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Abstract. Soils form as the result of a complex suite of biogeochemical and physical processes; however, effec-
tive modeling of soil property change and variability is still limited and does not yield widely applicable results.
We suggest that predicting a distribution of probable values based upon the soil-forming state factors is more
effective and applicable than predicting discrete values. Here we present a probabilistic approach for quantify-
ing soil property variability through integrating energy and mass inputs over time. We analyzed changes in the
distributions of soil texture and solum thickness as a function of increasing time and pedogenic energy (effective
energy and mass transfer, EEMT) using soil chronosequence data compiled from the literature. Bivariate normal
probability distributions of soil properties were parameterized using the chronosequence data; from the bivariate
distributions, conditional univariate distributions based on the age and flux of matter and energy into the soil
were calculated and probable ranges of each soil property determined. We tested the ability of this approach to
predict the soil properties of the original soil chronosequence database and soil properties in complex terrain at
several Critical Zone Observatories in the US. The presented probabilistic framework has the potential to greatly
inform our understanding of soil evolution over geologic timescales. Considering soils probabilistically captures
soil variability across multiple scales and explicitly quantifies uncertainty in soil property change with time.

1 Introduction

Pedogenic models that can be widely applied and easily uti-
lized are paramount for understanding soil-landscape evo-
lution, soil property change with time, and predicting fu-
ture soil conditions. A mathematically simple, easily param-
eterized approach has yet to be developed that is capable
of predicting current soil properties or recreating potential
soil evolution with time. Here we address this knowledge
gap through the development of a probabilistic model of soil
property change capable of predicting soil properties across
a wide range of terrains, climates, and ecosystems.

The state-factor approach has been one of the primary pe-
dogenic models since its development in the late 1800s and
early 1900s (Dokuchaev, 1883; Jenny, 1941). The soil state-
factor approach (Jenny, 1941) assumes that the state of the

soil system or specific soil properties (S) may be described
as a function of the external environment, represented by cli-
mate (cl), biology (o), relief (r), parent material (p), and
time (t): S = f (cl, o, r , p, t). This approach increased our
understanding of soil variation across each factor, but more
complex, multivariate approaches are generally not possible
or difficult to derive from this formulation (Yaalon, 1975).
From the original state-factor model have evolved pedo-
genic models that include functional (Jenny, 1961), energetic
(Rasmussen and Tabor, 2007; Rasmussen et al., 2005, 2011;
Runge, 1973; Smeck et al., 1983; Volobuyev, 1964), and
mechanistic approaches (Finke, 2012; Minasny and McBrat-
ney, 1999; Salvador-Blanes et al., 2007; Vanwalleghem et al.,
2013). However, many of these approaches are either limited
to a site-specific basis, require a high degree of parameteri-
zation, or lack wide-scale applicability.
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Here we develop a simple probabilistic approach to pre-
dict soil physical properties using a large dataset of chronose-
quence studies. The model compresses state-factor variabil-
ity into two key components (parent material and total pe-
dogenic energy, defined in Sect. 1.1) that were parameter-
ized and calibrated using the chronosequence database. We
hypothesized that a probabilistic approach predicts accurate
ranges of soil physical properties based on the soil-forming
environment. Additionally, we modified the model to include
soil depth to capture the influence of redistributive hillslope
processes to predict soil properties. We hypothesized that by
including soil depth, the model would effectively predict the
clay content in an independent dataset synthesizing soil and
landscape variability in complex, hilly terrain from a wide
range of environments.

Probabilistic model of soil property change

The model presented here is based on a reformulated state-
factor model, where a location has a probability of displaying
a range of differing soil morphologies and properties based
upon the state factors, with some range of values more prob-
able than others, meaning that the state-factor model (Jenny,
1941) may be restated as

P (s1 ≤ S ≤ s2)= f (cl, o, r, p, t), (1)

where the left-hand side of the equation, P (s1 ≤ S ≤ s2),
represents the probability that a given soil will have a value
located between a lower limit (s1) and an upper limit (s2)
(Phillips, 1993b). Equation (1) can be restated more simply
as

P (s1 ≤ S ≤ s2)= f (Lo, Px, t), (2)

where the original soil-forming state factors have been sim-
plified to represent the fluxes of matter and energy into the
soil system (Px), incorporating the influence of climate and
biology, and the initial state of the soil-forming conditions
(Lo), incorporating the influence of the initial topography
and original soil parent material and time or age of the soil
system (t) (Jenny, 1961).

Equation (2) was further simplified to make the approach
operational. A quantitative measure of climate and biology
was needed to represent the influence of Px on soil forma-
tion. We used a quantification of Px calculated from effective
precipitation and biological productivity, termed effective en-
ergy and mass transfer (EEMT, J m−2 yr−1) (Rasmussen and
Tabor, 2007; Rasmussen et al., 2005, 2011). EEMT provides
a measure of the energy transferred to the subsurface, in the
form of reduced carbon from primary productivity and heat
transfer from effective precipitation, which has the poten-
tial to perform pedogenic work, e.g., chemical weathering
and carbon cycling. Using EEMT as a simplification of Px ,
Eq. (2) was restated as (Rasmussen et al., 2011)

P (s1 ≤ S ≤ s2)= f (Lo, EEMT, t). (3)

We further simplified Eq. (3) by combining the flux term
EEMT and the age of the soil system (t). EEMT multiplied
by the age of the soil system, i.e., EEMT× t , provides an es-
timate of the total energy transferred to the soil system over
the course of its evolution, referred to here as total pedogenic
energy (TPE, J m−2). The TPE provides an estimate of Px
that incorporates soil age; thus, Eq. (3) may be restated as

P (s1 ≤ S ≤ s2)= f (Lo,TPE), (4)

where at a certain point in time the probability of a soil prop-
erty existing between s1 and s2 is a function of Lo and TPE.
Lo controls the spread or variation of the probability distri-
bution P (s1 ≤ S ≤ s2) over time and the potential observ-
able soil states, whereas TPE is proportional to the internal
soil state at a given time (Jenny, 1961). Explicitly includ-
ing time in Eq. (4) through TPE partially captures variation
in soil property change attributable to topography and par-
ent material. Soil residence time may be directly related to
landscape position through topographic control on soil pro-
duction and sediment transport and deposition (Heimsath et
al., 1997, 2002; Yoo et al., 2007). Additionally, parent ma-
terial modulates soil residence time through control on soil
depth (Heckman and Rasmussen, 2011; Rasmussen et al.,
2005), soil production, and sediment transport rates (Andre
and Anderson, 1961; Portenga and Bierman, 2011). The ini-
tial conditions of the soil-forming system (Lo) are never fully
known; however, representing the state of the soil system as a
probable distribution of values, implicitly accounting for soil
age, and not constraining the initial soil-forming conditions,
the influence of initial conditions can be partially ignored,
and hence we herein focus on modeling soil properties using
only TPE.

Quantitatively realizing Eq. (4) required the use of pre-
determined joint probability density functions parameterized
with TPE and a selected soil physical property. Bivariate nor-
mal density functions were calculated to determine the prob-
ability of a soil property range given a TPE value. The bi-
variate density function was selected due to its simplicity
and ease of parameterization; other bivariate density func-
tions are available that may better fit the selected soil prop-
erty data but are not considered here. The bivariate normal
density distribution (Ugarte et al., 2008) was calculated as
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1
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where ρ represents the Pearson correlation coefficient, µx is
the mean of TPE, µy is the mean of the selected soil physical
property, σx is the standard deviation of TPE, and σy is the
standard deviation of the selected soil physical property. Us-
ing the bivariate normal density functions, conditional mean
and variance values were calculated given a value of TPE; the
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conditional means and variances parameterized conditional
univariate normal distributions for the selected soil physical
properties. The conditional mean (Ugarte et al., 2008) was
calculated as

µY |X=x = µy + ρ
σy

σx
(x−µx), (6)

where µY |X=x is the conditional mean soil property value
given a value for TPE. The conditional variance (Ugarte et
al., 2008) was calculated as

σ 2
Y |X=x = σ

2
y

(
1− ρ2

)
, (7)

where σ 2
Y |X=x is the conditional variance of the soil property

given a value of TPE.
Applying this approach required certain assumptions and

simplifications. The model assumes that climate was constant
over the entire duration of pedogenesis. The model makes no
assumptions about the progressive and regressive processes
that drive pedogenesis; by weighting all profiles equally, the
net effects of both progressive (e.g., horizonation, clay ac-
cumulation, reddening) and regressive (e.g., haplodization,
erosion, pedoturbation) pedogenic processes (Johnson and
Watson-Stegner, 1987; Phillips, 1993a) are captured in the
model structure. The model also does not consider the net ef-
fect of progressive and regressive pedogenic processes on the
distribution of selected soil properties with depth. The model
makes no assumptions about the initial soil-forming system,
and we did not constrain the model to any particular initial
condition for either parent material or geomorphic landform;
the model simply describes the probability of a location ex-
hibiting a range of soil properties based on TPE. The model
assumes that all changes in soil physical properties are due
to pedogenic processes. We used a bivariate normal distribu-
tion; consequently the model assumes that the data conform
to a normal distribution.

2 Methods

2.1 Data collection and preparation

The probability distributions were parameterized using an
extensive literature review of chronosequence studies. More
than 140 chronosequence publications were identified us-
ing Google Scholar (www.scholar.google.com) and Thom-
son Reuters Web of Science (www.webofknowledge.com),
44 of which contained the required data. Inclusion within
the present study required the following: profile descriptions
with horizon-level clay, sand, and silt content and soil depth;
well-defined ages of the soil-geomorphic surfaces; and ge-
ographic coordinates or maps showing locations of the de-
scribed profiles. The chronosequences spanned a wide range
of geographic locations, ecosystems, climates, rock types,
and geomorphic landforms (Fig. 1, Table S1 in the Supple-
ment). The chronosequence soils spanned ages from 10 years

Figure 1. Map of study sites. Yellow points indicate location of
chronosequences, and red triangles indicate location of soils in com-
plex terrain.

to 4.35 Myr and depth ranges from 3.0 to 1460 cm, with mean
annual temperature (MAT) and precipitation (MAP) ranging
from −11.2 to 28.0 ◦C and 3.0 to 400 cm yr−1, respectively.
We were limited in site selection by the available data; as
such we could not control for any bias that may exist with
regard to site selection and reported soil property values.

2.2 Total pedogenic energy

The influence of both climate and vegetation at the loca-
tions of each soil profile was determined using effective
energy and mass transfer (EEMT) (Rasmussen and Tabor,
2007; Rasmussen et al., 2005). EEMT quantifies the heat and
chemical energy from effective precipitation and net primary
productivity added to the soil system (Rasmussen and Ta-
bor, 2007; Rasmussen et al., 2005, 2011). EEMT describes
the energy added to the soil system that can perform pedo-
genic work, such as chemical weathering and carbon cycling.
EEMT is adaptable to include specific energetic inputs to the
soil system based upon the prevailing soil-forming environ-
ment, e.g., the energetics from added fertilizer in an agri-
culture field or the impact of human-induced erosion (Ras-
mussen et al., 2011). The EEMT values for each soil profile
were extracted from a global map of EEMT derived from
the monthly global climate dataset of New et al. (1999) at
0.5◦× 0.5◦ resolution using ArcMap 10.1 (ESRI, Redlands,
CA) (Rasmussen et al., 2011). For the chronosequence soils,
EEMT values ranged from 2235 to > 200 000 kJ m−2 yr−1.
Total pedogenic energy (TPE, J m−2) was derived simply by
multiplying EEMT (J m−2 yr−1) for each soil profile by its
reported age (yr). TPE was used because it was a better pre-
dictor of soil physical properties relative to mean annual tem-
perature, mean annual precipitation, or net primary produc-
tivity (NPP) (Table 3).
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2.3 Application to chronosequence data

The chronosequence database included 44 distinct chronose-
quences representing 405 different soil profiles. We focused
here on changes in sand, silt, and clay content and solum
thickness as examples of soil property change with time. We
tested the approach on depth-weighted (DWT) sand, silt, and
clay content (reported as weight %), as well as the maximum
measured value of sand, silt, and clay content within each
soil profile. Buried horizons were removed from the soil pro-
files before either the maximum or DWT content values were
calculated. Solum thickness was extracted for each profile,
defined as the thickness of the horizons influenced by pe-
dogenic processes or the depth to C horizons (Schaetzl and
Anderson, 2005). The site RW-14 from McFadden and Wel-
don (1987) was not included in the solum thickness model
calculations; the measured solum thickness of RW-14 was
1460 cm, 1 order of magnitude greater than all other soil pro-
files included in the study. Four hundred and five profiles
reported clay content data, only 387 profiles reported sand
and silt content, and 399 soil profiles contained a developed
solum. We classified the soil profiles by parent material in
terms of igneous, metamorphic, or sedimentary material and
by geomorphic landform, e.g., alluvial surface, marine ter-
race, or moraine (Shoeneberger et al., 2012); for example,
if a soil was formed on an alluvial fan from granitic parent
material, it would be defined as alluvial and igneous.

Using the soil data, we calculated bivariate normal prob-
ability distributions using TPE and the soil physical prop-
erties (Eq. 5). The soil data were transformed using loga-
rithmic and square root transformations when appropriate to
meet the normality assumption of the bivariate normal prob-
ability distribution. Conditional univariate normal distribu-
tions (Eqs. 6, 7) were calculated to approximate probable
ranges of soil properties using leave-one-out cross validation
(LOOCV). Each of the soil chronosequences was removed
from the model dataset, with the all remaining chronose-
quence data used to calculate the parameters of the bivariate
and conditional univariate normal distributions. The condi-
tional univariate normal distributions were calculated using
the TPE values for the profiles within the left-out chronose-
quence.

2.4 Application to complex terrain

By design, soil chronosequences are generally sited on gen-
tle, low, sloping terrain to minimize the influence of topogra-
phy and erosion/deposition on soil formation (Harden, 1982).
However, much of the Earth’s surface is characterized by
complex topography with high relief, steep slopes, and dif-
ferences in slope aspect. Any predictive soil model or ap-
proach must be effective in both simple and complex terrain.
To test the ability of the model to predict soil properties in
complex terrain, we compiled data from upland catchments
with variable parent material and topography from the lit-

erature, as well as data available from the US NSF Criti-
cal Zone Observatory Network (CZO, www.criticalzone.org)
(Table 1) (Bacon et al., 2012; Dethier et al., 2012; Foster
et al., 2015; Holleran et al., 2015; Lybrand and Rasmussen,
2015; Rasmussen, 2008; West et al., 2013). Data from several
additional studies from complex terrain were also included
to test the model (Table 1) (Dixon et al., 2009; Yoo et al.,
2007). These data were accessed from www.criticalzone.org
or Google Scholar (www.scholar.google.com). These stud-
ies were included because they all contained horizon-level
soil texture data, soil depth, percent volume rock fragment
data, and 10Be or U series measures of soil erosion rates or
residence time, where mean residence time (MRT) was cal-
culated as MRT=h/E, where h is soil depth (m) and E is
erosion rate (m yr−1) (Pelletier and Rasmussen, 2009b). We
used published coordinates to extract EEMT values, calcu-
lated from New et al. (1999), for each soil profile using Ar-
cGIS 10.1 and used EEMT and MRT to calculate TPE. It
should be noted the coarse resolution of New et al. (1999)
EEMT values does not account for local-scale variation in
water redistribution and primary productivity that can lead to
significant topographic variation in EEMT (Rasmussen et al.,
2015). Using Eq. (5) and the parameters generated from the
chronosequence database, conditional mean depth-weighted
clay content was calculated for each profile.

Due to the influence of redistributive hillslope processes
on soil development (Yoo et al., 2007), soil depth varies sys-
tematically across hillslopes (Heimsath et al., 1997); thus,
soil depth can be used to incorporate information about these
processes within the model calculations. We calculated the
mass per area clay content of these profiles using soil depth
to incorporate this variation, as

mass per area clay
(

kgm−2
)

(8)

= (ρb)(h)
(µY |X=x,DWT CLAY

100

)(
1−

(
RF%
100

))
,

where ρb is the soil bulk density assumed to be 1500 kg m−3

for all soil profiles, µY |X=x,DWT CLAY is the predicted condi-
tional mean for depth-weighted clay content (DWT CLAY)
using Eq. (6), RF% is the measured depth-weighted percent
volume rock fragments within the soil (when no RF% data
were available we assumed a value of 41.7 %, which was the
average RF% for profiles with reported values), and h is the
soil depth in meters. Using Eq. (8), mass per area clay was
calculated for each soil profile. Further, we examined the im-
pact of depth, rock fragment percentage, and predicted con-
ditional mean DWT clay on the predicted mass per area clay
predictions using multiple linear regression.

Coupling geomorphic model with probabilistic model

Additionally, we applied the probabilistic model independent
of measured soil data, across a small complex catchment in
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Table 1. Complex terrain study sites and characteristics.

Site Study Number
of sites

Elevation
(m)

MAP (cm) MAT (◦C) Parent material Slope Aspect Vegetation

Marshall Gulch
granite
sub-catchment,
Arizona, USA

Holleran et al.
(2015)

24 2300–2500 85–90 10 Granite,
amphibolite,
quartzite

45 % North Pinus ponderosa,
Pseudotsuga men-
ziesii, Abies
concolor

Frog’s Hollow,
New South Wales,
Australia

Yoo et al.
(2007)

2 930 55–75 ∼ 16 Granodiorite – – Eucalyptus grass-
land savannah

Cross Keys, South
Carolina, USA

Bacon et al.
(2012)

1 – 115–140 14–18 Granitic gneiss < 2 % – Quercus, Carya

Gordon Gulch,
Colorado, USA

Foster et al.
(2015)

9 2440–2740 52 5 Gneiss, quartz
monzonite, gra-
nodiorite

15–28◦ North
and
south

Pinus ponderosa,
Pinus contorta

Rincon Mountains,
Arizona, USA

Rasmussen
(2008)

11 1050–2500 < 40–80 10–18 Granodiorite – – Oak grass wood-
land, piñon–juniper
woodland, mixed
conifer

Jemez Mountains,
New Mexico, USA

Huckle et al.
(2016)

4 2990–3100 ∼ 50 4 Rhyolite, tuff – West
and
east

Pseudotsuga men-
ziesii, Abies
concolor, Picea
pungens, Populus
tremuloides

Shale Hills,
Pennsylvania, USA

West et al.
(2013); Ma et
al. (unpub-
lished)

6 260–280 100 – Shale, sand-
stone

15–20◦ North
and
south

–

Sierra Nevada
California, USA

Dixon et al.
(2009)

5 216–2991 37–106 3.9–16.6 Tonalite,
granodiorite

– – Oak-grass wood-
land, mixed
conifer, subalpine

the Santa Catalina Mountains (Catalina-Jemez CZO, Fig. 2a–
b, Table 1) (Holleran et al., 2015; Lybrand and Rasmussen,
2015). The ∼ 6 ha catchment is located at an elevation be-
tween 2300 and 2500 m with mixed conifer vegetation, ap-
proximately 30 km northeast of Tucson, AZ (Fig. 2, Table 1).
The approach utilized soil depth and residence time output
from a process-based numerical soil depth model (Pelletier
and Rasmussen, 2009a). The model used high-resolution
lidar-derived topographic data to estimate 2 m pixel reso-
lution soil depth and erosion rates (Fig. 2c) (Pelletier and
Rasmussen, 2009a). These data were coupled with topo-
graphically resolved EEMT values that accounted for lo-
cal hillslope-scale variation in water redistribution and pri-
mary productivity at a 10 m pixel resolution (Rasmussen et
al., 2015) (Fig. 2d). We used calculated TPE from the to-
pographically resolved EEMT and soil residence time values
to predict DWT clay and coupled predicted DWT clay values
with modeled depth from Pelletier and Rasmussen (2009a) in
Eq. (8) to predict mass per area clay at a 2 m pixel resolution;
the data processing and model apparatus are shown in Fig. 3.
We assumed a constant 50 % rock fragment value for each
location. The coupled geomorphic–TPE model outputs were
compared with point measures of mass per area clay from

Holleran et al. (2015) and Lybrand and Rasmussen (2015).
Model data were completely independent of the Holleran et
al. (2015) and Lybrand and Rasmussen (2015) datasets such
that they served as validation data for the modeled output.

2.5 Model domain

The model was parameterized using chronosequence studies;
as such, the model is best suited for generally low, sloping
terrain. The model was extended to complex terrain using the
described correction above (Sect. 2.4), widening the model
domain to steeply sloping terrain. The model does not con-
sider human activities or aeolian additions and should not be
extended to soils significantly impacted by either humans or
dust. The model was trained on a diverse array of parent ma-
terials and ecosystems and could be utilized in climates with
MAT ranging from−10 to 28 ◦C and MAP ranging from 3 to
400 cm yr−1. The model could be utilized on soils spanning
multiple magnitudes in age, from 10 years to greater than
4 Myr.

www.soil-journal.net/3/67/2017/ SOIL, 3, 67–82, 2017
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Figure 2. Marshall Gulch study site. (a) Location of the Santa Catalina Mountains and the Marshall Gulch catchment within Arizona, USA;
(b) elevation of the granite sub-catchment of Marshall Gulch; (c) predicted soil depth in the granite sub-catchment (Pelletier and Rasmussen,
2009a); (d) EEMTv2.0 in the granite sub-catchment (Rasmussen et al., 2015); (e) mismatch between the measured soil depths and predicted
soil depths.

Process-based 
numerical soil 
depth model

Topographically 
resolved EEMT 

model

Probabilistic 
soil property 

model

Soil 
depth

Soil 
residence 

time

EEMT

Predicted 
DWT clay

TPE

Eq. ( 9)

Mass per 
area clay

Figure 3. Coupled geomorphic–probabilistic model apparatus. The
process-based numerical soil depth model is used to predict soil
depth, which is used to predict soil residence time. The topographi-
cally resolved EEMT model is used to calculate TPE using the soil
residence time and EEMT values. The probabilistic model is used
to calculate DWT clay contents using the TPE values, and mass per
area clay is calculated using predicted DWT clay and predicted soil
depth values.

3 Results

3.1 Application and parameterization to
chronosequences

The relationships between TPE and soil texture and solum
thickness were used to calculate the bivariate probability
distributions. The bivariate probability distributions (Eq. 5)
were parameterized using the means, standard deviations,
and Pearson’s correlation from the chronosequence database
(Table 2). Furthermore, the relationship between TPE and the
soil properties was stronger than just using age, NPP, MAP,
or MAT alone (Table 3). Age was expected to strongly cor-
relate to the soil properties due to the design of chronose-
quence studies; however, comparing age and TPE separately,
the percent increase in Spearman rank correlations (r) ranged
from 8.7 % (DWT silt) to 25.6 % (max sand). Maximum and
depth-weighted silt content were weakly correlated to both
age and TPE and exhibited only a minimal change in Spear-
man’s rank correlation with TPE relative to age.

The correlation between TPE and maximum clay con-
tent (Fig. 4, Pearson’s ρ = 0.78, r2

= 0.62,
√

MaxClay=
−7.38+ 1.37 · log(TPE), df = 403) was highly significant
and presented the strongest probabilistic relationship deter-
mined between TPE and the soil properties. The bivariate
probability surface displayed the greatest probability around
the joint means between TPE and maximum clay content
(Fig. 4). Solum thickness and TPE were also strongly re-
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Table 2. Parameters for the bivariate normal probability distribu-
tions for the soil physical properties and TPE; n is number of pro-
files; µ is mean; σ is standard deviation; and ρ is Pearson’s corre-
lation between soil variables and total pedogenic energy.

Soil property parameters

Variable n µ σ ρ

Max sand 387 70.97 25.55 −0.48
Max silt 387 34.27 18.32 0.32
Max claya 405 4.52 2.26 0.78

DWT sand 387 59.47 26.22 −0.57
DWT silta 387 4.50 1.66 0.26
DWT claya 405 3.66 2.12 0.73

Solum thicknessb 399 1.77 0.53 0.65

TPEb 405c 8.69 1.30 –
387d 8.70 1.29 –
399e 8.72 1.27 –

a Square root transformed. b Log10 transformed. c For clay variables. d For
sand and silt variables. e For solum thickness, max indicates maximum
content; DWT indicates depth-weighted average content.

lated, but weaker relative to the maximum clay–TPE rela-
tionship (Fig. S1 in the Supplement, Pearson’s ρ = 0.65,
r2
= 0.42× log(solum thickness)=−0.58+0.27 · log(TPE),

df= 397). The relationships between TPE and max sand
(Fig. S2) and silt (Fig. S3) contents were generally weaker,
relative to clay and solum thickness, with little to no relation-
ship between TPE and silt content.

The conditional univariate normal distribution parameters
were determined for the soil physical properties from the bi-
variate distribution and using Eqs. (6) and (7). The bivariate
normal distribution effectively predicted maximum clay con-
tent (Fig. 5) with an r2

= 0.54 (RMSE= 14.8 %) between
the measured maximum clay content and predicted condi-
tional mean maximum clay content (Eq. 6) across all sites
based on LOOCV (Fig. 5d). The model effectively predicted
maximum clay content regardless of parent material with r2

of 0.61 (RMSE= 14.4 %), 0.56 (RMSE= 12.0 %), and 0.59
(RMSE= 16.8 %), for igneous, metamorphic, and sedimen-
tary parent materials, respectively. The r2 between the mea-
sured values and predicted values for solum thickness, max
sand, and max silt were 0.28 (RMSE= 101.0 cm, Fig. S4),
0.17 (RMSE= 23.4 %, Fig. S5), and 0.04 (RMSE= 18.0 %,
Fig. S6), respectively.

The relationship of predicted to actual maximum clay
content varied significantly across individual studies. The
predicted values represent the predicted conditional means
(Eq. 6) bounded by the conditional standard deviation
(Eq. 7), which approximates a 50 % probability that the mea-
sured maximum clay content will be within 1 standard devi-
ation of the conditional mean (Fig. 6). The individual stud-
ies presented in Fig. 6 were selected to represent a broad
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Figure 4. Bivariate normal distribution between TPE and max clay
content. The points indicate individual soils. The red ellipses rep-
resent lines of equal probability, which corresponds to a three-
dimensional probability distribution. From this relationship the con-
ditional mean and variances for the soil physical properties were
calculated.

range of climates and landforms and demonstrate both the
strengths and weaknesses of the model. For Harden (1987)
(Fig. 6a, r2

= 0.88, p<0.0001, df= 20, RMSE= 9.4 %) and
Howard et al. (1993) (Fig. 6b, r2

= 0.86, p<0.001, df= 6,
RMSE= 10.2 %), the model was generally successful at pre-
dicting the maximum clay content values; both the Harden
(1987) and Howard et al. (1993) sequences were located
in alluvial deposits but in vastly different climates: xeric
(winter-dominated annual rainfall regime) vs. udic (evenly
distributed annual rainfall regime), respectively. The model
was capable of predicting maximum clay content values for
glacial moraine deposits, in a frigid climate (Fig. 6c, r2

=

0.87, p<0.0001, df= 12, RMSE= 6.0 % Birkeland, 1984)
and on marine terraces in northern California with a xeric cli-
mate (Fig. 6f, r2

= 0.98, p<0.001, df= 4, RMSE= 8.9 %;
Merritts et al., 1991). The model was incapable of predict-
ing clay accumulation on marine terraces in hot, wet cli-
mates in Barbados (Fig. 6d, r2

= 0.31, p = 0.08, df= 9,
RMSE= 44.9 % Muhs, 2001) or Taiwan (Fig. 6e, r2

= 0.67,
p<0.001, df= 11, RMSE= 23.1 %, Huang et al., 2010).

3.2 Application in complex terrain

The model was much less effective in complex terrain and
highly overpredicted DWT clay contents in soils located in
complex landscapes (Fig. 7a, r2

= 0.26, y = 0.39x+ 7.36,
p<0.0001, RMSE= 5.4 %). The model highly overpredicted
the clay content of the South Carolina site and the Gordon
Gulch soils and underpredicted the clay content of the Rin-
con, Santa Catalina, and Jemez sites.
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Figure 5. LOOCV results for max clay content. The results were subdivided by general soil parent material: igneous, metamorphic, and
sedimentary; the points represent the geomorphic surface each soil formed on, and the colors represent the EEMT value for the location of
each soil. Using LOOCV, where one chronosequence was removed from the model dataset and the remaining datasets were used to predict
the parameters of the bivariate distributions, the conditional means of the left-out chronosequence was determined. The model was effectively
able to predict the conditional mean values of the max clay contents with an r2

= 0.54 (RMSE= 14.8 %). The model was least capable of
predicting the clay contents on coral reef terraces (+) and appeared the most effective for alluvial surfaces (�).
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Figure 6. Selected relationships between the measured maximum
clay content and predicted maximum clay content. (a) Harden
(1987), (b) Howard et al. (1993), (c) Birkeland (1984), (d) Muhs
(2001), (e) Huang et al. (2010), and (f) Merritts et al. (1991). The er-
rors represent the conditional standard deviations around the mean,
which correspond to a probability of 50 %. The model effectively
predicted clay content across a diverse range of climates, landforms,
and parent materials. The model was the least effective at predict-
ing the clay content of soils in tropical climates and soils forming
on coral reef terraces.

When correcting for the influence of hillslope processes
by explicitly including soil depth and calculating mass per
area clay, the approach effectively predicted clay content,
with an r2

= 0.81 (Fig. 7b, y = 1.58x− 15.5, p<0.0001,
RMSE= 86.4 kg clay m−2), only slightly overpredicting clay

content, with a regression slope of 1.58. Soil depth was the
strongest contributing factor to the mass per area clay pre-
diction with the greatest sums of squares in a simple multi-
ple linear regression including depth, RF%, and DWT clay%
(Table 4); predicted conditional mean clay content percent-
age was the second strongest contributing factor to the mass
per area clay prediction. Rock fragment percentage did not
influence the mass per area clay content prediction.

3.3 Coupled geomorphic–TPE model

The coupled geomorphic–TPE model effectively predicted
mass per area clay for the majority of soils located within the
Marshall Gulch sub-catchment with an r2

= 0.74 (Fig. 8a,
y = 0.86x− 5.06, p<0.0001, RMSE= 17.7 kg clay m−2).
For a subset of soils, the model did not effectively predict
mass per area clay, and this was excluded from the regression
in Fig. 8a; four of these soils were located on the east-facing
ridge of the catchment, and an additional two soils were
formed on amphibolite rather than the granite or quartzite
materials that all of the other soils in the catchment were
derived from. All of these locations also exhibited a poor
fit between modeled and measured soil depth (Fig. 2e). The
spatial distribution of mass per area clay was also predicted
across the catchment (Fig. 8b), independently of measured
data, and generally conformed to previously predicted spatial
distribution of clay stocks in the Marshall Gulch catchment
(Holleran et al., 2015).
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Figure 7. Model results in complex terrain. (a) Prediction of depth-
weighted (DWT) clay contents; (b) prediction of mass per area clay
using Eq. (9). The model was incapable of directly predicting DWT
clay for the soils in complex terrain due to redistributive hillslope
processes; r2

= 0.26 between measured and predicted conditional
mean DWT clay (a). By including information about soil depth and
percent volume rock fragment and converting DWT clay to mass per
area clay, the model was significantly more effective at predicting
clay contents for these soils r2

= 0.81.

4 Discussion

4.1 Model effectiveness

4.1.1 Model results for chronosequences

The model predicted maximum clay content across a di-
verse range of lithologies, climates, and landforms. Weath-
ering and clay production are primary pedogenic processes
(Birkeland, 1999; Schaetzl and Anderson, 2005), and be-
cause the model assumed that all changes in the soil pro-
file are due to these processes and TPE is closely related
to degree of weathering, the model was the most effective
at predicting clay content. For initial soil states that begin

Figure 8. Model results of coupled geomorphic–EEMT–TPE
model in Marshall Gulch granite sub-catchment. (a) Prediction of
mass per area clay for sites from Holleran et al. (2015) and Lybrand
and Rasmussen et al. (2015); (b) spatial prediction of mass per area
clay. When combining the present approach, with a geomorphic-
based soil depth model, the combined models together were highly
effective at predicting the clay contents for a majority of soils in the
Santa Catalina Mountains (Catalina-Jemez CZO), r2

= 0.74.

pedogenesis with a potentially significant amount of clay-
sized particles the model was much less effective. The soils
of the Taiwanese chronosequence formed from conglomer-
ates (Huang et al., 2010); conglomerates are typically poorly
sorted, such that these soils initially formed with high clay
contents slowing clay accumulation, limiting the effective-
ness of the model to predict clay contents in these soils. Ad-
ditionally, the model highly underestimated the clay content
of soils located on coral reef terraces in tropical environ-
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ments (Maejima et al., 2005; Muhs, 2001). Coral reef ter-
races represent a relatively unique landform that weathers
rapidly to fine-sized particles, especially under tropical cli-
mates, and generally have complicated parent material com-
positions (Muhs et al., 1987). The combination of these fac-
tors limited the ability of the model to predict the soil prop-
erties on these surfaces.

Sand and silt displayed weaker relationships with increas-
ing total pedogenic energy. The lack of correlation of sand
and silt to TPE may result in part from the definitions of the
particle size classes. Sand-sized particles span a difference
in particle size of several orders of magnitude, ranging from
particles of 2 to 0.05 mm (Soil Survey Staff, 2010), whereas
clays are constrained to a particle size less than 0.002 mm.
The sequential weathering of rock fragments and coarse sand
to fine and very fine sands therefore is not reflected in total
sand content and likely diminishes the relationship between
sand content and total pedogenic energy and time (Pye and
Sperling, 1983; Pye, 1983; Sharmeen and Willgoose, 2006).
The relationship between silt content and pedogenic energy
was the weakest of the three broad particles size classes (Ta-
bles 2, 3). Similar to sand, the silt size fractions span 1 order
of magnitude in particle size ranging from 0.05 to 0.002 mm
in diameter. Further, the sand and silt fractions are domi-
nated by resistant primary minerals (Pye, 1983) and would
not change greatly in response to increased TPE or weath-
ering, which may partly account for the weaker correlations
with TPE. Additionally, the silt fraction may also be heavily
influenced by the deposition of eolian material and thereby
introduce an additional mass of silt that was not derived from
the direct weathering of the initial soil-forming system (Mc-
Fadden et al., 1987) effectively uncoupling silt content from
total pedogenic energy.

Solum thickness displayed a relatively strong relationship
with increasing pedogenic energy, with TPE explaining up
to 42 % of the variance in solum thickness (Tables 2, 3). Soil
production is related to climatic variation (Amundson et al.,
2015), with this variation partly captured by EEMT and TPE,
leading to the slightly stronger predictive power of the model.
However, soil production is also highly influenced by redis-
tributive hillslope process, chemical and physical weather-
ing, and tectonic uplift (Heimsath et al., 1997; Riebe et al.,
2004; Yoo and Mudd, 2008b) and can be a highly nonlin-
ear process (Pelletier and Rasmussen, 2009a). These factors
were not directly accounted for in this study in that topog-
raphy was not a quantified factor, which likely represents
a large proportion of the remaining unexplained variance in
solum thickness.

4.1.2 Model results in complex terrain

Due to using soil chronosequence data to parameterize the
approach, the influence of redistributive hillslope processes
was not captured. Additionally, in the amount of time re-
quired to transport soil across a hillslope, chemical and phys-

ical alterations of the soil particles are possible and may not
be reflected in mean residence time calculations (Yoo and
Mudd, 2008a; Yoo et al., 2007). Soil thickness is highly de-
pendent upon hillslope position and landscape morphology
(Dietrich et al., 2003; Heimsath et al., 1997; Pelletier and
Rasmussen, 2009a). By using soil thickness as a proxy for
the strength of these redistributive hillslope processes and
converting the predicted conditional mean clay content value
to a mass per area basis, the model was able to capture differ-
ences in clay content across complex terrain for a variety of
lithologies and climates. The differing lithologies, climates,
or vegetation types did not appear to impact the ability of the
model to predict clay contents, likely because local varia-
tion in soil depth accounts for many of these controls. Parent
material and climate influence the weathering process and
production of clay in soils (Harden and Taylor, 1983; Muhs
et al., 2001); however, these factors are collinear with soil
depth (Heckman and Rasmussen, 2011; Lybrand and Ras-
mussen, 2015; Pelletier and Rasmussen, 2009a), such that by
including soil depth, differences due to lithology or climate
were partly incorporated in the model prediction.

4.1.3 Results from coupled geomorphic–TPE model

For the majority of sites in the Marshall Gulch sub-
catchment, the coupled geomorphic–TPE model was highly
effective at predicting clay content and the spatial distribu-
tion of clay stocks. Large differences were found for four
soils located on the east-facing ridge of the catchment under-
lain by granite, with the model generally overpredicting soil
depth and clay content. Discrepancies between the modeled
and measured depths were likely the primary sources of error
within the mass per area clay predictions for the four east-
facing ridge soils (Fig. 2e). The geomorphic model predicted
deeper soil depths due to the presence of an apparent con-
vergent zone on the east-facing ridge of the sub-catchment;
however, this convergent zone is only a small feeder tribu-
tary to the larger catchment drainage. The inability of the
model to effectively predict clay contents and the mismatch
between modeled and actual soil depths in the four soils lo-
cated on the east-facing ridge is likely due to this local, fine-
scale topographic variation. The fine-scale topographic vari-
ation may indicate that the scale of soil property predictions
is important in achieving accurate predictions. Fine spatial
scales match the scale of local soil-landscape variation and
processes, but fine-scale variation in weathering rates and
lithology is also required to better predict soil depth within
the catchment (McKenzie and Ryan, 1999).

Error in predicted soil depths due to fine-scale differences
in lithology within the Marshall Gulch sub-catchment partly
explains the discrepancies between measured and predicted
mass per area clay contents. For two amphibolite-derived
soils, the model greatly underestimated mass per area clay.
The geomorphic soil depth model assumed a uniform weath-
ering rate based on the granitic soils (Pelletier and Ras-
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Table 3. Spearman rank correlations between soil physical properties and TPE and age.

Spearman rank correlations

Variable NPP MAP MAT TPE Age % increase∗ n

Max sand −0.34 −0.15 −0.23 −0.46 −0.36 25.6 387
Max silt 0.00 −0.11 0.05 0.31 0.32 −1.1 387
Max clay 0.16 −0.01 0.37 0.80 0.73 8.8 405

DWT sand −0.25 −0.07 −0.27 −0.57 −0.50 15.2 387
DWT silt 0.11 −0.01 0.02 0.23 0.21 8.7 387
DWT clay 0.22 0.02 0.40 0.75 0.67 11.7 405

Solum thickness 0.12 0.07 0.22 0.63 0.58 9.9 399

Max indicates maximum content; DWT indicates depth-weighted average content; ∗ percent increase in Spearman
rank correlation between TPE and age.

Table 4. Sensitivity analysis of model prediction in complex terrain.

Sensitivity analysis of model prediction in complex terrain

Effects DF Sums of squares Mean sums of squares F value p

Depth, h (cm) 1 1 158 897 1 158 897 472.9 < 0.0001
CM DWT clay, µY |X=x (%) 1 148 896 148 896 60.8 < 0.0001
Rock fragment, RF% (%) 1 1563 1563 0.6 0.428
Residuals 58 142 140 2451

mussen, 2009a); due to differences in primary mineral as-
semblage, the amphibolite materials are likely weathering at
a faster rate compared to the granite-derived soils (White et
al., 2001; Wilson, 2004), resulting in greater clay produc-
tion and likely explaining the underestimated clay contents.
Inclusion of differential weathering rates for varying litholo-
gies within the geomorphic model would likely lead to better
prediction of clay contents, but in areas of complex lithology
this would require detailed information about distributions
of differing lithologies. With these adjustments, the coupled
geomorphic–TPE model represents an effective, independent
prediction of clay stocks.

4.2 Advantages of probabilistic approach

Simplifying and representing the soil-forming factors as mul-
tivariate distributions and probabilities has the potential to
quantitatively represent the general state-factor model, mak-
ing the approach universally applicable. The initial state of
the soil can likely never be fully known, leading to variability
in soil properties over time that cannot necessarily, or ever,
be attributed to any external factor (Phillips, 1989, 1993b). A
probabilistic approach utilizes that variability to drive predic-
tions and understanding of these systems. Similar to the ap-
proach taken here, building distributions of the soil-forming
state factors that are associated with distributions of partic-
ular soil properties could yield probabilistic predictions of
soil formation and change. We selected to use a represen-
tation of climate and biology (EEMT). However, depend-

ing on the soil property of interest, the variables needed to
parameterize the distributions would likely change; for ex-
ample, if interested in organic matter content, aboveground
net primary productivity or the normalized difference vege-
tation index may be better predictors of organic matter accu-
mulation. The strength of this approach lies in the fact that
no assumptions are made about the initial conditions of the
soil-forming system or the specific soil-forming processes.
Predicting probable distributions of soil physical properties
implicitly acknowledges that our understanding of any sys-
tem is incomplete but explicitly quantifies uncertainty in pre-
dictions and constrains the potential observable values to
a predicted range. Utilizing this approach will require the
necessary data to build distributions that are widely repre-
sentative and applicable to most locations (Yaalon, 1975).
With wide accessibility to large databases of soil informa-
tion, such as the US National Soil Information System (NA-
SIS) and the FAO Harmonized World Soil Database, access
to the required amount and quality of data may be possi-
ble. Similar to the present study, simple bivariate distribu-
tions could be solved to calculate conditional distributions
based on the soil-forming state factors, effectively producing
quantitative probabilistic representations of Jenny’s original
equation (Jenny, 1941).

The simplicity of the present approach allows easy in-
tegration into preexisting geomorphic models of landscape
evolution. Past approaches that have combined pedogenic
and landscape evolution models have generally focused

www.soil-journal.net/3/67/2017/ SOIL, 3, 67–82, 2017



78 C. Shepard et al.: A probabilistic approach to quantifying soil physical properties

on producing hypothetical soil-landscape relationships that
progress forward through time (Minasny and McBratney,
2001; Vanwalleghem et al., 2013) or have focused on ide-
alized landscapes (Temme and Vanwalleghem, 2015). How-
ever, by combining probabilistic approaches parameterized
using known landscapes and geomorphically based land-
scape evolution models, predictions of the current state of
the soil landscape can be investigated. As was demonstrated
in Fig. 7b, combining the present approach with geomor-
phically based soil depth models generated from DEMs has
great potential to predict soil properties across a diverse
range of environments, without needing prior knowledge of
the landscape other than topography and climate. Further,
potential soil landscapes can be investigated by updating
EEMT values to incorporate future climate scenarios avail-
able from predictive climate models (Gent et al., 2011; Tay-
lor et al., 2012) and topographic and hydrological impacts
due to changes in topography over time (Rasmussen et al.,
2015).

4.3 Limitations and potential refinements

There are obvious limitations within the current model: a
lack of consideration of parent material influences, topo-
graphic variation, human impacts, internal soil feedbacks and
thresholds, determination of landscape and soil age, and dif-
ferences in paleoclimate variation. Parent material control on
the relative proportion of weatherable minerals and mineral
weathering rates (Jackson et al., 1948) can manifest itself as
vastly different soil morphologies and rates of pedogenesis
when controlling for other soil-forming factors or even with-
out controlling for other factors (Heckman and Rasmussen,
2011; Parsons and Herriman, 1975; Phillips, 1993b). The
current approach implicitly assumes no information about
the initial conditions, only that all clay production is a pe-
dogenic process. The application of this approach to par-
ent materials, where a large fraction of clay-sized particles
formed through non-pedogenic processes, is thus limited and
may explain why the model was ineffective for some soils.
Refining the current approach would require normalization
of soil to the particle size distribution of the soil parent ma-
terial. Past studies have utilized highly characterized parent
material data to model soil property change with time (Chad-
wick et al., 1990; Harden, 1982), but these data are gener-
ally difficult to obtain and often not reported in the available
chronosequence literature.

Topography dictates soil chemical and physical proper-
ties and residence times, especially in complex terrain (Al-
mond et al., 2007; Egli et al., 2008; Lybrand and Rasmussen,
2015), where nonlinear diffusive hillslope processes control
the fluxes of matter and energy into and out of the soil sys-
tem (Heimsath et al., 1997; Pelletier and Rasmussen, 2009a;
Rasmussen et al., 2015; Yoo and Mudd, 2008b; Yoo et al.,
2007). Using earlier versions of EEMT (Rasmussen and Ta-
bor, 2007; Rasmussen et al., 2005), the current formulation

of the model and TPE does not explicitly quantify topo-
graphic variation, which may account for error within cur-
rent soil property distributions and predictions. With the in-
clusion of topographic variation in EEMT (Rasmussen et al.,
2015) and topographic control of soil residence times (Foster
et al., 2015; West et al., 2013), we were able to correct this
error with the present approach and effectively predicted clay
stocks in complex terrain.

Human activities significantly alter soil physical proper-
ties (Grieve, 2001; Neff et al., 2005; Pouyat et al., 2007).
For example, differences in land use and increased grazing
activity can alter soil physical properties such as clay and
sand content across landscapes (Neff et al., 2005; Pouyat et
al., 2007) or compaction from farming equipment leading to
increased bulk density and increased erosion rates (Fullen,
1985; Hamza and Anderson, 2005). Human impacts on soil
physical properties were not included in the presented model.
The energetic contributions due to human impacts can be in-
corporated within the EEMT apparatus, and adjusted model
parameters can be calculated (Rasmussen et al., 2011). Hu-
man impacts on soil physical properties may be locally im-
portant, but for the majority of locations, human energetic
contributions to the soil system are generally orders of mag-
nitude smaller compared to the energetic inputs from solar
radiation, precipitation, or primary productivity.

Internal or intrinsic feedbacks and thresholds within the
soil system drive pedogenic development without changes
in the external state factors (Chadwick and Chorover, 2001;
Muhs, 1984). For example, greater chemical weathering and
clay production due to increased water residence time caused
by argillic horizon development is the result of an internal
feedback that is independent of the external climatic and bio-
logical system (Schaetzl and Anderson, 2005). These thresh-
olds can operate as progressive or regressive processes, driv-
ing soil formation forward or hindering further development
(Johnson and Watson-Stegner, 1987; Phillips, 1993a). In-
ternal soil development feedbacks were not explicitly con-
sidered in the present model formulation. The presence of
these internal feedbacks may partially explain error within
the model predictions. Changes in EEMT would not explain
all observed differences in soil properties over the age of the
soil. However, if these feedbacks were operating in the in-
cluded soils, the influence of intrinsic thresholds was implic-
itly captured within the probability distributions, partially ac-
counting for the role of internal soil development feedbacks
on soil formation.

Soil age is typically unmeasured in most geomorphologi-
cal and pedological studies, limiting the applicability of the
current model. Numerical age dating, e.g., cosmogenic ra-
dionuclides or optically stimulated luminescence, is expen-
sive and requires time-consuming preparation to be broadly
utilized and can be complicated by transport and burial his-
tories of soil and sediment (Anderson et al., 1996; Bier-
man, 1994; Gosse and Phillips, 2001; Granger and Muzikar,
2001; Schaetzl and Anderson, 2005). Fortunately, relative-
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age dating methods using landscape position are easily uti-
lized and can provide the necessary age constraint needed to
make model predictions (Burke and Birkeland, 1979; Favilli
et al., 2009; Huggett, 1998; Matthews and Shakesby, 1984;
Nicholas and Butler, 1996; Schaetzl and Anderson, 2005).
Age constraint may also be achieved using landscape or hill-
slope morphology derived from elevation transects or digital
elevation models to estimate a “diffusivity age” for the soil
(Hsu and Pelletier, 2004; Pelletier et al., 2006).

Global climate patterns have shifted dramatically over the
last 65 Myr (Zachos et al., 2001). The majority of soils ob-
served in the compiled chronosequence database span the
Quaternary, including both the Holocene and Pleistocene.
The Pleistocene was marked by a number of major glacial-
interglacial cycles at approximately 100 000-year intervals
(Imbrie et al., 1992; Wallace and Hobbs, 2006), which cor-
responded with shifting climatic conditions; e.g., for large
portions of the northern midlatitudes glacial periods were
generally cooler and wetter and interglacial periods were
warmer and drier (Connin et al., 1998; Petit et al., 1999). Fur-
ther, the Pleistocene climate shifts likely influenced the rates
of weathering and clay production (Hotchkiss et al., 2000).
Taking into account the differences in past and modern cli-
mate would partially reduce prediction errors between ob-
served and modeled soil physical properties. Reconstructed
global paleo-EEMT values would improve model accuracy
and limit uncertainty in the probabilistic ranges of soil prop-
erties for soils older than Holocene age.

5 Conclusions

The present approach effectively predicts soil physical prop-
erties across a diverse range of geomorphic surfaces, litholo-
gies, ecosystems, and climates. Further, this approach is
mathematically simple and only requires knowledge of the
probable age of a geomorphic surface and the effective en-
ergy and mass transfer value associated with a given location,
making this approach universally applicable. The simplicity
of the probabilistic approach lies in the lack of the need to
consider the initial conditions of the soil-forming state or
the processes driving soil property change. A probabilistic
approach does not exactly predict a soil physical property
value at a given location but constrains the probable values
based upon the state of the external environment to the soil.
Using probabilistic approaches, we can model probable soil-
landscape evolution scenarios, greatly informing our under-
standing of the evolution of critical zone structure.
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