Articles | Volume 11, issue 2
https://doi.org/10.5194/soil-11-489-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/soil-11-489-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Evaluating N2O emissions and carbon sequestration in temperate croplands with cover crops: insights from field trials
Victoria Nasser
CORRESPONDING AUTHOR
Department of Crop Sciences, University of Goettingen, 37075 Göttingen, Germany
René Dechow
Thünen Institute of Climate-Smart Agriculture, 38116 Braunschweig, Germany
Mirjam Helfrich
Thünen Institute of Climate-Smart Agriculture, 38116 Braunschweig, Germany
Ana Meijide
Environment Modeling, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, 53113 Bonn, Germany
Pauline Sophie Rummel
Department of Crop Sciences, University of Goettingen, 37075 Göttingen, Germany
Department of Biology, Microbiology, Aarhus University, Aarhus, 8000, Denmark
Heinz-Josef Koch
Department of Agronomy, Institute of Sugar Beet Research, 37079 Göttingen, Germany
Reiner Ruser
Department of Fertilization and Soil Matter Dynamics (340i), Institute of Crop Science, University of Hohenheim, 70599 Stuttgart, Germany
Lisa Essich
Department of Fertilization and Soil Matter Dynamics (340i), Institute of Crop Science, University of Hohenheim, 70599 Stuttgart, Germany
Klaus Dittert
Department of Crop Sciences, University of Goettingen, 37075 Göttingen, Germany
Related authors
No articles found.
Beatriz P. Cazorla, Ana Meijide, Javier Cabello, Julio Peñas, Rodrigo Vargas, Javier Martínez-López, Leonardo Montagnani, Alexander Knohl, Lukas Siebicke, Benimiano Gioli, Jiří Dušek, Ladislav Šigut, Andreas Ibrom, Georg Wohlfahrt, Eugénie Paul-Limoges, Kathrin Fuchs, Antonio Manco, Marian Pavelka, Lutz Merbold, Lukas Hörtnagl, Pierpaolo Duce, Ignacio Goded, Kim Pilegaard, and Domingo Alcaraz-Segura
EGUsphere, https://doi.org/10.5194/egusphere-2025-2835, https://doi.org/10.5194/egusphere-2025-2835, 2025
Short summary
Short summary
We assess whether satellite-derived Ecosystem Functional Types (EFTs) reflect spatial heterogeneity in carbon fluxes across Europe. Using Eddy Covariance data from 50 sites, we show that EFTs capture distinct Net Ecosystem Exchange dynamics and perform slightly better than PFTs. EFTs offer a scalable, annually updatable approach to monitor ecosystem functioning and its interannual variability.
Konstantin Aiteew, Jarno Rouhiainen, Claas Nendel, and René Dechow
Geosci. Model Dev., 17, 1349–1385, https://doi.org/10.5194/gmd-17-1349-2024, https://doi.org/10.5194/gmd-17-1349-2024, 2024
Short summary
Short summary
This study evaluated the biogeochemical model MONICA and its performance in simulating soil organic carbon changes. MONICA can reproduce plant growth, carbon and nitrogen dynamics, soil water and temperature. The model results were compared with five established carbon turnover models. With the exception of certain sites, adequate reproduction of soil organic carbon stock change rates was achieved. The MONICA model was capable of performing similar to or even better than the other models.
Balázs Grosz, Reinhard Well, Rene Dechow, Jan Reent Köster, Mohammad Ibrahim Khalil, Simone Merl, Andreas Rode, Bianca Ziehmer, Amanda Matson, and Hongxing He
Biogeosciences, 18, 5681–5697, https://doi.org/10.5194/bg-18-5681-2021, https://doi.org/10.5194/bg-18-5681-2021, 2021
Short summary
Short summary
To assure quality predictions biogeochemical models must be current. We use data measured using novel incubation methods to test the denitrification sub-modules of three models. We aim to identify limitations in the denitrification modeling to inform next steps for development. Several areas are identified, most urgently improved denitrification control parameters and further testing with high-temporal-resolution datasets. Addressing these would significantly improve denitrification modeling.
Fabian Kalks, Gabriel Noren, Carsten W. Mueller, Mirjam Helfrich, Janet Rethemeyer, and Axel Don
SOIL, 7, 347–362, https://doi.org/10.5194/soil-7-347-2021, https://doi.org/10.5194/soil-7-347-2021, 2021
Short summary
Short summary
Sedimentary rocks contain organic carbon that may end up as soil carbon. However, this source of soil carbon is overlooked and has not been quantified sufficiently. We analysed 10 m long sediment cores with three different sedimentary rocks. All sediments contain considerable amounts of geogenic carbon contributing 3 %–12 % to the total soil carbon below 30 cm depth. The low 14C content of geogenic carbon can result in underestimations of soil carbon turnover derived from 14C data.
Patrick Wordell-Dietrich, Anja Wotte, Janet Rethemeyer, Jörg Bachmann, Mirjam Helfrich, Kristina Kirfel, Christoph Leuschner, and Axel Don
Biogeosciences, 17, 6341–6356, https://doi.org/10.5194/bg-17-6341-2020, https://doi.org/10.5194/bg-17-6341-2020, 2020
Short summary
Short summary
The release of CO2 from soils, known as soil respiration, plays a major role in the global carbon cycle. However, the contributions of different soil depths or the sources of soil CO2 have hardly been studied. We quantified the CO2 production for different soil layers (up to 1.5 m) in three soil profiles for 2 years. We found that 90 % of CO2 production occurs in the first 30 cm of the soil profile, and that the CO2 originated from young carbon sources, as revealed by radiocarbon measurements.
Cited articles
Abalos, D., Rittl, T. F., Recous, S., Thiébeau, P., Topp, C. F. E., van Groenigen, K. J., Butterbach-Bahl, K., Thorman, R. E., Smith, K. E., Ahuja, I., Olesen, J. E., Bleken, M. A., Rees, R. M., and Hansen, S.: Predicting field N2O emissions from crop residues based on their biochemical composition: A meta-analytical approach, Sci. Total Environ., 812, 152532, https://doi.org/10.1016/j.scitotenv.2021.152532, 2022.
Abdalla, M., Hastings, A., Cheng, K., Yue, Q., Chadwick, D., Espenberg, M., Truu, J., Rees, R. M., and Smith, P.: A critical review of the impacts of cover crops on nitrogen leaching, net greenhouse gas balance and crop productivity, Glob. Change Biol., 25, 2530–2543, https://doi.org/10.1111/gcb.14644, 2019.
Adetunji, A. T., Ncube, B., Mulidzi, R., and Lewu, F. B.: Management impact and benefit of cover crops on soil quality: A review, Soil Till. Res., 204, 104717, https://doi.org/10.1016/j.still.2020.104717, 2020.
Araújo, F. C. D., Nascente, A. S., Guimarães, J. L. N., Sousa, V. S., Freitas, M. A. M. D., and Santos, F. L. D. S.: Cover crops in the off-season in the weed management at notillage area, Rev. Caatinga, 34, 50–57, https://doi.org/10.1590/1983-21252021v34n106rc, 2021.
Balkcom, K. S., Duzy, L. M., Kornecki, T. S., and Price, A. J.: Timing of Cover Crop Termination: Management Considerations for the Southeast, Crop, Forage and Turfgrass Management, 1, cftm2015.0161, https://doi.org/10.2134/cftm2015.0161, 2015.
Basche, A. D., Miguez, F. E., Kaspar, T. C., and Castellano, M. J.: Do cover crops increase or decrease nitrous oxide emissions? A meta-analysis, J. Soil Water Conserv., 69, 471–482, https://doi.org/10.2489/jswc.69.6.471, 2014.
Basche, A. D., Kaspar, T. C., Archontoulis, S. V., Jaynes, D. B., Sauer, T. J., Parkin, T. B., and Miguez, F. E.: Soil water improvements with the long-term use of a winter rye cover crop, Agr. Water Manage., 172, 40–50, https://doi.org/10.1016/j.agwat.2016.04.006, 2016.
Bates, D., Mächler, M., Bolker, B., and Walker, S.: Fitting Linear Mixed-Effects Models Using lme4, J. Stat. Softw., 67, 1–48, https://doi.org/10.18637/jss.v067.i01, 2015.
Beauchamp, E. G., Trevors, J. T., and Paul, J. W.: Carbon Sources for Bacterial Denitrification, in: Advances in Soil Science, vol. 10, edited by: Stewart, B. A., Springer, New York, NY, 113–142, https://doi.org/10.1007/978-1-4613-8847-0_3, 1989.
Blagodatsky, S., Grote, R., Kiese, R., Werner, C., and Butterbach-Bahl, K.: Modelling of microbial carbon and nitrogen turnover in soil with special emphasis on N-trace gases emission, Plant Soil, 346, 297–330, https://doi.org/10.1007/s11104-011-0821-z, 2011.
Blanco-Canqui, H.: Cover crops and carbon sequestration: Lessons from U. S. studies, Soil Sci. Soc. Am. J., 86, 501–519, https://doi.org/10.1002/saj2.20378, 2022.
Blanco-Canqui, H., Shaver, T. M., Lindquist, J. L., Shapiro, C. A., Elmore, R. W., Francis, C. A., and Hergert, G. W.: Cover Crops and Ecosystem Services: Insights from Studies in Temperate Soils, Agron. J., 107, 2449–2474, https://doi.org/10.2134/agronj15.0086, 2015.
Bolinder, M. A., Crotty, F., Elsen, A., Frac, M., Kismányoky, T., Lipiec, J., Tits, M., Tóth, Z., and Kätterer, T.: The effect of crop residues, cover crops, manures and nitrogen fertilization on soil organic carbon changes in agroecosystems: a synthesis of reviews, Mitig. Adapt. Strat. Gl., 25, 929–952, https://doi.org/10.1007/s11027-020-09916-3, 2020.
Bollmann, A. and Conrad, R.: Influence of O2 availability on NO and N2O release by nitrification and denitrification in soils, Glob. Change Biol., 4, 387–396, https://doi.org/10.1046/j.1365-2486.1998.00161.x, 1998.
Chatskikh, D., Olesen, J. E., Hansen, E. M., Elsgaard, L., and Petersen, B. M.: Effects of reduced tillage on net greenhouse gas fluxes from loamy sand soil under winter crops in Denmark, Agr. Ecosyst. Environ., 128, 117–126, https://doi.org/10.1016/j.agee.2008.05.010, 2008.
Chen, H., Li, X., Hu, F., and Shi, W.: Soil nitrous oxide emissions following crop residue addition: a meta-analysis, Glob. Change Biol., 19, 2956–2964, https://doi.org/10.1111/gcb.12274, 2013.
Coleman, K. and Jenkinson, D. S.: RothC-26.3 – A Model for the turnover of carbon in soil, in: Evaluation of Soil Organic Matter Models, NATO ASI Series, vol. 38, edited by: Powlson, D. S., Smith, P., and Smith, J. U., Springer, Berlin, Heidelberg, Berlin, Heidelberg, 237–246, https://doi.org/10.1007/978-3-642-61094-3_17, 1996.
Constantin, J., Beaudoin, N., Laurent, F., Cohan, J.-P., Duyme, F., and Mary, B.: Cumulative effects of catch crops on nitrogen uptake, leaching and net mineralization, Plant Soil, 341, 137–154, https://doi.org/10.1007/s11104-010-0630-9, 2011.
Cosentino, V. R. N., Figueiro Aureggui, S. A., and Taboada, M. A.: Hierarchy of factors driving N2O emissions in non-tilled soils under different crops, Eur. J. Soil Sci., 64, 550–557, https://doi.org/10.1111/ejss.12080, 2013.
Daryanto, S., Fu, B., Wang, L., Jacinthe, P.-A., and Zhao, W.: Quantitative synthesis on the ecosystem services of cover crops, Earth-Sci. Rev., 185, 357–373, https://doi.org/10.1016/j.earscirev.2018.06.013, 2018.
Davidson, E. A.: The contribution of manure and fertilizer nitrogen to atmospheric nitrous oxide since 1860, Nat. Geosci., 2, 659–662, https://doi.org/10.1038/ngeo608, 2009.
Dechow, R., Franko, U., Kätterer, T., and Kolbe, H.: Evaluation of the RothC model as a prognostic tool for the prediction of SOC trends in response to management practices on arable land, Geoderma, 337, 463–478, https://doi.org/10.1016/j.geoderma.2018.10.001, 2019.
Dobbie, K. E. and Smith, K. A.: Nitrous oxide emission factors for agricultural soils in Great Britain: the impact of soil water-filled pore space and other controlling variables, Glob. Change Biol., 9, 204–218, https://doi.org/10.1046/j.1365-2486.2003.00563.x, 2003.
Doran, J. W. and Smith, M. S.: Role of cover crops in nitrogen cycling, Cover crops for clean water, 85, 85–90, 1991.
DWD: Wetter und Klima – Deutscher Wetterdienst – CDC (Climate Data Center), https://www.dwd.de/EN/climate_environment/cdc/cdc_node_en.html (last access: 12 July 2023), 2023.
Elhakeem, A., van der Werf, W., Ajal, J., Lucà, D., Claus, S., Vico, R. A., and Bastiaans, L.: Cover crop mixtures result in a positive net biodiversity effect irrespective of seeding configuration, Agr. Ecosyst. Environ., 285, 106627, https://doi.org/10.1016/j.agee.2019.106627, 2019.
Finney, D. M., Buyer, J. S., and Kaye, J. P.: Living cover crops have immediate impacts on soil microbial community structure and function, J. Soil Water Conserv., 72, 361–373, https://doi.org/10.2489/jswc.72.4.361, 2017.
Flessa, H., Dörsch, P., and Beese, F.: Seasonal variation of N2O and CH4 fluxes in differently managed arable soils in southern Germany, J. Geophys. Res.-Atmos., 100, 23115–23124, https://doi.org/10.1029/95JD02270, 1995.
Fosu, M., Kühne, R. F., and Vlek, P. L. G.: Mineralization and microbial biomass dynamics during decomposition of four leguminous residues, Journal of Biological Sciences, 7, 632–637, 2007.
Franko, U., Kolbe, H., Thiel, E., and Ließ, E.: Multi-site validation of a soil organic matter model for arable fields based on generally available input data, Geoderma, 166, 119–134, https://doi.org/10.1016/j.geoderma.2011.07.019, 2011.
Fuss, R. and Hueppi, R.: gasfluxes: Greenhouse Gas Flux Calculation from Chamber Measurements, CRAN [code], https://git-dmz.thuenen.de/fuss/gasfluxes (last access: 11 February 2023), 2020.
Gabriel, J. L. and Quemada, M.: Replacing bare fallow with cover crops in a maize cropping system: Yield, N uptake and fertiliser fate, Eur. J. Agron., 34, 133–143, https://doi.org/10.1016/j.eja.2010.11.006, 2011.
Gale, M. R. and Grigal, D. F.: Vertical root distributions of northern tree species in relation to successional status, Can. J. Forest. Res., 17, 829–834, https://doi.org/10.1139/x87-131, 1987.
Galloway, J. N. and Cowling, E. B.: Reactive Nitrogen and The World: 200 Years of Change, ambi, 31, 64–71, https://doi.org/10.1579/0044-7447-31.2.64, 2002.
German Fertilizer Ordinance: Verordnung zur Neuordnung der guten fachlichen Praxis beim Düngen, Bundesgesetzblatt Teil I, 1305, 2017.
Goodroad, L. L. and Keeney, D. R.: Nitrous oxide emissions from soils during thawing, Can. J. Soil. Sci., 64, 187–194, https://doi.org/10.4141/cjss84-020, 1984.
Grunwald, D., Stracke, A., and Koch, H.: Cover crop effects on soil structure and early sugar beet growth, Soil Use Manage., 39, 209–217, https://doi.org/10.1111/sum.12800, 2022.
Guenet, B., Gabrielle, B., Chenu, C., Arrouays, D., Balesdent, J., Bernoux, M., Bruni, E., Caliman, J.-P., Cardinael, R., Chen, S., Ciais, P., Desbois, D., Fouche, J., Frank, S., Henault, C., Lugato, E., Naipal, V., Nesme, T., Obersteiner, M., Pellerin, S., Powlson, D. S., Rasse, D. P., Rees, F., Soussana, J.-F., Su, Y., Tian, H., Valin, H., and Zhou, F.: Can N2O emissions offset the benefits from soil organic carbon storage?, Glob. Change Biol., 27, 237–256, https://doi.org/10.1111/gcb.15342, 2021.
Hanrahan, B. R., King, K. W., Duncan, E. W., and Shedekar, V. S.: Cover crops differentially influenced nitrogen and phosphorus loss in tile drainage and surface runoff from agricultural fields in Ohio, USA, J. Environ. Manage., 293, 112910, https://doi.org/10.1016/j.jenvman.2021.112910, 2021.
Helfrich, M., Dechow, R., Merl, S., Fuß, R., Räbiger, T., Kühling, I., Schlathölter, M., Kage, H., and Flessa, H.: Winter cover crops decreased soil mineral N contents and increased soil organic C stocks and N2O emission, Agr. Ecosyst. Environ., 367, 108985, https://doi.org/10.1016/j.agee.2024.108985, 2024.
Hillel, D.: Introduction to Environmental Soil Physics, 1st Edn., Academic Press, San Diego, CA, 511 pp., ISBN 9780123486554, 2003.
Intergovernmental Panel on Climate Change (IPCC): Climate Change 2022 – Mitigation of Climate Change: Working Group III Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, https://doi.org/10.1017/9781009157926, 2022.
IPCC: 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4: Agriculture, Forestry and Other Land Use, edited by: Calvo Buendia, E., Tanabe, K., Kranjc, A., Baasansuren, J., Fukuda, M., Ngarize, S., Osako, A., Pyrozhenko, Y., Shermanau, P., and Federici, S., IPCC, Switzerland, ISBN 978-4-88788-232-4, 2019.
IUSS Working Group WRB: World Reference Base for Soil Resources 2014, update 2015: International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, World Soil Resources Reports No. 106, FAO, Rome, ISBN 978-92-5-108369-7 (print), E-ISBN 978-92-5-108370-3 (PDF), 2015.
Jackson, R. B., Canadell, J., Ehleringer, J. R., Mooney, H. A., Sala, O. E., and Schulze, E. D.: A global analysis of root distributions for terrestrial biomes, Oecologia, 108, 389–411, https://doi.org/10.1007/BF00333714, 1996.
Jacobs, A., Poeplau, C., Weiser, C., Fahrion-Nitschke, A., and Don, A.: Exports and inputs of organic carbon on agricultural soils in Germany, Nutr. Cycl. Agroecosys., 118, 249–271, https://doi.org/10.1007/s10705-020-10087-5, 2020.
Jian, J., Du, X., Reiter, M. S., and Stewart, R. D.: A meta-analysis of global cropland soil carbon changes due to cover cropping, Soil Biol. Biochem., 143, 107735, https://doi.org/10.1016/j.soilbio.2020.107735, 2020.
Koch, H.-J., Grunwald, D., Essich, L., and Ruser, R.: Temporal dynamics of sugar beet (Beta vulgaris L.) N supply from cover crops differing in biomass quantity and composition, Front. Plant. Sci., 13, 920531, https://doi.org/10.3389/fpls.2022.920531, 2022.
Kravchenko, A. N., Toosi, E. R., Guber, A. K., Ostrom, N. E., Yu, J., Azeem, K., Rivers, M. L., and Robertson, G. P.: Hotspots of soil N2O emission enhanced through water absorption by plant residue, Nat. Geosci., 10, 496–500, https://doi.org/10.1038/ngeo2963, 2017.
Kühling, I., Mikuszies, P., Helfrich, M., Flessa, H., Schlathölter, M., Sieling, K., and Kage, H.: Effects of winter cover crops from different functional groups on soil-plant nitrogen dynamics and silage maize yield, Eur. J. Agron., 148, 126878, https://doi.org/10.1016/j.eja.2023.126878, 2023.
Lapierre, J., Machado, P. V. F., Debruyn, Z., Brown, S. E., Jordan, S., Berg, A., Biswas, A., Henry, H. A. L., and Wagner-Riddle, C.: Cover crop mixtures: A powerful strategy to reduce post-harvest surplus of soil nitrate and leaching, Agr. Ecosyst. Environ., 325, 107750, https://doi.org/10.1016/j.agee.2021.107750, 2022.
Lemke, R. L., Izaurralde, R. C., Malhi, S. S., Arshad, M. A., and Nyborg, M.: Nitrous Oxide Emissions from Agricultural Soils of the Boreal and Parkland Regions of Alberta, Soil Sci. Soc. Am. J., 62, 1096–1102, https://doi.org/10.2136/sssaj1998.03615995006200040034x, 1998.
Lenth, R. V., Bolker, B., Buerkner, P., Giné-Vázquez, I., Herve, M., Jung, M., Love, J., Miguez, F., Riebl, H., and Singmann, H.: emmeans: Estimated Marginal Means, aka Least-Squares Means, CRAN [code], https://rvlenth.github.io/emmeans/ (last access: 4 March 2024), 2025.
Li, X., Hu, F., and Shi, W.: Plant material addition affects soil nitrous oxide production differently between aerobic and oxygen-limited conditions, Appl. Soil Ecol., 64, 91–98, https://doi.org/10.1016/j.apsoil.2012.10.003, 2013.
Li, X., Petersen, S. O., Sørensen, P., and Olesen, J. E.: Effects of contrasting catch crops on nitrogen availability and nitrous oxide emissions in an organic cropping system, Agr. Ecosyst. Environ., 199, 382–393, https://doi.org/10.1016/j.agee.2014.10.016, 2015.
Lynch, M. J., Mulvaney, M. J., Hodges, S. C., Thompson, T. L., and Thomason, W. E.: Decomposition, nitrogen and carbon mineralization from food and cover crop residues in the central plateau of Haiti, SpringerPlus, 5, 973, https://doi.org/10.1186/s40064-016-2651-1, 2016.
Malnou, C. S., Jaggard, K. W., and Sparkes, D. L.: A canopy approach to nitrogen fertilizer recommendations for the sugar beet crop, Eur. J. Agron., 25, 254–263, https://doi.org/10.1016/j.eja.2006.06.002, 2006.
Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, Ö., Yu, R., and Zhou, B. (Eds.): Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, https://doi.org/10.1017/9781009157896, 2021.
Millar, N. and Baggs, E. M.: Chemical composition, or quality, of agroforestry residues influences N2O emissions after their addition to soil, Soil Biol. Biochem., 36, 935–943, https://doi.org/10.1016/j.soilbio.2004.02.008, 2004.
Mitchell, J. P., Shrestha, A., and Irmak, S.: Trade-offs between winter cover crop production and soil water depletion in the San Joaquin Valley, California, J. Soil Water Conserv., 70, 430–440, https://doi.org/10.2489/jswc.70.6.430, 2015.
Muhammad, I., Sainju, U. M., Zhao, F., Khan, A., Ghimire, R., Fu, X., and Wang, J.: Regulation of soil CO2 and N2O emissions by cover crops: A meta-analysis, Soil Till. Res., 192, 103–112, https://doi.org/10.1016/j.still.2019.04.020, 2019.
Mutegi, J. K., Munkholm, L. J., Petersen, B. M., Hansen, E. M., and Petersen, S. O.: Nitrous oxide emissions and controls as influenced by tillage and crop residue management strategy, Soil Biol. Biochem., 42, 1701–1711, https://doi.org/10.1016/j.soilbio.2010.06.004, 2010.
Nasser, V.: Managing Soil Nitrogen Surplus: The Role of Winter Cover Crops in N2O Emissions and Carbon Sequestration, GRO.data, V1 [data set], https://doi.org/10.25625/HFEDA7, 2024.
Nouri, A., Lukas, S., Singh, S., Singh, S., and Machado, S.: When do cover crops reduce nitrate leaching? A global meta-analysis, Glob. Change Biol., 28, 4736–4749, https://doi.org/10.1111/gcb.16269, 2022.
Pan, F. F., Tang, J., and Chen, B. H.: Cover Crop Effects on Soil N Retention and Supply in Fertilizer-Intensive Cropping Systems (A Review), Eurasian Soil Sci.+, 55, 1278–1294, https://doi.org/10.1134/S1064229322090125, 2022.
Parkin, T. B., Kaspar, T. C., Jaynes, D. B., and Moorman, T. B.: Rye Cover Crop Effects on Direct and Indirect Nitrous Oxide Emissions, Soil Sci. Soc. Am. J., 80, 1551–1559, https://doi.org/10.2136/sssaj2016.04.0120, 2016.
Parr, M., Grossman, J. M., Reberg-Horton, S. C., Brinton, C., and Crozier, C.: Nitrogen Delivery from Legume Cover Crops in No-Till Organic Corn Production, Agron. J., 103, 1578–1590, https://doi.org/10.2134/agronj2011.0007, 2011.
Pelster, D. E., Chantigny, M. H., Rochette, P., Angers, D. A., Rieux, C., and Vanasse, A.: Nitrous Oxide Emissions Respond Differently to Mineral and Organic Nitrogen Sources in Contrasting Soil Types, J. Environ. Qual., 41, 427–435, https://doi.org/10.2134/jeq2011.0261, 2012.
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., Heisterkamp, S., Van Willigen, B., Ranke, J., and R Core Team: nlme: Linear and Nonlinear Mixed Effects Models, CRAN [code], https://svn.r-project.org/R-packages/trunk/nlme/ (last access: 4 March 2024), 2023.
Poeplau, C. and Don, A.: Carbon sequestration in agricultural soils via cultivation of cover crops – A meta-analysis, Agr. Ecosyst. Environ., 200, 33–41, https://doi.org/10.1016/j.agee.2014.10.024, 2015.
Qi, Z., Helmers, M. J., Malone, R. W., and Thorp, K. R.: Simulating Long-Term Impacts of Winter Rye Cover Crop on Hydrologic Cycling and Nitrogen Dynamics for a Corn-Soybean Crop System, T. ASABE, 54, 1575–1588, https://doi.org/10.13031/2013.39836, 2011.
R Core Team: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/ (last access: 4 March 2024), 2023.
Ramirez-Garcia, J., Gabriel, J. L., Alonso-Ayuso, M., and Quemada, M.: Quantitative characterization of five cover crop species, J. Agric. Sci., 153, 1174–1185, https://doi.org/10.1017/S0021859614000811, 2015.
Riggers, C., Poeplau, C., Don, A., Bamminger, C., Höper, H., and Dechow, R.: Multi-model ensemble improved the prediction of trends in soil organic carbon stocks in German croplands, Geoderma, 345, 17–30, https://doi.org/10.1016/j.geoderma.2019.03.014, 2019.
Rochette, P., Angers, D. A., Chantigny, M. H., and Bertrand, N.: Nitrous Oxide Emissions Respond Differently to No-Till in a Loam and a Heavy Clay Soil, Soil Sci. Soc. Am. J., 72, 1363–1369, https://doi.org/10.2136/sssaj2007.0371, 2008.
Rösemann, C., Haenel, H.-D., Vos, C., Dämmgen, U., Döring, U., Wulf, S., Eurich-Menden, B., Freibauer, A., Döhler, H., Schreiner, C., Osterburg, B., and Fuß, R.: Calculations of gaseous and particulate emissions from German agriculture 1990–2019: Input data and emission results, Thünen Institute [data set], https://doi.org/10.3220/DATA20210323134503, 2021.
Rummel, P. S., Well, R., Pfeiffer, B., Dittert, K., Floßmann, S., and Pausch, J.: Nitrate uptake and carbon exudation – do plant roots stimulate or inhibit denitrification?, Plant Soil, 459, 217–233, https://doi.org/10.1007/s11104-020-04750-7, 2021.
Seitz, D., Fischer, L. M., Dechow, R., Wiesmeier, M., and Don, A.: The potential of cover crops to increase soil organic carbon storage in German croplands, Plant Soil, 488, 157–173, https://doi.org/10.1007/s11104-022-05438-w, 2023.
Sierra, C. A., Müller, M., and Trumbore, S. E.: Models of soil organic matter decomposition: the SoilR package, version 1.0, Geosci. Model Dev., 5, 1045–1060, https://doi.org/10.5194/gmd-5-1045-2012, 2012.
Signor, D. and Cerri, C. E. P.: Nitrous oxide emissions in agricultural soils: a review, Pesqui. Agropecu. Trop., 43, 322–338, https://doi.org/10.1590/S1983-40632013000300014, 2013.
Simmelsgaard, S. E.: The effect of crop, N-level, soil type and drainage on nitrate leaching from Danish soil, Soil Use Manage., 14, 30–36, https://doi.org/10.1111/j.1475-2743.1998.tb00607.x, 1998.
Smith, K. A., Ball, T., Dobbie, K. E., Massheder, J., and Rey, A.: Exchange of greenhouse gases between soil and atmosphere: interactions of soil physical factors and biological processes, Eur. J. Soil Sci., 54, 779–791, 2003.
Storr, T., Simmons, R. W., and Hannam, J. A.: Using frost-sensitive cover crops for timely nitrogen mineralization and soil moisture management, Soil Use Manage., 37, 427–435, https://doi.org/10.1111/sum.12619, 2021.
Taghizadeh-Toosi, A., Christensen, B. T., Hutchings, N. J., Vejlin, J., Kätterer, T., Glendining, M., and Olesen, J. E.: C-TOOL: A simple model for simulating whole-profile carbon storage in temperate agricultural soils, Ecol. Model., 292, 11–25, https://doi.org/10.1016/j.ecolmodel.2014.08.016, 2014.
Thangarajan, R., Bolan, N. S., Tian, G., Naidu, R., and Kunhikrishnan, A.: Role of organic amendment application on greenhouse gas emission from soil, Sci. Total Environ., 465, 72–96, https://doi.org/10.1016/j.scitotenv.2013.01.031, 2013.
Thapa, R., Mirsky, S. B., and Tully, K. L.: Cover Crops Reduce Nitrate Leaching in Agroecosystems: A Global Meta-Analysis, J. Environ. Qual., 47, 1400–1411, https://doi.org/10.2134/jeq2018.03.0107, 2018.
Tian, H., Xu, R., Canadell, J. G., Thompson, R. L., Winiwarter, W., Suntharalingam, P., Davidson, E. A., Ciais, P., Jackson, R. B., Janssens-Maenhout, G., Prather, M. J., Regnier, P., Pan, N., Pan, S., Peters, G. P., Shi, H., Tubiello, F. N., Zaehle, S., Zhou, F., Arneth, A., Battaglia, G., Berthet, S., Bopp, L., Bouwman, A. F., Buitenhuis, E. T., Chang, J., Chipperfield, M. P., Dangal, S. R. S., Dlugokencky, E., Elkins, J. W., Eyre, B. D., Fu, B., Hall, B., Ito, A., Joos, F., Krummel, P. B., Landolfi, A., Laruelle, G. G., Lauerwald, R., Li, W., Lienert, S., Maavara, T., MacLeod, M., Millet, D. B., Olin, S., Patra, P. K., Prinn, R. G., Raymond, P. A., Ruiz, D. J., van der Werf, G. R., Vuichard, N., Wang, J., Weiss, R. F., Wells, K. C., Wilson, C., Yang, J., and Yao, Y.: A comprehensive quantification of global nitrous oxide sources and sinks, Nature, 586, 248–256, https://doi.org/10.1038/s41586-020-2780-0, 2020.
Tonitto, C., David, M. B., and Drinkwater, L. E.: Replacing bare fallows with cover crops in fertilizer-intensive cropping systems: A meta-analysis of crop yield and N dynamics, Agr. Ecosyst. Environ., 112, 58–72, https://doi.org/10.1016/j.agee.2005.07.003, 2006.
Unger, P. W. and Vigil, M. F.: Cover crop effects on soil water relationships, J. Soil Water Conserv., 53, 200–207, 1998.
VDLUFA: Bestimmung von mineralischem Stickstoff (Nitrat und Ammonium) in Bodenprofilen (NminLabormethode A 6.1.4.1), 2002.
Voisin, A.-S., Salon, C., Munier-Jolain, N. G., and Ney, B.: Quantitative effects of soil nitrate, growth potential and phenology on symbiotic nitrogen fixation of pea (Pisum sativum L.), Plant Soil, 243, 31–42, https://doi.org/10.1023/A:1019966207970, 2002.
Wagner-Riddle, C., Congreves, K. A., Abalos, D., Berg, A. A., Brown, S. E., Ambadan, J. T., Gao, X., and Tenuta, M.: Globally important nitrous oxide emissions from croplands induced by freeze–thaw cycles, Nat. Geosci., 10, 279–283, https://doi.org/10.1038/ngeo2907, 2017.
Wang, J., Zhang, S., Sainju, U. M., Ghimire, R., and Zhao, F.: A meta-analysis on cover crop impact on soil water storage, succeeding crop yield, and water-use efficiency, Agr. Water Manage., 256, 107085, https://doi.org/10.1016/j.agwat.2021.107085, 2021.
Wayman, S., Cogger, C., Benedict, C., Burke, I., Collins, D., and Bary, A.: The influence of cover crop variety, termination timing and termination method on mulch, weed cover and soil nitrate in reduced-tillage organic systems, Renew. Agr. Food Syst., 30, 450–460, https://doi.org/10.1017/S1742170514000246, 2015.
Weitz, A. M., Linder, E., Frolking, S., Crill, P. M., and Keller, M.: N2O emissions from humid tropical agricultural soils: effects of soil moisture, texture and nitrogen availability, Soil Biol. Biochem., 33, 1077–1093, https://doi.org/10.1016/S0038-0717(01)00013-X, 2001.
Wickham, H., Pedersen, T. L., Seidel, D., and Thomas, L. P.: scales: Scale Functions for Visualization, CRAN [code], https://scales.r-lib.org (last access: 4 March 2024), 2023.
Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A., and Smith, G. M.: Mixed effects models and extensions in ecology with R, Springer New York, NY, https://doi.org/10.1007/978-0-387-87458-6, 2009.
Short summary
This study evaluated the impact of contrasting cover crops on topsoil mineral nitrogen (SMN), N2O emissions, and carbon (C) sequestration. Non-legume cover crops reduced SMN levels, showed potential for mitigating indirect N2O emissions, and increased C sequestration but did not reduce cumulative N2O emissions compared to fallow. The results highlight the need for tailored cover crop strategies to balance SMN capture, N2O emissions, and C sequestration effectively.
This study evaluated the impact of contrasting cover crops on topsoil mineral nitrogen (SMN),...