecol. Appl., 16, 5–19, 2006.
Hossain, M. S., Hossain, A., Sarkar, M. A. R., Jahiruddin, M., da Silva, J.
A. T., and Hossain, M. I.: Productivity and soil fertility of the rice-wheat
system in the High Ganges River Floodplain of Bangladesh is influenced by the
inclusion of legumes and manure, Agr. Ecosyst. Environ., 218, 40–52,
https://doi.org/10.1016/j.agee.2015.11.017, 2016.
Hu, C., Li, S. L., Qiao, Y., Liu, D. H., and Chen, Y. F.: Effects of 30 years
repeated fertilizer applications on soil properties, microbes and crop yields
in rice-wheat copping systems, Exp. Agr., 51, 355–369,
https://doi.org/10.1017/s0014479714000350, 2015.
Hu, W. G., Jiao, Z. F., Wu, F. S., Liu, Y. J., Dong, M. X., Ma, X. J., Fan,
T. L., An, L. Z., and Feng, H. Y.: Long-term effects of fertilizer on soil
enzymatic activity of wheat field soil in Loess Plateau, China,
Ecotoxicology, 23, 2069–2080, https://doi.org/10.1007/s10646-014-1329-0, 2014.
Janzen, H. H.: The soil carbon dilemma: Shall we hoard it or use it?, Soil
Biol. Biochem., 38, 419–424, https://doi.org/10.1016/j.soilbio.2005.10.008, 2006.
Johnston, A. E., Poulton, P. R., and Coleman, K.: Soil Organic Matter: Its
Importance in Sustainable Agriculture and Carbon Dioxide Fluxes, Adv. Agron.,
101, 1–57, https://doi.org/10.1016/S0065-2113(08)00801-8, 2009.
Kaihura, F. B. S., Kullaya, I. K., Kilasara, M., Aune, J. B., Singh, B. R.,
and Lal, R.: Soil quality effects of accelerated erosion and management
systems in three eco-regions of Tanzania, Soil Till. Res., 53, 59–70,
https://doi.org/10.1016/s0167-1987(99)00077-x, 1999.
Karbozova Saljnikov, E., Funakawa, S., Akhmetov, K., and Kosaki, T.: Soil
organic matter status of Chernozem soil in North Kazakhstan: effects of
summer fallow, Soil Biol. Biochem., 36, 1373–1381,
https://doi.org/10.1016/j.soilbio.2004.02.027, 2004.
Kautz, T., Stumm, C., Kösters, R., and Köpke, U.: Effects of
perennial fodder crops on soil structure in agricultural headlands, J. Plant
Nutr. Soil Sc., 173, 490–501, https://doi.org/10.1002/jpln.200900216, 2010.
Kazemeini, S. A., Bahrani, M. J., Pirasteh-Anosheh, H., and Momeni, S. M. M.:
Maize growth and yield as affected by wheat residues and irrigation
management in a no-tillage system, Arch. Agron. Soil Sci., 60, 1543–1552,
https://doi.org/10.1080/03650340.2014.896457, 2014.
Kemper, W. D. and Koch, E. J.: Aggregate stability of soils from Western
United States and Canada, United States Department of Agriculture,
Washington, DC, 1966.
Kravchenko, A. N. and Bullock, D. G.: Correlation of corn and soybean grain
yield with topography and soil properties, Agron. J., 92, 75–83,
https://doi.org/10.2134/agronj2000.92175x, 2000.
Kucharik, C. J., Brye, K. R., Norman, J. M., Foley, J. A., Gower, S. T., and
Bundy, L. G.: Measurements and modeling of carbon and nitrogen cycling in
agroecosystems of southern Wisconsin: Potential for SOC sequestration during
the next 50 years, Ecosystems, 4, 237–258,
https://doi.org/10.1007/s10021-001-0007-2, 2001.
Lal, R.: Soil Carbon Sequestration Impacts on Global Climate Change and Food
Security, Science, 304, 1623–1627, https://doi.org/10.1126/science.1097396, 2004.
Larsen, E., Grossman, J., Edgell, J., Hoyt, G., Osmond, D., and Hu, S. J.:
Soil biological properties, soil losses and corn yield in long-term organic
and conventional farming systems, Soil Till. Res., 139, 37–45,
https://doi.org/10.1016/j.still.2014.02.002, 2014.
Lebbink, G., Vanfaassen, H. G., Vanouwerkerk, C., and Brussaard, L.: The
Dutch Programme on Soil Ecology of Arable Farming Systems: Farm management
monitoring program and general results, Agr. Ecosyst. Environ., 51, 7–20,
https://doi.org/10.1016/0167-8809(94)90032-9, 1994.
Lehmann, J. and Kleber, M.: The contentious nature of soil organic matter,
Nature, 528, 60–68, https://doi.org/10.1038/nature16069, 2015.
Leogrande, R., Vitti, C., Stellacci, A. M., Cocozza, C., and Ventrella, D.:
Response of wheat crop during transition to organic system under
Mediterranean conditions, Int. J. Plant Prod., 10, 565–577, 2016.
Li, Z. T., Yang, J. Y., Drury, C. F., and Hoogenboom, G.: Evaluation of the
DSSAT-CSM for simulating yield and soil organic C and N of a long-term maize
and wheat rotation experiment in the Loess Plateau of Northwestern China,
Agr. Syst., 135, 90–104, https://doi.org/10.1016/j.agsy.2014.12.006, 2015.
Liu, E. K., Teclemariam, S. G., Yan, C. R., Yu, J. M., Gu, R. S., Liu, S.,
He, W. Q., and Liu, Q.: Long-term effects of no-tillage management practice
on soil organic carbon and its fractions in the northern China, Geoderma,
213, 379–384, https://doi.org/10.1016/j.geoderma.2013.08.021, 2014.
Liu, H. T., Meng, J., Bo, W. J., Cheng, D., Li, Y., Guo, L. Y., Li, C. H.,
Zheng, Y. H., Liu, M. Z., Ning, T. Y., Wu, G. L., Yu, X. F., Feng, S. F.,
Tana, W. Y., Li, J., Li, L. J., Zeng, Y., Liu, S. V., and Jiang, G. M.:
Biodiversity management of organic farming enhances agricultural
sustainability, Sci. Rep., 6, 23816, https://doi.org/10.1038/srep23816, 2016.
Liu, X. E., Li, X. G., Hai, L., Wang, Y. P., Fu, T. T., Turner, N. C., and
Li, F. M.: Film-Mulched Ridge-Furrow Management Increases Maize Productivity
and Sustains Soil Organic Carbon in a Dryland Cropping System, Soil Sci. Soc.
Am. J., 78, 1434–1441, https://doi.org/10.2136/sssaj2014.04.0121, 2014.
Liu, X. Y., Ye, Y. X., Liu, Y. M., Zhang, A., Zhang, X. H., Li, L. Q., Pan,
G. X., Kibue, G. W., Zheng, J. F., and Zheng, J. W.: Sustainable biochar
effects for low carbon crop production: A 5-crop season field experiment on a
low fertility soil from Central China, Agr. Syst., 129, 22–29,
https://doi.org/10.1016/j.agsy.2014.05.008, 2014.
López-Garrido, R., Madejón, E., León-Camacho, M., Girón, I.,
Moreno, F., and Murillo, J. M.: Reduced tillage as an alternative to
no-tillage under Mediterranean conditions: A case study, Soil Till. Res.,
140, 40–47, https://doi.org/10.1016/j.still.2014.02.008, 2014.
Loveland, P. and Webb, J.: Is there a critical level of organic matter in the
agricultural soils of temperate regions: A review, Soil Till. Res., 70,
1–18, 2003.
Lu, X. L., Lu, X. N., Tanveer, S. K., Wen, X. X., and Liao, Y. C.: Effects of
tillage management on soil CO2 emission and wheat yield under
rain-fed conditions, Soil Res., 54, 38–48, https://doi.org/10.1071/sr14300, 2016.
Lucas, S. T. and Weil, R. R.: Can a Labile Carbon Test be Used to Predict
Crop Responses to Improve Soil Organic Matter Management?, Agron. J., 104,
1160–1170, https://doi.org/10.2134/agronj2011.0415, 2012.
Ma, Q., Yu, W. T., Jiang, C. M., Zhou, H., and Xu, Y. G.: The influences of
mineral fertilization and crop sequence on sustainability of corn production
in northeastern China, Agr. Ecosyst. Environ., 158, 110–117,
https://doi.org/10.1016/j.agee.2012.05.023, 2012.
Ma, Z. M., Chen, J., Lyu, X. D., Liu, L. L., and Siddique, K. H. M.:
Distribution of soil carbon and grain yield of spring wheat under a permanent
raised bed planting system in an arid area of northwest China, Soil Till.
Res., 163, 274–281, https://doi.org/10.1016/j.still.2016.05.010, 2016.
Madejón, E., Lopes, R., Murillo, J. M., and Cabrera, F.: Agricultural use
of three (sugar-beet) vinasse composts: effect on crops and chemical
properties of a Cambisol soil in the Guadalquivir river valley (SW Spain),
Agr. Ecosyst. Environ., 84, 55–65, https://doi.org/10.1016/s0167-8809(00)00191-2, 2001.
Majumder, B., Mandal, B., and Bandyopadhyay, P. K.: Soil organic carbon pools
and productivity in relation to nutrient management in a 20-year-old
rice-berseem agroecosystem, Biol. Fert. Soils, 44, 451–461, 2008.
Mandal, N., Dwivedi, B. S., Meena, M. C., Singh, D., Datta, S. P., Tomar, R.
K., and Sharma, B. M.: Effect of induced defoliation in pigeonpea, farmyard
manure and sulphitation pressmud on soil organic carbon fractions, mineral
nitrogen and crop yields in a pigeonpea-wheat cropping system, Field Crop
Res., 154, 178–187, https://doi.org/10.1016/j.fcr.2013.08.007, 2013.
Masto, R. E., Chhonkar, P. K., Singh, D., and Patra, A. K.: Soil quality
response to long-term nutrient and crop management on a semi-arid Inceptisol,
Agr. Ecosyst. Environ., 118, 130–142, https://doi.org/10.1016/j.agee.2006.05.008, 2007.
Mikanová, O., Šimon, T., and Javůrek, M.: Relationships between
winter wheat yields and soil carbon under various tillage systems, https://doi.org/10.17221/512/2012-PSE, 2012.
Minasny, B., Malone, B. P., McBratney, A. B., Angers, D. A., Arrouays, D.,
Chambers, A., Chaplot, V., Chen, Z.-S., Cheng, K., Das, B. S., Field, D. J.,
Gimona, A., Hedley, C. B., Hong, S. Y., Mandal, B., Ben P Marchant, Martin,
M., McConkey, B. G., Mulder, V. L., O'Rourke, S., Richer-de-Forges, A. C.,
Odeh, I., Padarian, J., Paustian, K., Pan, G., Poggio, L., Savin, I.,
Stolbovoy, V., Stockmann, U., Sulaeman, Y., Tsui, C.-C., Vågen, T.-G.,
van Wesemael, B., and Winowiecki, L.: Soil carbon 4 per mille, Geoderma, 292,
59–86, https://doi.org/10.1016/j.geoderma.2017.01.002, 2017.
Mishra, V. K., Srivastava, S., Bhardwaj, A. K., Sharma, D. K., Singh, Y. P.,
and Nayak, A. K.: Resource conservation strategies for rice-wheat cropping
systems on partially reclaimed sodic soils of the Indo-Gangetic region, and
their effects on soil carbon, Nat. Resour. Forum, 39, 110–122,
https://doi.org/10.1111/1477-8947.12071, 2015.
Monfreda, C., Ramankutty, N., and Foley, J. A.: Farming the planet: 2.
Geographic distribution of crop areas, yields, physiological types, and net
primary production in the year 2000, Global Biogeochem. Cy., 22, GB1022,
https://doi.org/10.1029/2007GB002947, 2008.
Mueller, N. D., Gerber, J. S., Johnston, M., Ray, D. K., Ramankutty, N., and
Foley, J. A.: Closing yield gaps through nutrient and water management,
Nature, 490, 254–257, https://doi.org/10.1038/nature11420, 2012.
Mupangwa, W., Twomlow, S., and Walker, S.: Cumulative effects of reduced
tillage and mulching on soil properties under semi-arid conditions, J. Arid
Environ., 91, 45–52, https://doi.org/10.1016/j.jaridenv.2012.11.007, 2013.
Nakagawa, S. and Schielzeth, H.: A general and simple method for obtaining R2
from generalized linear mixed-effects models, in: Methods in Ecology and
Evolution, edited by: O'Hara, R. B., 4, 133–142,
https://doi.org/10.1111/j.2041-210x.2012.00261.x, 2013.
N'Dayegamiye, A.: Mixed paper mill sludge effects on corn yield, nitrogen
efficiency, and soil properties, Agron. J., 98, 1471–1478,
https://doi.org/10.2134/agronj2005.0339, 2006.
Niu, L. A., Hao, J. M., Zhang, B. Z., and Niu, X. S.: Influences of long-term
fertilizer and tillage management on soil fertility of the North China plain,
Pedosphere, 21, 813–820, 2011.
Njoku, C. and Mbah, C. N.: Effect of burnt and unburnt rice husk dust on
maize yield and soil physico-chemical properties of an ultisol in Nigeria,
Biological Agriculture and Horticulture, 28, 49–60,
https://doi.org/10.1080/01448765.2012.664374, 2012.
NRC: Understanding agricultural sustainability, in Toward Sustainable
Agricultural Systems in the 21st Century, 1–29, National Academies Press,
Washington, DC, 2010.
NRCS: Farming in the 21st century: a practical approach to improve soil
health, USDA, Natural Resources Conservation Service, Washington, DC, 2012.
NSTC (National Science and Technology Council): The State and Future of U.S.
Soils, Washington DC, available at: https://obamawhitehouse.archives.gov/sites/default/files/microsites/ostp/ssiwg_framework_december_2016.pdf
(last access 20 December 2018),
2016.
Oelofse, M., Markussen, B., Knudsen, L., Schelde, K., Olesen, J. E., Jensen,
L. S., and Bruun, S.: Do soil organic carbon levels affect potential yields
and nitrogen use efficiency? An analysis of winter wheat and spring barley
field trials, Eur. J. Agron., 66, 62–73, https://doi.org/10.1016/j.eja.2015.02.009,
2015.
Oldfield, E. E., Wood, S. A., Palm, C. A., and Bradford, M. A.: How much SOM
is needed for sustainable agriculture?, Front. Ecol. Environ., 13, 527–527,
2015.
Oldfield, E. E., Wood, S. A., and Bradford, M. A.: Direct effects of soil
organic matter on productivity mirror those observed with organic amendments,
Plant Soil, 348, 1–11, https://doi.org/10.1007/s11104-017-3513-5, 2017.
Oldfield, E. E., Bradford, M. A., and Wood, S. A.: Yield and SOC data from
published studies, https://doi.org/10.5063/F19W0CQ5, 2018.
Palm, C. A., Myers, R. J. K., and Nandwa, S. M.: Combined Use of Organic and
Inorganic Nutrient Sources for Soil Fertility Maintenance and Replenishment,
Replenishing Soil Fertility in Africa, SSSA Special Publication, 51,
193–217, https://doi.org/10.2136/sssaspecpub51.c8, 1997.
Palm, C. A., Giller, K. E., Mafongoya, P. L., and Swift, M. J.: Management of
organic matter in the tropics: translating theory into practice, Nutr. Cycl.
Agroecosys., 61, 63–75, https://doi.org/10.1023/A:1013318210809, 2001.
Pan, G., Smith, P., and Pan, W.: The role of soil organic matter in
maintaining the productivity and yield stability of cereals in China, Agr.
Ecosyst. Environ., 129, 344–348, https://doi.org/10.1016/j.agee.2008.10.008, 2009.
Paul, B. K., Vanlauwe, B., Ayuke, F., Gassner, A., Hoogmoed, M., Hurisso, T.
T., Koala, S., Lelei, D., Ndabamenye, T., Six, J., and Pulleman, M. M.:
Medium-term impact of tillage and residue management on soil aggregate
stability, soil carbon and crop productivity, Agr. Ecosyst. Environ., 164,
14–22, https://doi.org/10.1016/j.agee.2012.10.003, 2013.
Poulton, P., Johnston, J., Macdonald, A., White, R., and Powlson, D.: Major
limitations to achieving “4 per 1000” increases in soil organic carbon
stock in temperate regions: Evidence from long-term experiments at Rothamsted
Research, United Kingdom, Glob. Change Biol., 24, 2563–2584,
https://doi.org/10.1111/gcb.14066, 2018.
Powlson, D. S., Whitmore, A. P., and Goulding, K. W. T.: Soil carbon
sequestration to mitigate climate change: a critical re-examination to
identify the true and the false, Eur. J. Soil Sci., 62, 42–55,
https://doi.org/10.1111/j.1365-2389.2010.01342.x, 2011.
Pribyl, D. W.: A critical review of the conventional SOC to SOM conversion
factor, Geoderma, 156, 75–83, https://doi.org/10.1016/j.geoderma.2010.02.003, 2010.
Qin, W., Wang, D. Z., Guo, X. S., Yang, T. M., and Oenema, O.: Productivity
and sustainability of rainfed wheat-soybean system in the North China Plain:
results from a long-term experiment and crop modelling, Sci. Rep., 5, 17514,
https://doi.org/10.1038/srep17514, 2015.
Quiroga, A., Fernández, R., and Noellemeyer, E.: Grazing effect on soil
properties in conventional and no-till systems, Soil Till. Res., 105,
164–170, https://doi.org/10.1016/j.still.2009.07.003, 2009.
Ramankutty, N., Hertel, T., Lee, H. L., and Rose, S. K.: Global Agricultural
Land Use Data Global Agricultural Land Use Data for Integrated Assessment
Modeling, in: Human-induced climate change: An interdisciplinary assessment, Cambridge University Press, New York, 2007.
Rasmussen, C., Heckman, K., Wieder, W. R., Keiluweit, M., Lawrence, C. R.,
Berhe, A. A., Blankinship, J. C., Crow, S. E., Druhan, J. L., Pries, C. E.
H., Marin-Spiotta, E., Plante, A. F., Schädel, C., Schimel, J. P.,
Sierra, C. A., Thompson, A., and Wagai, R.: Beyond clay: towards an improved
set of variables for predicting soil organic matter content, Biogeochemistry,
137, 297–306, https://doi.org/10.1007/s10533-018-0424-3, 2018.
Rasmussen, P. E., Allmaras, R. R., Rohde, C. R., and Roager, N. C.: Crop
Residue Influences on Soil Carbon and Nitrogen in a Wheat-Fallow System1,
Soil Sci. Soc. Am. J., 44, 596, https://doi.org/10.2136/sssaj1980.03615995004400030033x,
1980.
Raymond, P. A., David, M. B., and Saiers, J. E.: The impact of fertilization
and hydrology on nitrate fluxes from Mississippi watersheds, Curr. Opin. Env.
Sust., 4, 212–218, https://doi.org/10.1016/j.cosust.2012.04.001, 2012.
Reeves, D. W.: The role of soil organic matter in maintaining soil quality in
continuous cropping systems, Soil Till. Res., 43, 131–167, 1997.
Reeves, M., Lal, R., Logan, T., and Sigarán, J.: Soil nitrogen and carbon
response to maize cropping system, nitrogen source, and tillage, Soil Sci.
Soc. Am. J., 61, 1387–1392, 1997.
Robertson, G. P., Gross, K. L., Hamilton, S. K., Landis, D. A., Schmidt, T.
M., Snapp, S. S., and Swinton, S. M.: Farming for Ecosystem Services: An
Ecological Approach to Production Agriculture, Bioscience, 64, 404–415,
https://doi.org/10.1093/biosci/biu037, 2014.
Sadeghi, H. and Bahrani, M. J.: Effects of crop residue and nitrogen rates on
yield and yield components of two dryland wheat (Triticum aestivum
L.) cultivars, Plant Prod. Sci., 12, 497–502, 2009.
Saikia, P., Bhattacharya, S. S., and Baruah, K. K.: Organic substitution in
fertilizer schedule: Impacts on soil health, photosynthetic efficiency, yield
and assimilation in wheat grown in alluvial soil, Agr. Ecosyst. Environ.,
203, 102–109, https://doi.org/10.1016/j.agee.2015.02.003, 2015.
Sanderman, J., Hengl, T., and Fiske, G. J.: Soil carbon debt of 12,000 years
of human land use, P. Natl. Acad. Sci. USA, 114, 9575–9580,
https://doi.org/10.1073/pnas.1706103114, 2017.
Scalise, A., Tortorella, D., Pristeri, A., Petrovičová, B.,
Gelsomino, A., Lindström, K., and Monti, M.: Legume-barley intercropping
stimulates soil N supply and crop yield in the succeeding durum wheat in a
rotation under rainfed conditions, Soil Biol. Biochem., 89, 150–161,
https://doi.org/10.1016/j.soilbio.2015.07.003, 2015.
Seremesic, S., Milosev, D., Djalovic, I., Zeremski, T., and Ninkov, J.:
Management of soil organic carbon in maintaining soil productivity and yield
stability of winter wheat, Plant Soil Environ., 57, 216–221, 2011.
Šimon, T., Kunzová, E., and Friedlová, M.: The effect of
digestate, cattle slurry and mineral fertilization on the winter wheat yield
and soil quality parameters, Plant Soil Environ., 62, 522–527, 2015.
Singh, V. K. and Dwivedi, B. S.: Yield and nitrogen use efficiency in wheat,
and soil fertility status as influenced by substitution of rice with pigeon
pea in a rice-wheat cropping system, Aust. J. Exp. Agr., 46, 1185–1194,
https://doi.org/10.1071/ea04046, 2006.
Singh, V. K., Yadvinder-Singh, Dwivedi, B. S., Singh, S. K., Majumdar, K.,
Jat, M. L., Mishra, R. P., and Rani, M.: Soil physical properties, yield
trends and economics after five years of conservation agriculture based
rice-maize system in north-western India, Soil Till. Res., 155, 133–148,
https://doi.org/10.1016/j.still.2015.08.001, 2016.
Sisti, C. P. J., Santos, dos, H. P., Kohhann, R., Alves, B. J. R., Urquiaga,
S., and Boddey, R. M.: Change in carbon and nitrogen stocks in soil under 13
years of conventional or zero tillage in southern Brazil, Soil Till. Res.,
76, 39–58, https://doi.org/10.1016/j.still.2003.08.007, 2004.
Soldevilla-Martinez, M., Martin-Lammerding, D., Tenorio, J. L., Walter, I.,
Quemada, M., and Lizaso, J. I.: Simulating improved combinations
tillage-rotation under dryland conditions, Span. J. Agric. Res., 11,
820–832, https://doi.org/10.5424/sjar/2013113-3747, 2013.
Spargo, J. T., Cavigelli, M. A., Mirsky, S. B., Maul, J. E., and Meisinger,
J. J.: Mineralizable soil nitrogen and labile soil organic matter in diverse
long-term cropping systems, Nutr. Cycl. Agroecosys., 90, 253–266,
https://doi.org/10.1007/s10705-011-9426-4, 2011.
Stine, M. A. and Weil, R. R.: The relationship between soil quality and crop
productivity across three tillage systems in South Central Honduras, Am. J.
Alternative Agr., 17, 2–8, 2002.
Stockmann, U., Padarian, J., McBratney, A., Minasny, B., de Brogniez, D.,
Montanarella, L., Hong, S. Y., Rawlins, B. G., and Field, D. J.: Global soil
organic carbon assessment, Glob. Food Secur.-Agr., 6, 9–16,
https://doi.org/10.1016/j.gfs.2015.07.001, 2015.
Tejada, M., Rodriguez-Morgado, B., Gómez, I., Franco-Andreu, L., Benitez,
C., and Parrado, J.: Use of biofertilizers obtained from sewage sludges on
maize yield, Eur. J. Agr., 78, 13–19, https://doi.org/10.1016/j.eja.2016.04.014, 2016.
Tiecher, T., Santos, dos, D. R., and Calegari, A.: Soil organic phosphorus
forms under different soil management systems and winter crops, in a long
term experiment, Soil Till. Res., 124, 57–67,
https://doi.org/10.1016/j.still.2012.05.001, 2012.
Trabucco, A. and Zomer, R. J.: Global Aridity Index (Global-Aridity) and
Global Potential Evapo-Transpiration (Global-PET) Geospatial Database, CGIAR
Consortium for Spatial Information, Published online, available from the
CGIAR-CSI GeoPortal at: https://cgiarcsi.community/data/global-aridity-and-pet-database/ (last accessed: January 2019),
2009.
van Groenigen, K. J., Hastings, A., Forristal, D., Roth, B., Jones, M., and
Smith, P.: Soil C storage as affected by tillage and straw management: An
assessment using field measurements and model predictions, Agr. Ecosyst.
Environ., 140, 218–225, https://doi.org/10.1016/j.agee.2010.12.008, 2011.
Vieira, F. C. B., Bayer, C., Zanatta, J. A., Dieckow, J., Mielniczuk, J., and
He, Z. L.: Carbon management index based on physical fractionation of soil
organic matter in an Acrisol under long-term no-till cropping systems, Soil
Till. Res., 96, 195–204, https://doi.org/10.1016/j.still.2007.06.007, 2007.
Vieira, F. C. B., Bayer, C., Zanatta, J., and Ernani, P. R.: Organic matter
kept Al toxicity low in a subtropical no-tillage soil under long-term
(21-year) legume-based crop systems and N fertilisation, Soil Res., 47,
707–714, https://doi.org/10.1071/SR08273, 2009.
Vitousek, P. M., Naylor, R., Crews, T., David, M. B., Drinkwater, L. E.,
Holland, E., Johnes, P. J., Katzenberger, J., Martinelli, L. A., Matson, P.
A., Nziguheba, G., Ojima, D., Palm, C. A., Robertson, G. P., Sanchez, P. A.,
Townsend, A. R., and Zhang, F. S.: Nutrient Imbalances in Agricultural
Development, Science, 324, 1519–1520, https://doi.org/10.1126/science.1170261, 2009.
Wang, J. Y., Yan, X. Y., and Gong, W.: Effect of long-term fertilization on
soil productivity on the North China Plain, Pedosphere, 25, 450–458, 2015.
Wang, Q. J., Lu, C. Y., Li, H. W., He, J., Sarker, K. K., Rasaily, R. G.,
Liang, Z. H., Qiao, X. D., Hui, L., and Mchugh, A. D. J.: The effects of
no-tillage with subsoiling on soil properties and maize yield: 12-Year
experiment on alkaline soils of Northeast China, Soil Till. Res., 137,
43–49, https://doi.org/10.1016/j.still.2013.11.006, 2014a.
Wang, Z. G., Jin, X., Bao, X. G., Li, X. F., Zhao, J. H., Sun, J. H.,
Christie, P., and Li, L.: Intercropping Enhances Productivity and Maintains
the Most Soil Fertility Properties Relative to Sole Cropping, Plos One, 9,
e113984, https://doi.org/10.1371/journal.pone.0113984, 2014b.
Williams, A., Hunter, M. C., Kammerer, M., Kane, D. A., Jordan, N. R.,
Mortensen, D. A., Smith, R. G., Snapp, S., and Davis, A. S.: Soil Water
Holding Capacity Mitigates Downside Risk and Volatility in US Rainfed Maize:
Time to Invest in Soil Organic Matter?, edited by: Gonzalez-Andujar, J. L.,
Plos One, 11, e0160974, https://doi.org/10.1371/journal.pone.0160974, 2016.
Wortman, S. E., Galusha, T. D., Mason, S. C., and Francis, C. A.: Soil
fertility and crop yields in long-term organic and conventional cropping
systems in Eastern Nebraska, Renew. Agr. Food Syst., 27, 200–216,
https://doi.org/10.1017/s1742170511000317, 2012.
Wu, J., Wang, W., Wang, X., Zhu, L., Yang, H., Han, X., Gao, J., Guo, W., and
Bian, X.: Residue management affects greenhouse gas emissions and soil
organic carbon in wheat-rice rotation system, Fresen. Environ. Bull., 24,
2751–2762, 2015.
Yang, J. M., Yang, J. Y., Dou, S., Yang, X. M., and Hoogenboom, G.:
Simulating the effect of long-term fertilization on maize yield and soil C/N
dynamics in northeastern China using DSSAT and CENTURY-based soil model,
Nutr. Cycl. Agroecosys., 95, 287–303, https://doi.org/10.1007/s10705-013-9563-z, 2013.
Yang, J., Gao, W., and Ren, S. R.: Long-term effects of combined application
of chemical nitrogen with organic materials on crop yields, soil organic
carbon and total nitrogen in fluvo-aquic soil, Soil Till. Res., 151, 67–74,
https://doi.org/10.1016/j.still.2015.03.008, 2015.
Yang, Z. C., Zhao, N., Huang, F., and Lv, Y.: Long-term effects of different
organic and inorganic fertilizer treatments on soil organic carbon
sequestration and crop yields on the North China Plain, Soil Till. Res., 146,
47–52, https://doi.org/10.1016/j.still.2014.06.011, 2015.
Yeboah, S., Zhang, R., Cai, L., Li, L., Xie, J., Luo, Z., Liu, J., and Wu,
J.: Tillage effect on soil organic carbon, microbial biomass carbon and crop
yield in spring wheat-field pea rotation, Plant Soil Environ., 62, 279–285,
https://doi.org/10.17221/66/2016-pse, 2016.
Zhang, S. X., Chen, X. W., Jia, S. X., Liang, A. Z., Zhang, X. P., Yang, X.
M., Wei, S. C., Sun, B. J., Huang, D. D., and Zhou, G. Y.: The potential
mechanism of long-term conservation tillage effects on maize yield in the
black soil of Northeast China, Soil Till. Res., 154, 84–90,
https://doi.org/10.1016/j.still.2015.06.002, 2015.
Zhang, W. J., Xu, M. G., Wang, B. R., and Wang, X. J.: Soil organic carbon,
total nitrogen and grain yields under long-term fertilizations in the upland
red soil of southern China, Nutr. Cycl. Agroecosys., 84, 59–69,
https://doi.org/10.1007/s10705-008-9226-7, 2009.
Zhang, Y. L., Li, C. H., Wang, Y. W., Hu, Y. M., Christie, P., Zhang, J. L.,
and Li, X. L.: Maize yield and soil fertility with combined use of compost
and inorganic fertilizers on a calcareous soil on the North China Plain, Soil
Till. Res., 155, 85–94, https://doi.org/10.1016/j.still.2015.08.006, 2016.
Zhao, Y. C., Yan, Z. B., Qin, J. H., Ma, Z. J., Zhang, Y. F., and Zhang, L.:
The potential of residues of furfural and biogas as calcareous soil
amendments for corn seed production, Environ. Sci. Pollut. R., 23,
6217–6226, https://doi.org/10.1007/s11356-015-5828-1, 2016.
Zomer, R. J., Trabucco, A., Bossio, D. A., and Verchot, L. V.: Climate change
mitigation: A spatial analysis of global land suitability for clean
development mechanism afforestation and reforestation, Agr. Ecosyst.
Environ., 126, 67–80, https://doi.org/10.1016/j.agee.2008.01.014, 2008.
Zomer, R. J., Bossio, D. A., Sommer, R., and Verchot, L. V.: Global
Sequestration Potential of Increased Organic Carbon in Cropland Soils, Sci.
Rep., 6, 1–8, https://doi.org/10.1038/s41598-017-15794-8, 2017.
Zvomuya, F., Janzen, H. H., Larney, F. J., and Olson, B. M.: A Long-Term
Field Bioassay of Soil Quality Indicators in a Semiarid Environment, Soil
Sci. Soc. Am. J., 72, 683, https://doi.org/10.2136/sssaj2007.0180, 2008.
Short summary
In this paper, we quantify the global-level relationship between soil organic matter and crop yield. We find that greater concentrations of soil organic matter are associated with greater yields and that increases in yields saturate around 2 % SOC. Using the relationship that we generate, we then provide an estimate of the potential for soil organic matter management to reduce global yield gaps for two of the most important staple crops (maize and wheat) grown worldwide.
In this paper, we quantify the global-level relationship between soil organic matter and crop...