Articles | Volume 3, issue 1
SOIL, 3, 67–82, 2017
https://doi.org/10.5194/soil-3-67-2017
SOIL, 3, 67–82, 2017
https://doi.org/10.5194/soil-3-67-2017

Original research article 30 Mar 2017

Original research article | 30 Mar 2017

A probabilistic approach to quantifying soil physical properties via time-integrated energy and mass input

Christopher Shepard et al.

Related authors

Controls on the hydraulic geometry of alluvial channels: bank stability to gravitational failure, the critical-flow hypothesis, and conservation of mass and energy
Jon D. Pelletier
Earth Surf. Dynam., 9, 379–391, https://doi.org/10.5194/esurf-9-379-2021,https://doi.org/10.5194/esurf-9-379-2021, 2021
Short summary
An open-source database for the synthesis of soil radiocarbon data: International Soil Radiocarbon Database (ISRaD) version 1.0
Corey R. Lawrence, Jeffrey Beem-Miller, Alison M. Hoyt, Grey Monroe, Carlos A. Sierra, Shane Stoner, Katherine Heckman, Joseph C. Blankinship, Susan E. Crow, Gavin McNicol, Susan Trumbore, Paul A. Levine, Olga Vindušková, Katherine Todd-Brown, Craig Rasmussen, Caitlin E. Hicks Pries, Christina Schädel, Karis McFarlane, Sebastian Doetterl, Christine Hatté, Yujie He, Claire Treat, Jennifer W. Harden, Margaret S. Torn, Cristian Estop-Aragonés, Asmeret Asefaw Berhe, Marco Keiluweit, Ágatha Della Rosa Kuhnen, Erika Marin-Spiotta, Alain F. Plante, Aaron Thompson, Zheng Shi, Joshua P. Schimel, Lydia J. S. Vaughn, Sophie F. von Fromm, and Rota Wagai
Earth Syst. Sci. Data, 12, 61–76, https://doi.org/10.5194/essd-12-61-2020,https://doi.org/10.5194/essd-12-61-2020, 2020
Short summary
Quantifying the controls on potential soil production rates: a case study of the San Gabriel Mountains, California
Jon D. Pelletier
Earth Surf. Dynam., 5, 479–492, https://doi.org/10.5194/esurf-5-479-2017,https://doi.org/10.5194/esurf-5-479-2017, 2017
Short summary
Constraining frequency–magnitude–area relationships for rainfall and flood discharges using radar-derived precipitation estimates: example applications in the Upper and Lower Colorado River basins, USA
Caitlin A. Orem and Jon D. Pelletier
Hydrol. Earth Syst. Sci., 20, 4483–4501, https://doi.org/10.5194/hess-20-4483-2016,https://doi.org/10.5194/hess-20-4483-2016, 2016
Short summary
The influence of Holocene vegetation changes on topography and erosion rates: a case study at Walnut Gulch Experimental Watershed, Arizona
Jon D. Pelletier, Mary H. Nichols, and Mark A. Nearing
Earth Surf. Dynam., 4, 471–488, https://doi.org/10.5194/esurf-4-471-2016,https://doi.org/10.5194/esurf-4-471-2016, 2016
Short summary

Related subject area

Soils and the natural environment
SoilGrids 2.0: producing quality-assessed soil information for the globe
Luis M. de Sousa, Laura Poggio, Niels H. Batjes, Gerard B. M. Heuvelink, Bas Kempen, Eloi Riberio, and David Rossiter
SOIL Discuss., https://doi.org/10.5194/soil-2020-65,https://doi.org/10.5194/soil-2020-65, 2020
Revised manuscript accepted for SOIL
Short summary
Disaggregating a regional-extent digital soil map using Bayesian area-to-point regression kriging for farm-scale soil carbon assessment
Sanjeewani Nimalka Somarathna Pallegedara Dewage, Budiman Minasny, and Brendan Malone
SOIL, 6, 359–369, https://doi.org/10.5194/soil-6-359-2020,https://doi.org/10.5194/soil-6-359-2020, 2020
Short summary
Opportunities and limitations related to the application of plant-derived lipid molecular proxies in soil science
Boris Jansen and Guido L. B. Wiesenberg
SOIL, 3, 211–234, https://doi.org/10.5194/soil-3-211-2017,https://doi.org/10.5194/soil-3-211-2017, 2017
Short summary
Spatial variability in soil organic carbon in a tropical montane landscape: associations between soil organic carbon and land use, soil properties, vegetation, and topography vary across plot to landscape scales
Marleen de Blécourt, Marife D. Corre, Ekananda Paudel, Rhett D. Harrison, Rainer Brumme, and Edzo Veldkamp
SOIL, 3, 123–137, https://doi.org/10.5194/soil-3-123-2017,https://doi.org/10.5194/soil-3-123-2017, 2017
Short summary
Arctic soil development on a series of marine terraces on central Spitsbergen, Svalbard: a combined geochronology, fieldwork and modelling approach
W. Marijn van der Meij, Arnaud J. A. M. Temme, Christian M. F. J. J. de Kleijn, Tony Reimann, Gerard B. M. Heuvelink, Zbigniew Zwoliński, Grzegorz Rachlewicz, Krzysztof Rymer, and Michael Sommer
SOIL, 2, 221–240, https://doi.org/10.5194/soil-2-221-2016,https://doi.org/10.5194/soil-2-221-2016, 2016
Short summary

Cited articles

Almond, P., Roering, J., and Hales, T. C.: Using soil residence time to delineate spatial and temporal patterns of transient landscape response, J. Geophys. Res., 112, F03S17, https://doi.org/10.1029/2006JF000568, 2007.
Amundson, R., Heimsath, A., Owen, J., Yoo, K., and Dietrich, W. E.: Hillslope soils and vegetation, Geomorphology, 234, 122–132, https://doi.org/10.1016/j.geomorph.2014.12.031, 2015.
Anderson, R. S., Repka, J. L., and Dick, G. S.: Explicit treatment of inheritance in dating depositional surfaces using in site 10Be and 26Al, Geology, 24, 47–51, 1996.
Andre, J. and Anderson, H.: Variation of Soil Erodibility with Geology, Geographic Zone, Elevation, and Vegetation Type in Northern California Wildlands, J. Geophys. Res., 66, 3351–3358, 1961.
Bacon, A. R., Richter, D. D., Bierman, P. R., and Rood, D. H.: Coupling meteoric 10Be with pedogenic losses of 9Be to improve soil residence time estimates on an ancient North American interfluve, Geology, 40, 847–850, https://doi.org/10.1130/G33449.1, 2012.
Download
Short summary
Here we demonstrate the use of a probabilistic approach for quantifying soil physical properties and variability using time and environmental input. We applied this approach to a synthesis of soil chronosequences, i.e., soils that change with time. The model effectively predicted clay content across the soil chronosequences and for soils in complex terrain using soil depth as a proxy for hill slope. This model represents the first attempt to model soils from a probabilistic viewpoint.