Articles | Volume 11, issue 1
https://doi.org/10.5194/soil-11-17-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/soil-11-17-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Large errors in soil carbon measurements attributed to inconsistent sample processing
Rebecca J. Even
CORRESPONDING AUTHOR
Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523, USA
Megan B. Machmuller
Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523, USA
Soil Carbon Solutions Center, Colorado State University, Fort Collins, CO 80523, USA
Jocelyn M. Lavallee
Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523, USA
Environmental Defense Fund, 257 Park Ave S, New York, NY 10010, USA
Tamara J. Zelikova
Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523, USA
Soil Carbon Solutions Center, Colorado State University, Fort Collins, CO 80523, USA
M. Francesca Cotrufo
Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523, USA
Soil Carbon Solutions Center, Colorado State University, Fort Collins, CO 80523, USA
Related authors
No articles found.
Alejandro Carrascosa, Gerardo Moreno, M. Francesca Cotrufo, Cristina Frade, Sara Rodrigo, and Víctor Rolo
EGUsphere, https://doi.org/10.5194/egusphere-2025-1711, https://doi.org/10.5194/egusphere-2025-1711, 2025
Short summary
Short summary
Improved management practices such as rotational grazing, grazing exclusion, and legume enrichment can boost climate change mitigation and adaptation in grasslands. We studied the effects of these practices on soil organic carbon (SOC) stocks and fractions in semi-arid grasslands. Rotational grazing increased SOC, especially mineral-protected fraction, while exclusion reduced particulate organic carbon stocks. These outcomes were linked to changes in plant traits, soil microbes, and nutrients.
Stefano Manzoni and M. Francesca Cotrufo
Biogeosciences, 21, 4077–4098, https://doi.org/10.5194/bg-21-4077-2024, https://doi.org/10.5194/bg-21-4077-2024, 2024
Short summary
Short summary
Organic carbon and nitrogen are stabilized in soils via microbial assimilation and stabilization of necromass (in vivo pathway) or via adsorption of the products of extracellular decomposition (ex vivo pathway). Here we use a diagnostic model to quantify which stabilization pathway is prevalent using data on residue-derived carbon and nitrogen incorporation in mineral-associated organic matter. We find that the in vivo pathway is dominant in fine-textured soils with low organic matter content.
Sam J. Leuthold, Jocelyn M. Lavallee, Bruno Basso, William F. Brinton, and M. Francesca Cotrufo
SOIL, 10, 307–319, https://doi.org/10.5194/soil-10-307-2024, https://doi.org/10.5194/soil-10-307-2024, 2024
Short summary
Short summary
We examined physical soil organic matter fractions to understand their relationship to temporal variability in crop yield at field scale. We found that interactions between crop productivity, topography, and climate led to variability in soil organic matter stocks among different yield stability zones. Our results imply that linkages between soil organic matter and yield stability may be scale-dependent and that particulate organic matter may be an indicator of unstable areas within croplands.
Yao Zhang, Jocelyn M. Lavallee, Andy D. Robertson, Rebecca Even, Stephen M. Ogle, Keith Paustian, and M. Francesca Cotrufo
Biogeosciences, 18, 3147–3171, https://doi.org/10.5194/bg-18-3147-2021, https://doi.org/10.5194/bg-18-3147-2021, 2021
Short summary
Short summary
Soil organic matter (SOM) is essential for the health of soils, and the accumulation of SOM helps removal of CO2 from the atmosphere. Here we present the result of the continued development of a mathematical model that simulates SOM and its measurable fractions. In this study, we simulated several grassland sites in the US, and the model generally captured the carbon and nitrogen amounts in SOM and their distribution between the measurable fractions throughout the entire soil profile.
Jennifer M. Rhymes, Irene Cordero, Mathilde Chomel, Jocelyn M. Lavallee, Angela L. Straathof, Deborah Ashworth, Holly Langridge, Marina Semchenko, Franciska T. de Vries, David Johnson, and Richard D. Bardgett
SOIL, 7, 95–106, https://doi.org/10.5194/soil-7-95-2021, https://doi.org/10.5194/soil-7-95-2021, 2021
Cited articles
Amooh, M. and Bonsu, M.: Effects of Soil Texture and Organic Matter on Evaporative Loss of Soil Moisture, Journal of Global Agriculture and Ecology, 3, 152–161, 2015.
Apesteguia, M., Plante, A. F., and Virto, I.: Methods assessment for organic and inorganic carbon quantification in calcareous soils of the Mediterranean region, Geoderma Regional, 12, 39–48, https://doi.org/10.1016/j.geodrs.2017.12.001, 2018.
Arnold, S. L. and Schepers, J. S.: A Simple Roller-Mill Grinding Procedure for Plant and Soil Samples, Commun. Soil Sci. Plan., 35, 537–545, https://doi.org/10.1081/CSS-120029730, 2004.
Arshad, M. A., Lowery, B., and Grossman, B.: Physical Tests for Monitoring Soil Quality, in: Methods for Assessing Soil Quality, John Wiley & Sons, Ltd, 123–141, https://doi.org/10.2136/sssaspecpub49.c7, 1997.
Bai, Y. and Cotrufo, M. F.: Grassland soil carbon sequestration: Current understanding, challenges, and solutions, Science, 377, 603–608, https://doi.org/10.1126/science.abo2380, 2022.
Bates, D., Mächler, M., Bolker, B., and Walker, S.: Fitting Linear Mixed-Effects Models Using lme4, J. Stat. Softw., 67, 1–48, https://doi.org/10.18637/jss.v067.i01, 2015.
Bernoux, M. and Cerri, C. E. P.: GEOCHEMISTRY|Soil, Organic Components, in: Encyclopedia of Analytical Science, 2nd Edn., edited by: Worsfold, P., Townshend, A., and Poole, C., Elsevier, Oxford, 203–208, https://doi.org/10.1016/B0-12-369397-7/00245-4, 2005.
Bisutti, I., Hilke, I., and Raessler, M.: Determination of total organic carbon – an overview of current methods, TrAC-Trend. Anal.l Chem., 23, 716–726, https://doi.org/10.1016/j.trac.2004.09.003, 2004.
Bomgardner, M. M. and Erickson, B. E.: Carbon farming gets off the ground, C&EN Global Enterprise, 99, 22–28, https://doi.org/10.1021/cen-09918-cover, 2021.
Bossio, D. A., Cook-Patton, S. C., Ellis, P. W., Fargione, J., Sanderman, J., Smith, P., Wood, S., Zomer, R. J., von Unger, M., Emmer, I. M., and Griscom, B. W.: The role of soil carbon in natural climate solutions, Nat. Sustain., 3, 391–398, https://doi.org/10.1038/s41893-020-0491-z, 2020.
Bowman, R. A., Reeder, J. D., and Wienhold, B. J.: Quantifying laboratory and field variability to assess potential for carbon sequestration, Commun. Soil Sci. Plant, 33, 1629–1642, https://doi.org/10.1081/CSS-120004304, 2002.
Brady, N. C. and Weil, R. R.: The nature and properties of soils, No. Ed. 11, xi + 740 pp., Upper Saddle River, NJ, Prentice-Hall Inc, ISBN 978-0-13-243189-7, 1996.
Cihacek, L. J. and Jacobson, K. A.: Effects of Soil Sample Grinding Intensity on Carbon Determination by High-Temperature Combustion, Commun. Soil Sci. Plant, 38, 1733–1739, https://doi.org/10.1080/00103620701435506, 2007.
Clement, C. R. and Williams, T. E.: An Examination of the Method of Aggregate Analysis by Wet Sieving in Relation to the Influence of Diverse Leys on Arable Soils, J. Soil Sci., 9, 252–266, https://doi.org/10.1111/j.1365-2389.1958.tb01915.x, 1958.
Dias, R. M. S., Sempiterno, C. M., and Farropas, L.: Influence of soil grinding degree on the determination of total nitrogen, total carbon and organic carbon concentrations, Revista de Ciencias Agrarias (Portugal), 33, 88–95, 2010.
Díaz-Zorita, M., Grove, J., and Perfect, E.: Aggregation, fragmentation, and structural stability measurement, Encyclopedia of Soil Science, 1, 37–40, 2002.
Even, R.: Soil carbon measurements, Zenodo [data set, code], https://doi.org/10.5281/zenodo.14397267, 2024.
Fan, J., McConkey, B., Wang, H., and Janzen, H.: Root distribution by depth for temperate agricultural crops, Field Crop. Res., 189, 68–74, https://doi.org/10.1016/j.fcr.2016.02.013, 2016.
Farmer, J., Matthews, R., Smith, P., Langan, C., Hergoualc'h, K., Verchot, L., and Smith, J. U.: Comparison of methods for quantifying soil carbon in tropical peats, Geoderma, 214–215, 177–183, https://doi.org/10.1016/j.geoderma.2013.09.013, 2014.
Garcia, G. A., Warren, J. G., Abit, S., Garcia, C., and Flusche Ogden, G.: Sample processing impacts on single wet sieve aggregate stability analysis, Agr. Environ. Lett., 7, e20094, https://doi.org/10.1002/ael2.20094, 2022.
Goydaragh, M. G., Taghizadeh-Mehrjardi, R., Jafarzadeh, A. A., Triantafilis, J., and Lado, M.: Using environmental variables and Fourier Transform Infrared Spectroscopy to predict soil organic carbon, CATENA, 202, 105280, https://doi.org/10.1016/j.catena.2021.105280, 2021.
Harris, D., Horwáth, W. R., and van Kessel, C.: Acid fumigation of soils to remove carbonates prior to total organic carbon or CARBON-13 isotopic analysis, Soil Sci. Soc. Am. J., 65, 1853–1856, https://doi.org/10.2136/sssaj2001.1853, 2001.
Heiri, O., Lotter, A. F., and Lemcke, G.: Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results, J. Paleolimnol., 25, 101–110, https://doi.org/10.1023/A:1008119611481, 2001.
International Organization for Standardization: Guidelines for the Determination of Organic Carbon and Nitrogen Stocks and Their Variations in Mineral Soils at Field Scale, ISO 23400:2021 en, Geneva, Switzerland, ISBN 978 0 539 05757 7, 2021.
Kamau-Rewe, M., Rasche, F., Cobo, J. G., Dercon, G., Shepherd, K. D., and Cadisch, G.: Generic Prediction of Soil Organic Carbon in Alfisols Using Diffuse Reflectance Fourier-Transform Mid-Infrared Spectroscopy, Soil Sci. Soc. Am. J., 75, 2358–2360, https://doi.org/10.2136/sssaj2011.0106N, 2011.
Lal, R.: Soil organic matter and water retention, Agron. J., 112, 3265–3277, https://doi.org/10.1002/agj2.20282, 2020.
Lenth, R.: emmeans: Estimated Marginal Means, aka Least-Squares Means, R package version 1.10.4, https://rvlenth.github.io/emmeans/ (last access: 2 February 2024), 2024.
Leogrande, R., Vitti, C., Castellini, M., Mastrangelo, M., Pedrero, F., Vivaldi, G. A., and Stellacci, A. M.: Comparison of Two Methods for Total Inorganic Carbon Estimation in Three Soil Types in Mediterranean Area, Land, 10, 409, https://doi.org/10.3390/land10040409, 2021.
Leong, L. S. and Tanner, P. A.: Comparison of Methods for Determination of Organic Carbon in Marine Sediment, Mar. Pollut. Bull., 38, 875–879, https://doi.org/10.1016/S0025-326X(99)00013-2, 1999.
Leuthold, S., Lavallee, J. M., Haddix, M. L., and Cotrufo, M. F.: Contrasting properties of soil organic matter fractions isolated by different physical separation methodologies, Geoderma, 445, 116870, https://doi.org/10.1016/j.geoderma.2024.116870, 2024.
McCarty, G. W., Reeves III, J. B., Yost, R., Doraiswamy, P. C., and Doumbia, M.: Evaluation of methods for measuring soil organic carbon in West African soils, Afr. J. Agr. Res., 5, 2169–2177, 2010
McClelland, S. C., Cotrufo, M. F., Haddix, M. L., Paustian, K., and Schipanski, M. E.: Infrequent compost applications increased plant productivity and soil organic carbon in irrigated pasture but not degraded rangeland, Agr. Ecosyst. Environ., 333, 107969, https://doi.org/10.1016/j.agee.2022.107969, 2022.
Mills, G. L. and Quinn, J. G.: Determination of organic carbon in marine sediments by persulfate oxidation, Chem. Geol., 25, 155–162, https://doi.org/10.1016/0009-2541(79)90090-1, 1979.
Minasny, B., Malone, B. P., McBratney, A. B., Angers, D. A., Arrouays, D., Chambers, A., Chaplot, V., Chen, Z.-S., Cheng, K., Das, B. S., Field, D. J., Gimona, A., Hedley, C. B., Hong, S. Y., Mandal, B., Marchant, B. P., Martin, M., McConkey, B. G., Mulder, V. L., O'Rourke, S., Richer-de-Forges, A. C., Odeh, I., Padarian, J., Paustian, K., Pan, G., Poggio, L., Savin, I., Stolbovoy, V., Stockmann, U., Sulaeman, Y., Tsui, C.-C., Vågen, T.-G., van Wesemael, B., and Winowiecki, L.: Soil carbon 4 per mille, Geoderma, 292, 59–86, https://doi.org/10.1016/j.geoderma.2017.01.002, 2017.
Mosier, S., Apfelbaum, S., Byck, P., Calderon, F., Teague, R., Thompson, R., and Cotrufo, M. F.: Adaptive multi-paddock grazing enhances soil carbon and nitrogen stocks and stabilization through mineral association in southeastern U.S. grazing lands, J. Environ. Manage., 288, 112409, https://doi.org/10.1016/j.jenvman.2021.112409, 2021.
Nelson, D. W. and Sommers, L. E.: Total Carbon, Organic Carbon, and Organic Matter, in: Methods of Soil Analysis, John Wiley & Sons, Ltd, 961–1010, https://doi.org/10.2136/sssabookser5.3.c34, 1996.
Oldfield, E. E., Eagle, A. J., Rubin, R. L., Rudek, J., Sanderman, J., and Gordon, D. R.: Crediting agricultural soil carbon sequestration, Science, 375, 1222–1225, https://doi.org/10.1126/science.abl7991, 2022.
Oldfield, E. E., Lavallee, J. M., Blesh, J., Bradford, M. A., Cameron-Harp, M., Cotrufo, M. F., Eagle, A. J., Eash, L., Even, R. J., Kuebbing, S. E., Kort, E. A., Lark, T. J., Latka, C., Lin, Y., Machmuller, M. B., O'Neill, B., Raffeld, A. M., RoyChowdhury, T., Rudek, J., Sanderman, J., Sprunger, C. D., Toombs, T. P., Uludere Aragon, N., Vidal, M., Woolf, D., Zelikova, T. J., and Gordon, D. R.: Greenhouse gas mitigation on croplands: clarifying the debate on knowns, unknowns and risks to move forward with effective management interventions, Carbon Manage., 15, 2365896, https://doi.org/10.1080/17583004.2024.2365896, 2024.
Poeplau, C. and Don, A.: Carbon sequestration in agricultural soils via cultivation of cover crops – A meta-analysis, Agr. Ecosyst. Environ., 200, 33–41, https://doi.org/10.1016/j.agee.2014.10.024, 2015.
Poeplau, C., Eriksson, J., and Kätterer, T.: Estimating residual water content in air-dried soil from organic carbon and clay content, Soil Till. Res., 145, 181–183, https://doi.org/10.1016/j.still.2014.09.021, 2015.
Pribyl, D. W.: A critical review of the conventional SOC to SOM conversion factor, Geoderma, 156, 75–83, https://doi.org/10.1016/j.geoderma.2010.02.003, 2010.
Raffeld, A. M., Bradford, M. A., Jackson, R. D., Rath, D., Sanford, G. R., Tautges, N., and Oldfield, E. E.: The importance of accounting method and sampling depth to estimate changes in soil carbon stocks, Carbon Balance and Management, 19, 2, https://doi.org/10.1186/s13021-024-00249-1, 2024.
Rawlins, B. G., Scheib, A. J., Lark, R. M., and Lister, T. R.: Sampling and analytical plus subsampling variance components for five soil indicators observed at regional scale, Eur. J. Soil Sci., 60, 740–747, https://doi.org/10.1111/j.1365-2389.2009.01159.x, 2009.
R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/ (last access: 11 December 2024), 2023.
Reeves, J. B.: Near- versus mid-infrared diffuse reflectance spectroscopy for soil analysis emphasizing carbon and laboratory versus on-site analysis: Where are we and what needs to be done?, Geoderma, 158, 3–14, https://doi.org/10.1016/j.geoderma.2009.04.005, 2010.
Rytter, R.-M.: Stone and gravel contents of arable soils influence estimates of C and N stocks, CATENA, 95, 153–159, https://doi.org/10.1016/j.catena.2012.02.015, 2012.
S890 North American Proficiency Testing program oversight committee: NAPT program.org, https://www.soils.org/membership/committees/view/get-file/S890/S890-guidelines.pdf (last access: 14 May 2024), 2020.
Safanelli, J. L., Sanderman, J., Bloom, D., Todd-Brown, K., Parente, L. L., Hengl, T., Adam, S., Albinet, F., Ben-Dor, E., Boot, C. M., Bridson, J. H., Chabrillat, S., Deiss, L., Demattê, J. A. M., Scott Demyan, M., Dercon, G., Doetterl, S., van Egmond, F., Ferguson, R., Garrett, L. G., Haddix, M. L., Haefele, S. M., Heiling, M., Hernandez-Allica, J., Huang, J., Jastrow, J. D., Karyotis, K., Machmuller, M. B., Khesuoe, M., Margenot, A., Matamala, R., Miesel, J. R., Mouazen, A. M., Nagel, P., Patel, S., Qaswar, M., Ramakhanna, S., Resch, C., Robertson, J., Roudier, P., Sabetizade, M., Shabtai, I., Sherif, F., Sinha, N., Six, J., Summerauer, L., Thomas, C. L., Toloza, A., Tomczyk-Wójtowicz, B., Tsakiridis, N. L., van Wesemael, B., Woodings, F., Zalidis, G. C., and Żelazny, W. R.: An interlaboratory comparison of mid-infrared spectra acquisition: Instruments and procedures matter, Geoderma, 440, 116724, https://doi.org/10.1016/j.geoderma.2023.116724, 2023.
Sanderman, J. and Baldock, J. A.: Accounting for soil carbon sequestration in national inventories: a soil scientist's perspective, Environ. Res. Lett., 5, 034003, https://doi.org/10.1088/1748-9326/5/3/034003, 2010.
Sanderman, J., Savage, K., and Dangal, S. R. S.: Mid-infrared spectroscopy for prediction of soil health indicators in the United States, Soil Sci. Soc. Am. J., 84, 251–261, https://doi.org/10.1002/saj2.20009, 2020.
Sanderman, J., Smith, C., Safanelli, J. L., Morgan, C. L. S., Ackerson, J., Looker, N., Mathers, C., Keating, R., and Kumar, A. A.: Diffuse reflectance mid-infrared spectroscopy is viable without fine milling, Soil Security, 13, 100104, https://doi.org/10.1016/j.soisec.2023.100104, 2023.
Seybold, C. A., Ferguson, R., Wysocki, D., Bailey, S., Anderson, J., Nester, B., Schoeneberger, P., Wills, S., Libohova, Z., Hoover, D., and Thomas, P.: Application of Mid-Infrared Spectroscopy in Soil Survey, Soil Sci. Soc. Am. J., 83, 1746–1759, https://doi.org/10.2136/sssaj2019.06.0205, 2019.
Sherrod, L. A., Dunn, G., Peterson, G. A., and Kolberg, R. L.: Inorganic Carbon Analysis by Modified Pressure-Calcimeter Method, Soil Sci. Soc. Am. J., 66, 299–305, https://doi.org/10.2136/sssaj2002.2990, 2002.
Sleutel, S., De Neve, S., Singier, B., and Hofman, G.: Quantification of Organic Carbon in Soils: A Comparison of Methodologies and Assessment of the Carbon Content of Organic Matter, Commun. Soil Sci. Plant, 38, 2647–2657, https://doi.org/10.1080/00103620701662877, 2007.
Smith, P., Soussana, J.-F., Angers, D., Schipper, L., Chenu, C., Rasse, D. P., Batjes, N. H., van Egmond, F., McNeill, S., Kuhnert, M., Arias-Navarro, C., Olesen, J. E., Chirinda, N., Fornara, D., Wollenberg, E., Álvaro-Fuentes, J., Sanz-Cobena, A., and Klumpp, K.: How to measure, report and verify soil carbon change to realize the potential of soil carbon sequestration for atmospheric greenhouse gas removal, Glob. Change Biol., 26, 219–241, https://doi.org/10.1111/gcb.14815, 2020.
Soil Survey Staff: Kellogg, Soil Survey Laboratory methods manual, Soil Survey Investigations Report No. 42, Version 6.0, U.S. Department of Agriculture, Natural Resources Conservation Service, 2022.
Stanley, P., Spertus, J., Chiartas, J., Stark, P. B., and Bowles, T.: Valid inferences about soil carbon in heterogeneous landscapes, Geoderma, 430, 116323, https://doi.org/10.1016/j.geoderma.2022.116323, 2023.
Storer, D. A.: A simple high sample volume ashing procedure for determination of soil organic matter, Commun. Soil Sci. Plant, 15, 759–772, https://doi.org/10.1080/00103628409367515, 1984.
Syswerda, S. P., Corbin, A. T., Mokma, D. L., Kravchenko, A. N., and Robertson, G. P.: Agricultural Management and Soil Carbon Storage in Surface vs. Deep Layers, Soil Sci. Soc. Am. J., 75, 92–101, https://doi.org/10.2136/sssaj2009.0414, 2011.
Theocharopoulos, S. P., Mitsios, I. K., and Arvanitoyannis, I.: Traceability of environmental soil measurements, TrAC-Trend. Anal. Chem., 23, 237–251, https://doi.org/10.1016/S0165-9936(04)00317-6, 2004.
Von Unger, M. and Emmer, I.: Carbon Market Incentives to Conserve, Restore and Enhance Soil Carbon, Silvestrum and The Nature Conservancy, https://www.nature.org/content/dam/tnc/nature/en/documents/Carbon-Market-Incentives-Report.pdf (last access: 20 April 2024), 2018.
Wang, X., Wang, J., and Zhang, J.: Comparisons of Three Methods for Organic and Inorganic Carbon in Calcareous Soils of Northwestern China, PLOS ONE, 7, e44334, https://doi.org/10.1371/journal.pone.0044334, 2012.
Wang, Y., Lu, S., Ren, T., and Baoguo, L.: Bound Water Content of Air-Dry Soils Measured by Thermal Analysis, Soil Sci. Soc. Am. J., 75, 481–487, https://doi.org/10.2136/sssaj2010.0065, 2011.
Wijewardane, N. K., Ge, Y., Sanderman, J., and Ferguson, R.: Fine grinding is needed to maintain the high accuracy of mid-infrared diffuse reflectance spectroscopy for soil property estimation, Soil Sci. Soc. Am. J., 85, 263–272, https://doi.org/10.1002/saj2.20194, 2021.
World Data Center for Meteorology: Annual Average Humidity in Colorado, https://www.currentresults.com/Weather/Colorado/humidity-annual.php (last access: 16 May 2024), 2024.
Yeomans, J. C. and Bremner, J. M.: A rapid and precise method for routine determination of organic carbon in soil, Commun. Soil Sci. Plant, 19, 1467–1476, https://doi.org/10.1080/00103628809368027, 1988.
Zelikova, J., Chay, F., Freeman, J., and Cullenward, D.: A buyer's guide to soil carbon offsets, CarbonPlan, https://carbonplan.org/research/soil-protocols-explainer (last access: 14 March 2024), 2021.
Zimmermann, M., Leifeld, J., and Fuhrer, J.: Quantifying soil organic carbon fractions by infrared-spectroscopy, Soil Biol. Biochem., 39, 224–231, https://doi.org/10.1016/j.soilbio.2006.07.010, 2007.
Short summary
We conducted a service soil laboratory comparison study and tested the individual effect of common sieving, grinding, drying, and quantification methods on total, inorganic, and organic soil carbon (C) measurements. We found that inter-lab variability is large and each soil processing step impacts C measurement accuracy and/or precision. Standardizing soil processing methods is needed to ensure C measurements are accurate and precise, especially for C credit allocation and model calibration.
We conducted a service soil laboratory comparison study and tested the individual effect of...