Articles | Volume 10, issue 2
https://doi.org/10.5194/soil-10-679-2024
https://doi.org/10.5194/soil-10-679-2024
Original research article
 | 
30 Sep 2024
Original research article |  | 30 Sep 2024

Insights into the prediction uncertainty of machine-learning-based digital soil mapping through a local attribution approach

Jeremy Rohmer, Stephane Belbeze, and Dominique Guyonnet

Related authors

Improving interpretation of sea-level projections through a machine-learning-based local explanation approach
Jeremy Rohmer, Remi Thieblemont, Goneri Le Cozannet, Heiko Goelzer, and Gael Durand
The Cryosphere, 16, 4637–4657, https://doi.org/10.5194/tc-16-4637-2022,https://doi.org/10.5194/tc-16-4637-2022, 2022
Short summary
Partitioning the contributions of dependent offshore forcing conditions in the probabilistic assessment of future coastal flooding
Jeremy Rohmer, Deborah Idier, Remi Thieblemont, Goneri Le Cozannet, and François Bachoc
Nat. Hazards Earth Syst. Sci., 22, 3167–3182, https://doi.org/10.5194/nhess-22-3167-2022,https://doi.org/10.5194/nhess-22-3167-2022, 2022
Short summary
Statistical estimation of spatial wave extremes for tropical cyclones from small data samples: validation of the STM-E approach using long-term synthetic cyclone data for the Caribbean Sea
Ryota Wada, Jeremy Rohmer, Yann Krien, and Philip Jonathan
Nat. Hazards Earth Syst. Sci., 22, 431–444, https://doi.org/10.5194/nhess-22-431-2022,https://doi.org/10.5194/nhess-22-431-2022, 2022
Short summary
Deep uncertainties in shoreline change projections: an extra-probabilistic approach applied to sandy beaches
Rémi Thiéblemont, Gonéri Le Cozannet, Jérémy Rohmer, Alexandra Toimil, Moisés Álvarez-Cuesta, and Iñigo J. Losada
Nat. Hazards Earth Syst. Sci., 21, 2257–2276, https://doi.org/10.5194/nhess-21-2257-2021,https://doi.org/10.5194/nhess-21-2257-2021, 2021
Short summary
Non-stationary extreme value analysis applied to seismic fragility assessment for nuclear safety analysis
Jeremy Rohmer, Pierre Gehl, Marine Marcilhac-Fradin, Yves Guigueno, Nadia Rahni, and Julien Clément
Nat. Hazards Earth Syst. Sci., 20, 1267–1285, https://doi.org/10.5194/nhess-20-1267-2020,https://doi.org/10.5194/nhess-20-1267-2020, 2020
Short summary

Related subject area

Pedometrics
Reference soil groups map of Ethiopia based on legacy data and machine learning-technique: EthioSoilGrids 1.0
Ashenafi Ali, Teklu Erkossa, Kiflu Gudeta, Wuletawu Abera, Ephrem Mesfin, Terefe Mekete, Mitiku Haile, Wondwosen Haile, Assefa Abegaz, Demeke Tafesse, Gebeyhu Belay, Mekonen Getahun, Sheleme Beyene, Mohamed Assen, Alemayehu Regassa, Yihenew G. Selassie, Solomon Tadesse, Dawit Abebe, Yitbarek Wolde, Nesru Hussien, Abebe Yirdaw, Addisu Mera, Tesema Admas, Feyera Wakoya, Awgachew Legesse, Nigat Tessema, Ayele Abebe, Simret Gebremariam, Yismaw Aregaw, Bizuayehu Abebaw, Damtew Bekele, Eylachew Zewdie, Steffen Schulz, Lulseged Tamene, and Eyasu Elias
SOIL, 10, 189–209, https://doi.org/10.5194/soil-10-189-2024,https://doi.org/10.5194/soil-10-189-2024, 2024
Short summary
Accuracy of regional-to-global soil maps for on-farm decision-making: are soil maps “good enough”?
Jonathan J. Maynard, Edward Yeboah, Stephen Owusu, Michaela Buenemann, Jason C. Neff, and Jeffrey E. Herrick
SOIL, 9, 277–300, https://doi.org/10.5194/soil-9-277-2023,https://doi.org/10.5194/soil-9-277-2023, 2023
Short summary
Shapley values reveal the drivers of soil organic carbon stock prediction
Alexandre M. J.-C. Wadoux, Nicolas P. A. Saby, and Manuel P. Martin
SOIL, 9, 21–38, https://doi.org/10.5194/soil-9-21-2023,https://doi.org/10.5194/soil-9-21-2023, 2023
Short summary
How well does digital soil mapping represent soil geography? An investigation from the USA
David G. Rossiter, Laura Poggio, Dylan Beaudette, and Zamir Libohova
SOIL, 8, 559–586, https://doi.org/10.5194/soil-8-559-2022,https://doi.org/10.5194/soil-8-559-2022, 2022
Short summary

Cited articles

Aas, K., Jullum, M., and Løland, A.: Explaining individual predictions when features are dependent: More accurate approximations to Shapley values, Artif. Intell., 298, 103502, https://doi.org/10.1016/j.artint.2021.103502, 2021. 
Abdar, M., Pourpanah, F., Hussain, S., Rezazadegan, D., Liu, L., Ghavamzadeh, M., Fieguth, P., Cao, X., Khosravi, A., Rajendra Acharya, U., Makarenkov, V., and Nahavandi, S.: A review of uncertainty quantification in deep learning: Techniques, applications and challenges, Inform. Fusion, 76, 243–297, 2021. 
Adhikari, K. and Hartemink, A. E.: Linking soils to ecosystem services – A global review, Geoderma, 262, 101–111, 2016. 
Arrouays, D., McBratney, A., Bouma, J., Libohova, Z., Richerde-Forges, A. C., Morgan, C. L. S., Roudier, P., Poggio, L., and Mulder, V. L.: Impressions of digital soil maps: The good, the not so good, and making them ever better, Geoderma Regional, 20, e00255, https://doi.org/10.1016/j.geodrs.2020.e00255, 2020. 
Behrens, T., Schmidt, K., Viscarra Rossel, R. A., Gries, P., Scholten, T., and MacMillan, R. A.: Spatial modelling with Euclidean distance fields and machine learning, Eur. J. Soil Sci., 69, 757–770, 2018. 
Download
Short summary
Machine learning (ML) models have become key ingredients for digital soil mapping. To explain why the ML model is reliable, we apply a popular method from explainable artificial intelligence to the uncertainty prediction, with an application to the mapping of hydrocarbon pollutants on urban soil. We show the benefit of a joint analysis of the influence on the best estimate and the uncertainty to improve communication with end users and support decisions regarding covariates’ characterisation.