Anderson, J. P. E: Soil Respiration, in: Methods of Soil Analysis, Part 2, Chemical and Microbiological Properties, 2nd Edn., American Society of Agronomy, Soil Science Society of America, 331–871, 1982.
Bolan, N. S., Kunhikrishnan, A., Choppala, G. K., Thangarajan, R., and Chung, J. W.: Stabilization of carbon in composts and biochars in relation to carbon sequestration and soil fertility, Sci. Total Environ., 424, 264–270, 2012.
Bustamante, M. A., Pérez-Murcia, M. D., Pareded, C., Moral, R., Pérez-Espinosa, A., and Moreno-Caselles, J.: Short-term carbon and nitrogen mineralization in soil amended with winery and distillery organic wastes, Bioresource Technol., 98, 3269–3277, 2007.
Bustamante, M. A., Said-Pullicino, D., Paredes, C., Cecilia, J. A., and Moral, R.: Influences of winery-distillery waste compost stability and soil type on soil carbon dynamics in amended soils, Waste Manage., 30, 1966–1975, 2010.
Chan, Y. C., Sinha, R. K., and Wang, W. J.: Emission of greenhouse gases from home aerobic composting, anaerobic digestion and vermicomposting of household wastes in Brisbane (Australia), Waste Manage. Res., 29, 540–548, 2011.
Chowdhury, S., Bolan, N. S., Seshadri, B., Kunhikrishnan, A., Wijesekara, H., Xu, Y., Yang, J., Kim, G.-H., Sparks, D., and Rumpel, C.: Co-composting solid biowastes with alkaline materials to enhance carbon stabilization and revegetation potential, Environ. Sci. Pollut. R., 23, 7099–7110, 2016.
Czekala, W., Malinska, K., Caceres, R., Janczak, D., Dach, J., and Lewicki, A.: Co-composting of poultry manure mixtures amended with biochar – The effect of biochar on temperature and C-CO
2 emission, Bioressource Technol., 200, 921–927, 2016.
Dominguez, J. and Edwards, C. A.: Biology and ecology of earthworm species used for vermicomposting, Chapter 3, in: Vermiculture Technology: Earthworms, Organic Wastes, and Environmental Management, edited by: Edwards, C. A., Arancon, N. Q., and Sherman, R., CRC Press, 27–40, 2010.
Hassink, J.: The capacity of soils to preserve organic C and N by their association with clay and silt particles, Plant Soil, 191, 77–87, 1997.
IPCC: Climate Change 2014: Synthesis Report, Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Core Writing Team, Pachauri, R. K., and Meyer, L. A., IPCC, Geneva, Switzerland, 151 pp., 2014.
Jindo, K., Suto, K., Matsumoto, K., García, C., Sonoki, T., and Sánchez-Monedero, M. A.: Chemical and biochemical characterisation of biochar-blended composts prepared from poultry manure, Bioresource Technol., 110, 396–404, 2012.
Kalbitz, K., Schmerwitz, J., Schwesig, D., and Matzner, E.: Biodegradation of soil-derived dissolved organic matter as related to its properties, Geoderma, 113, 273–291, 2003.
Kleber, M., Eusterhues, K., Keiluweit, M., Mikutta, C., Mikutta, R., and Nico, P. S.: Mineral-Organic Associations: formation, properties and relevance in soil environments, Adv. Agron., 130, 1–140, 2015.
Klok, C., Faber, J., Heijmans, G., and Bodt, J.: Influence of clay content and acidity of soil on development of the earthworm
Lumbricus rubellus and its population level consequences, Biol. Fertil. Soils, 43, 549–556, 2007.
Lashermes, G., Nicolardot, B., Parnaudeau, V., Thuriès, L., Chaussod, R., Guillotin, M. L., Linères, M., Mary, B., Metzger, L., Morvan, T., Tricaud, A., Villette, C., and Houot, S.: Indicator of potential residual carbon in soils after exogenous organic matter application, Eur. J. Soil Sci., 60, 297–310, 2009.
Lavelle, P., Decaëns, T., Aubert, M., Barot, S., Blouin, M., Bureau, F., Margerie, P., Mora, P., and Rossi, J.-P.: Soil invertebrates and ecosystem services, Eur. J. Soil Biol., 42, 3–15, 2006.
Li, D., Hockaday, W. C., Masiello, C. A., and Alvarez, P. J. J.: Earthworm avoidance of biochar can be mitigated by wetting, Soil Biol. Biochem., 43, 1732–1737, 2011.
Liesch, A. M., Weyers, S. L., Gaskin, J. W., and Das, K. C.: Impact of two different biochars on earthworm growth and survival, Annals of Environmental Science, 4, 1–9, 2010.
Lubbers, I. M., van Groeningen, K. J., Fonte, S. J., Six, J., Brussaard, L., and van Groeningen, J. W.: Greenhouse-gas emissions from sois increased by earthworms, Nature Climate Change, 3, 187–194, 2013.
Malińska, K., Zabochnicka-Światek, M., Cáceres, R., and Marfà, O.: The effect of precomposted sewage sludge mixture amended with biochar on the growth and reproduction of
Eisenia fetida during laboratory vermicomposting, Ecol. Eng., 90, 35–41, 2016.
Naisse, C., Girardin, C., Davasse, B., Chabbi, A., and Rumpel, C.: Effect of biochar addition on C mineralisation and soil organic matter priming in two subsoil horizons, J. Soils Sediments, 15, 825–832, 2015.
Ngo, P.-T., Rumpel, C., Doan, T. T., and Jouquet, P.: The effect of earthworms on carbon storage and soil matter composition in tropical soil amended with compost and vermicompost, Soil Biol. Biochem., 50, 21–220, 2012.
Ngo, P.-T., Rumpel, C., Ngo, Q.-A., Alexis, M., Vargas, V. G., De la Luz Mora Gil, M., Dang, D.-K., and Jouquet, P.: Biological and chemical reactivity and phosphorous forms of buffalo manure compost, vermicompost and their mixture with biochar, Bioresource Technol., 148, 401–407, 2013.
Ngo, P.-T., Rumpel, C., Janeau, J.-L., Dang, D.-K., Doan, T. T., and Jouquet, P.: Mixing of biochar with organic amendments reduces carbon removal after field exposure under tropical conditions, Ecol. Eng., 91, 378–380, 2016.
Paradelo, R., Moldes, A. B., Prieto, B., Sandu, R.-G., and Barral, M. T.: Can stability and maturity be evaluated in finished composts from different sources?, Compost Sci. Util., 18, 22–31, 2010.
Paradelo, R., Moldes, A. B., González, D., and Barral, M. T.: Plant tests for determining the suitability of grape marc composts as components of plant growth media, Waste Manage. Res., 30, 1059–1065, 2012.
Plaza, C., Giannetta, B., Fernández, J. M., López-de-Sá, E. G., Polo, A., Gasco, G., Méndez, A., and Zaccone, C.: Response of different soil organic matter pools to biochar and organic fertilizers, Agr. Ecosyst. Environ., 225, 150–159, 2016.
Rogovska, N., Laird, D., Cruse, R., Fleming, P., Parkin, T., and Meek, D.: Impact of biochar on manure carbon stabilization and greenhouse gas emissions, Soil Biol. Biochem., 75, 871–879, 2011.
Sánchez-García, M., Alburquerque, J. A., Sánchez-Monedero, M. A., Roig, A., and Cayuela, M. L.: Biochar accelerates organic matter degradation and enhances N mineralisation during composting of poultry manure without a relevant impact on gas emissions, Bioresource Technol., 192, 272–279, 2015.
Thangarajan, R., Bolan, N. S., Tian, G., Naidu, R., and Kunhikrishnan, A.: Role of organic amendment application on greenhouse gas emission from soil, Sci. Total Environ., 465, 72–96, 2013.
Ventura, M., Alberti, G., Viger, M., Jenkins, J., Girardin, C., Baronti, S., Zaldei, A., Taylor, G., Rumpel, C., Miglietta, F., and Tonon, G.: Biochar mineralization and priming effect on SOM decomposition in two European short rotation coppices, GCB Bioenergy, 7, 1150–1160, https://doi.org/10.1111/gcbb.12219, 2015.
von Lützow, M., Kögel-Knaber, I., Ekschmitt, K., Matzner, E., Guggenberger, G., Marschner, B., and Flessa, H.: Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions – a review, Eur. J. Soil Sci., 57, 426–445, 2006.
Vu, Q. D., de Neergaard, A., Tran, T. D., Hoang, H. T., Vu, V. T., and Jensen, L. S.: Greenhouse gas emissions from passive composting of manure and digestate with crop residues and biochar on small-scale livestock farms in Vietnam, Environ. Technol., 36, 2924–2935, 2015.
Wang, J., Hu, Z., Xu, X., Jiang, X., Zheng, B., Liu, X., Pan, X., and Kardol, P.: Emissions of ammonia and greenhouse gases during combined pre-composting and vermicomposting of duck manure, Waste Manage., 34, 1546–1552, 2014.
Weyers, L. S. and Spokas, A. K.: Impact of biochar on earthworms populations: a review, Applied and Environmental Soil Science, 2011, 541592, https://doi.org/10.1155/2011/541592, 2011.
Wiedner, K., Rumpel, C., Steiner, C., Pozzi, A., Maas, R., and Glaser, B.: Chemical evaluation of chars produced by thermochemical conversion (gasification, pyrolysis and hydrothermal carbonization) of agro-industrial biomass on a commercial scale, Biomass Bioenerg., 59, 264–278, 2013.