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Abstract. Machine learning (ML) models have become key ingredients for digital soil mapping. To improve the
interpretability of their predictions, diagnostic tools such as the widely used local attribution approach known as
SHapley Additive exPlanations (SHAP) have been developed. However, the analysis of ML model predictions is
only one part of the problem, and there is an interest in obtaining deeper insights into the drivers of the prediction
uncertainty as well, i.e. explaining why an ML model is confident given the set of chosen covariate values in
addition to why the ML model delivered some particular results. In this study, we show how to apply SHAP
to local prediction uncertainty estimates for a case of urban soil pollution – namely, the presence of petroleum
hydrocarbons in soil in Toulouse (France), which pose a health risk via vapour intrusion into buildings, direct
soil ingestion, and groundwater contamination. Our results show that the drivers of the prediction best estimates
are not necessarily the drivers of confidence in these predictions, and we identify those leading to a reduction in
uncertainty. Our study suggests that decisions regarding data collection and covariate characterisation as well as
communication of the results should be made accordingly.

1 Introduction

Maps of soil physical properties, such as cation exchange
capacity, pH, soil organic content, and hydraulic properties;
chemical properties, such as concentrations of heavy met-
als (arsenic, mercury, etc.) and radionuclides (caesium-137,
plutonium-239+240); and target-oriented indicators, such as
erodibility and soil compaction (see, for example, Panagos et
al., 2022), are essential for multiple types of studies, such as
pollution assessment, urban planning, and construction de-
sign. In recent years, these maps have led to many advances
in improving spatial prediction in the domain of digital soil
mapping, denoted by DSM (McBratney et al., 2003), with
the development of methods and approaches based on either
the geostatistical framework (Chilès and Desassis, 2018) or
machine learning (denoted ML) techniques (Wadoux et al.,
2020).

Beyond spatial prediction, the question of uncertainty in
spatial prediction has emerged as a key challenge (Heuvelink

and Webster, 2022, Sect. 4). Historically, this question has
been addressed with kriging (see, for example, Veronesi and
Schillaci, 2019, for a discussion for DSM). Techniques based
on ML have been increasingly used or adapted for this pur-
pose. For instance, the popular quantile random forest model
(e.g. Vaysse and Lagacherie, 2017) has been used to produce
soil information worldwide in the SoilGrids 2.0 database
together with uncertain information (Poggio et al., 2021).
Along these lines, improvements to validation procedures
have been proposed (Schmidinger and Heuvelink, 2023) to-
gether with tools for assessing prediction error and transfer-
ability (Ludwig et al., 2023).

However, quantifying the uncertainty is only one part of
the problem, and there is an interest in gaining deeper in-
sights into the influence of each covariate on the overall pre-
diction uncertainty. This is the objective of global sensitivity
analysis (Saltelli et al., 2008), which can be conducted within
two settings: either “factor fixing” to identify noninfluential
covariates or “factor prioritisation” to rank the covariates in
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terms of importance. The expected results can be of different
types: the former setting provides justification for simplify-
ing the spatial predictive model by removing the noninfluen-
tial covariates, whereas the latter setting provides justifica-
tion for prioritising future characterisation efforts by focus-
ing on the most important variables. In DSM, this question
has been addressed with the tools of variance-based global
sensitivity analysis (i.e. the Sobol’ indices, as implemented
by Varella et al., 2010) or with variable importance scores
together with potentially recursive feature elimination proce-
dures (as implemented by Poggio et al., 2021, and Meyer et
al., 2018). Both approaches provide a “global” answer to the
problem of sensitivity analysis, i.e. by exploring the influence
over the whole range of variation in the covariates. However,
these methods do not enable us to measure the influence of
the covariates locally, i.e. for a prediction at a certain spatial
location.

Recently, an alternative local approach was proposed by
relying on a popular method from the domain of interpretable
machine learning (Molnar, 2022) based on Shapley values
(Shapley, 1953). This method has shown promising results
in attributing the contributions of each covariate to any spa-
tial prediction (Padarian et al., 2020; Wadoux et al., 2023;
Wadoux and Molnar, 2022).

To date, the application of Shapley values to DSM has fo-
cused mainly on the prediction best estimate, and little infor-
mation has been provided on the local prediction uncertainty.
Motivated by a case of pollution concentration mapping in
the city of Toulouse, France (Belbeze et al., 2019), we aim to
investigate how to use Shapley values to decompose the local
uncertainty, measured by either an interquantile width or a
variance estimate. Our objective is to explore the relationship
between the drivers of the prediction best estimate and the
drivers of confidence in the predictions. Providing evidence
of differences in the dominant drivers is expected to have
implications in terms of data collection and covariate char-
acterisation. Communication of the results is also expected
to be adapted accordingly. Figure 1 illustrates the type of re-
sult that can be derived with the approach. In this example
(based on the synthetic test case fully detailed in Sect. 2.1),
the mean prediction (best estimate, left panel) of the variable
of interest at a certain location does not have the same con-
tributors as the local uncertainty measured by the interquar-
tile width (right panel). The group of covariates including
the maximum and mean temperatures of the warmest quarter
of the year (named Tmean-max) was identified as the first and
second most important contributors, respectively. The iden-
tification of the least influential group of covariates also dif-
fered across both cases; this is illustrated by the mean diurnal
range, Trange, which has little impact on the prediction result
but strongly influences the confidence in the result.

The remainder of the paper is organised as follows. We
first describe two application cases that motivated this study.
In Sect. 3, we provide further details on the statistical meth-
ods used to estimate the local contributions to the prediction

uncertainty. In Sect. 4, we apply the methods and provide
an in-depth analysis of the differences in the drivers of pre-
diction best estimates and uncertainty. In Sect. 5, we discuss
the practical implications of the proposed procedure and its
transferability to global-scale projects.

2 Case study

2.1 Synthetic test case

The first test case is synthetic. It aims to predict a virtual
species suitability surface, denoted by y, over central Eu-
rope (Fig. 2). This surface is calculated based on six bio-
climatic covariates defined in Table 1 (with prior normalisa-
tion between 0 and 1), which were extracted from the World-
Clim dataset (available at https://www.worldclim.org/data/
bioclim.html, last access: 25 September 2024), as follows:

y(s)=10× Trange(s)+ 5× Tmax(s)+ 5× Tmean(s)

+ 5×Pwettest(s)+ 10−4
×Pdriest(s)

+ 10−4
×Pcoldest(s).

(1)

By construction, this model has the following two character-
istics that are used here to validate the proposed methods de-
scribed in Sect. 3.3: (1) the last two covariates have negligible
influence and (2) the covariates Tmax and Tmean are strongly
dependent. The dataset is based on the vignette of the R
package CAST, which is available at https://hannameyer.
github.io/CAST/articles/cast02-AOA-tutorial.html (last ac-
cess: 25 September 2024). A series of 25 “virtual” soil sam-
ples were randomly extracted (highlighted by square-like
markers in Fig. 2) across the study area.

2.2 Real test case

The real case focuses on DSM to predict the total petroleum
hydrocarbon (C10–C40) concentration over the city of
Toulouse (located in southwestern France) as part of the
definition of urban soil geochemical backgrounds (see the
comprehensive review by Belbeze et al., 2023). In this case,
petroleum hydrocarbons have multiple sources, such as road
and air traffic, industrial emissions, and residential heating.
The presence of this pollutant may inhibit several soil func-
tions and hence prevent the delivery of associated ecosys-
tem services (Adhikari and Hartemink, 2016). A primary soil
function that may be jeopardised is the ability of the soil to
provide a platform for human activities in a risk-free environ-
ment. Petroleum hydrocarbons in soil pose a risk to human
health via several pathways – namely, direct soil ingestion,
which is a particularly sensitive pathway for young children;
exposure through respiration via vapour intrusion into build-
ings; and contamination of groundwater used for drinking
water purposes. Notably, our study uses the data of this case
to illustrate and discuss the applicability of the proposed ap-
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Figure 1. Example of SHAP-based decomposition of the prediction best estimate (modelled by the conditional mean of a random forest
model; panel a) and of the prediction uncertainty (modelled by the interquartile width estimated via a quantile random forest model; panel b)
for the variable of interest in the synthetic test case (fully described in Sect. 2.1) at a certain location in the study area. Each horizontal bar
represents the contribution to the prediction (indicated by the vertical dashed line) of the considered covariates (indicated on the vertical
axis) that correspond to the mean diurnal range, Trange, to the group of covariates that includes the maximum and mean temperatures of the
warmest quarter of the year, Tmean-max, and to the precipitation of the wettest month, Pwettest. Note the differences in the ordering of the
groups, which indicates that the contributors to the mean and to the uncertainty estimate differ.

Figure 2. Covariates (with prior normalisation between 0 and 1) used in the synthetic test case (see Table 1 for a detailed description). The
spatial distributions of the 25 soil samples are indicated by square-shaped markers. The size of each square is proportional to the synthetic
variable calculated from the covariates based on Eq. (1).

proach and is not meant to supplement the results of Belbeze
et al. (2019).

We use 1043 soil samples collected over a depth interval
[0,2]m to analyse the logarithm (base 10) of the C10–C40
hydrocarbon concentration expressed in milligrams per kilo-
gram (Fig. 3). We aim to predict the concentration over the

whole city of Toulouse using a fine grid of spatial locations
(one point every 100 m, i.e. > 45000 grid points) with the
covariates described in Table 2. Figures 4 and 5 depict the
spatial distributions of the considered covariates of continu-
ous and categorical types, respectively.
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Table 1. Description of the covariates for the synthetic test case.

Covariate Unit Description Identifier in the
WorldClim dataset

Trange °C Mean diurnal range, i.e. mean of the monthly
(max temperature – min temperature)

Bio2

Tmax °C Max temperature of the warmest month Bio5
Tmean °C Mean temperature of the warmest quarter Bio10
Pwettest mm Precipitation of the wettest month Bio13
Pdriest mm Precipitation of the driest month Bio14
Pcoldest mm Precipitation of the coldest quarter Bio19

Figure 3. (a) Spatial locations of the 1043 soil samples (square-like markers) across the city of Toulouse, which is located in southwestern
France (see the location in the top-right inset map). The size of each square is proportional to the logarithm (base 10) of the C10–C40
hydrocarbon concentration (expressed in mgkg−1). (b) Histogram of the logarithm (base 10) of the C10–C40 hydrocarbon concentration
(expressed in mgkg−1), with a magnified view of the interval 2.0–4.0 (top-right inset panel).

In addition to these covariates, we follow the approach
proposed by Behrens et al. (2018) to better account for spatial
dependence: we also consider seven additional covariates –
namely, the two geographical coordinates, X and Y , and five
geographical covariates that correspond to the distances to
the southeastern, northeastern, southwestern, and northwest-
ern corners of a rectangle around the city (denoted by Dse,
Dne,Dsw, andDnw) and the distance to the centre location of
this rectangle (denoted by Dmiddle). A total of 15 covariates
are considered.

3 Methods

3.1 Local attribution framework

We first consider that the value of the variable of inter-
est y(s) (e.g. a soil property or pollutant concentration)
at a given spatial location s is related to d covariates,
x(s)= {x1(s),x2(s), . . .,xd (s)}. The mathematical relation-
ship is modelled by an ML model (denoted by f (.)), where

f (x(s)) is assumed to resemble y(s) as closely as possible;
that is, y(s)≈ f (x(s)). The ML model also provides a mea-
sure of the uncertainty (denoted by u(s)) of this prediction
that is related to x(s) through the function g(.), which may
differ from f (.). In this study, we focus on the random forest
model (denoted by RF) used for regression (Breiman, 2001)
and on its quantile regression variant, denoted by qRF (Mein-
shausen, 2006) because this ML model has proven to be very
efficient in multiple studies of DSM, as outlined in the in-
troduction. Further details are provided in Appendix B. To
reflect the magnitude of the RF prediction uncertainty u(s)
at spatial location s, we use the interquantile half-width (de-
noted by IQWα) at a given level α, defined as follows:

u(s)= g(x(s))= IQWα

= q
1+α

2 (y|x(s))− q
1−α

2 (y|x(s)),
(2)

where qτ (y|x(s)) is the conditional quantile at level τ . In par-
ticular, the interquartile width corresponds to IQWα=0.50.
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Table 2. Description of the covariates of the real test case.

Covariate Unit Description Source

Elevation m Digital elevation model postprocessed from
lidar data and gridded at a 10m× 10m
resolution

Based on the processing detailed in Belbeze et al. (2022)

Lithology – Eight categories based on the grouping of
Belbeze et al. (2019)

Based on the CHARM database, available at
https://www.data.gouv.fr/fr/datasets/cartes-geologiques-
departementales-a-1-50-000-bd-charm-50/
(last access: 25 September 2024)

Land use – Four categories based on the grouping of
Belbeze et al. (2019)

Based on Copernicus Land Monitoring Service in-
formation (2012), available at https://doi.org/10.2909/
debc1869-a4a2-4611-ae95-daeefce23490

Dbasias m Distance to industrial sites (abandoned or
active) potentially at the origin of pollution

BASIAS database (Leprond, 2013), available at https://www.
data.gouv.fr/en/datasets/inventaire-des-sites-pollues/
(last access: 25 September 2024)

Dbasol m Distance to (potentially) polluted sites BASOL database, available at https://www.data.gouv.fr/
fr/datasets/base-des-sols-pollues/ (last access: 25 Septem-
ber 2024)

Droad m Distance to the closest roads Based on the processing detailed in Belbeze et al. (2019)
Dwater m Distance to the closest rivers Based on the processing detailed in Belbeze et al. (2019)
Dcentre m Distance to the city centre Based on the processing detailed in Belbeze et al. (2019)
X and Y
coordinates

m Geographical coordinate in the coordinate
reference system of France, Lambert 93

–

Dse, Dne, Dsw,
Dnw, Dmiddle

m Distances to the southeastern, northeastern,
southwestern, and northwestern corners of
a rectangle around the city and the distance
to the centre location of this rectangle

Based on the approach of Behrens et al. (2018)

Our objective is to decompose u(s) at a given spatial loca-
tion s as a sum of the µi=1,..,d (s) specific to the values of the
covariates x(s) within the setting of the additive “feature at-
tribution approach” (as defined by Lundberg and Lee, 2017,
Sect. 2) as follows:

u(s)= g(x(s))= µ0+
∑p

j=1
µj (s), (3)

where µ0 (named the base value) is a constant value (see
the definition in Sect. 3.2). This decomposition can also be
applied to f (.) as described in previous studies, as indicated
in the introduction.

Importantly, Eq. (3) does not aim to linearise g(.) but to
compute the contribution of each covariate to the particular
prediction uncertainty value g(x(s)). This means that the de-
composition provides insights into the influence of the partic-
ular instance of the covariates x(s) relative to g(x(s)): (1) the
absolute value of µ(s) informs on the magnitude of the influ-
ence at location s directly expressed in physical units, which
facilitates interpretation, and (2) the sign of µ(s) indicates
the direction of the contribution, i.e. whether the considered
covariate influences the prediction upwards or downwards in
relation to the base value, µ0. Both aspects are outlined in
Fig. 1; the width of the horizontal bar and the arrow are indi-
cators of (1) and (2), respectively. To quantifyµ(s) in Eq. (3),
we rely on the SHapley Additive exPlanations (SHAP) ap-

proach, which was developed by Lundberg and Lee (2017)
based on the Shapley values described in Sect. 3.2.

3.2 Shapley additive explanations

The SHAP approach relies on the Shapley value (Shapley,
1953), which is used in game theory to evaluate the “fair
share” of a player in a cooperative game; i.e. it is used
to fairly distribute the total gains between multiple play-
ers working cooperatively. It is a “fair” distribution in the
sense that it is the only distribution that satisfies some desir-
able properties (efficiency, symmetry, linearity, and “dummy
player”). See the proofs by Shapley (1953) and Aas et al.
(2021, Appendix A) for a comprehensive interpretation of
these properties from an ML model perspective.

Formally, we consider a cooperative game with d players
and let DS ⊆D = {1, . . .,d} be a subset of |DS | players. We
define a real-valued function that maps a subset DS to its
corresponding value, val : 2DS → R, and measures the total
expected sum of the payoffs that the members of DS can ob-
tain by cooperation. The gain that the ith player obtains is
defined by the Shapley value with respect to val(.):

µi(s)=

1
d

∑
DS⊆D\{i}

(
d − 1
|DS |

)−1

(val (DS ∪ {i})− val(DS)).
(4)
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Figure 4. Covariates of continuous type over the city of Toulouse (see Table 2 for a detailed description).

Figure 5. Covariates of categorical type over the city of Toulouse. (a) Lithology (MT: medium terrace alluviums, LT: low terrace alluviums,
LP: low plain alluviums, MB: major riverbed alluviums, MO: molasses, and FI: fill materials). (b) Land use (AGR: agriculture, FOR: forests
and grasslands, and IND: industrial and commercial economic activities); see Table 2 for a detailed description.

Equation (4) can be interpreted as the weighted mean over
the contribution function differences for all subsets DS of
players not containing player i. This approach can be trans-
lated for ML-based prediction by viewing each covariate as
a player and by defining the value function val(.) as the ex-
pected output of the ML model conditional on x∗S , i.e. when
we only know the values of the subset DS of inputs (Lund-
berg and Lee, 2017). This approach is flexible with respect to
the output of the ML model and can be applied to the condi-
tional mean of the RF model and to the uncertainty measure
computed with the qRF model (Eq. 2).

Formally, the following applies:

val(DS)= E
(
h(x)

∣∣xDS = x∗DS
)
, (5)

where h(.) can correspond to either the conditional mean, de-
noted by f (.), or the uncertainty estimate, denoted by g(.),
and E(.) is the expectation operator.

In this setting, the Shapley value can then be interpreted as
the contribution of the considered covariate to the difference
between the prediction, h(x∗), and the base value, µ0. The
latter can be defined as the value that would be predicted if
we did not know any covariates (Lundberg and Lee, 2017).
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In the application case, we are interested in pollution predic-
tion; in this context, we choose µ0 = 0, which means that
if we do not know any covariates, no pollution is expected
(and there is no uncertainty). In this way, µi in Eq. (3) cor-
responds to the change in the expected model prediction if
f (.) is used (or in the uncertainty if g(.) is used) when condi-
tioning on that covariate and explains how to depart from 0.
By construction, µi = 0 indicates the absence of influence
for the ith covariate related to the dummy player property of
the method. In addition, the sum of the inputs’ contributions
is guaranteed to be exactly h(x∗(s))−µ0, which is related to
the efficiency property of the method.

In this study, we aim to calculate the Shapley values for
both the prediction best estimates modelled by f (.) and the
uncertainty modelled by g(.). To facilitate comparison across
the study area between these different prediction objectives,
we use a scaled version of the Shapley absolute value, i.e.
µ(s)/(f (x∗(s))), expressed in percentages. This means that
the contributions, regardless of the prediction objective, are
analysed in Sect. 4 with a common scale, which is chosen
here as the value of the prediction best estimate for the given
considered instance.

In practice, the computation of the Shapley value may be
demanding because Eq. (4) implies covering all subsets DS
(the number of which grows exponentially with the number
of covariates, d, i.e. as 2d ) and Eq. (5) requires solving in-
tegrals of dimension 1 to d − 1. When the SHAP approach
is applied to a large number of spatial locations (in our case,
> 45000), the computational complexity is high. To allevi-
ate the computational burden, a possible option is to rely on
the group-based approach proposed by Jullum et al. (2021),
which can be used to adapt Eq. (4) for a group of covariates.
Considering a partition G= {G1,G2, . . .,Gg} of the covari-
ate set D, the Shapley value for the ith group of covariates,
Gi , is as follows:

µGi (s)=

1
g

∑
T⊆G\{Gi }

(
g− 1
|T |g

)−1

(val(T ∪ {Gi})− val(T )),
(6)

where the summation index T runs over the groups in the sets
of groups G\Gi and |T |g is the number of groups in T . This
means that this group Shapley value is the game-theoretic
Shapley value framework applied to groups of covariates in-
stead of individual covariates. The group Shapley values pos-
sess all the Shapley value properties. The practical advantage
of working with groups is that computing Eq. (6) has a rel-
ative computational cost reduction of 2d−g , hence making
possible the use of an exact method by considering all com-
binations of covariates for computing the Shapley values.

This definition raises the practical question of how to de-
fine groups. As explained by Jullum et al. (2021), this defi-
nition can be based on knowledge/expertise, i.e. on informa-
tion that makes sense in relation to the problem at hand. The
main advantage is that this facilitates the interpretation of the

Shapley values. The second grouping option, which is com-
plementary to the one based on expertise, consists of identi-
fying covariates that provide redundant information because
they share a strong dependency. The groups of dependent
covariates can be identified with a clustering algorithm (see
Hastie et al., 2009, Chap. 14) by taking the matrix of pairwise
similarities as input. This approach does not, however, ensure
that the effect of dependence among the covariates is com-
pletely removed, which may influence the SHAP results, as
was extensively investigated by Aas et al. (2021). To account
for this, we rely on the method proposed by Redelmeier et
al. (2020) using conditional inference trees (Hothorn et al.,
2006) to model the dependence structure of the covariates.

3.3 Overall procedure

The proposed approach, named group-based SHAP (see the
implementation details in Appendix A), comprises three
steps.

Step 1 aims to build and train the RF models based on
the dataset of soil samples together with the covariate values,
which is named the training dataset. The RF hyperparame-
ters correspond to the number of variables at which to pos-
sibly split in each node (denoted by mtry) and the minimal
node size at which to split (denoted by ns). Their values are
tuned via a repeated 10-fold cross-validation process (Hastie
et al., 2009, Chap. 7). Although the RF model is efficient in
taking into account many covariates, performing a screen-
ing analysis prior to the SHAP application within the cross-
validation procedure is useful for facilitating its implemen-
tation. By reducing the number of covariates directly during
the construction of the RF, the SHAP computational burden
can be largely alleviated, as discussed in Sect. 3.2, and the
applicability to global-scale projects where hundreds of co-
variates are present can be improved (see the discussion in
Sect. 5.2).

To eliminate the covariates of negligible influence, dif-
ferent options are available in the literature (see, for exam-
ple, the procedure based on recursive feature elimination de-
scribed by Poggio et al., 2021). Here, we propose relying
on a popular method in the ML community – namely, the
dependence measure based on the Hilbert–Schmidt indepen-
dence criterion (HSIC) of Gretton et al. (2005). This generic
measure has the advantages of being applicable (1) to any
type of dependence, i.e. linear, monotonic, or nonlinear (see
the discussion by Song et al., 2022); (2) to mixed variables,
i.e. continuous or categorical (as in our case, described in
Sect. 2); and (3) without the use of RF importance measures,
for which limitations have been identified in the literature, as
has been extensively discussed (see, for example, Bénard et
al., 2022, and references therein). In addition, the combina-
tion of HSIC with a hypothesis testing procedure (El Amri
and Marrel, 2024) provides a rigorous setting for quantify-
ing the significance of the considered covariate through the
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computation of p values. Further details are provided in Ap-
pendix C.

Step 2 is optional and aims to identify groups of covari-
ates. The objective is twofold. First, by grouping covariates
suitably with respect to the problem at hand, the Shapley val-
ues can be easily interpreted. This can be done based on ex-
pert knowledge or/and by identifying covariates that share a
strong dependence to reduce the redundancy of information,
for instance, using the HSIC pairwise dependence measure
(Appendix C). The second practical implication is a reduc-
tion in the computational burden of the Shapley value esti-
mation, as discussed in Sect. 3.2.

Step 3 is to compute the Shapley values associated with
each covariate or group identified in Step 2 to decompose the
prediction uncertainty provided by the qRF model (trained in
Step 1).

4 Results

4.1 Application to the synthetic test case

Using the 25 randomly selected soil samples described in
Sect. 2.1, we construct an RF model to estimate the condi-
tional mean, which is used as the best estimate of the pre-
diction, and a qRF model to estimate the interquartile width
(IQW), which is used as the uncertainty estimate. To select
the RF parameters ns and mtry, we repeat a 10-fold cross-
validation exercise 25 times (Hastie et al., 2009, Chap. 7) by
varying ns from 5 to 10 and mtry from 1 to 4. The number of
random trees is fixed to 1000; preliminary tests have shown
that this parameter has little influence provided that it is large
enough. This tuning procedure selects the pairs ns, mtry for
which the average relative absolute error is minimised, iden-
tifying ns= 5 and mtry = 3 as the combination that results
in the lowest error of 6.8 % (averaged over 25 replicates of
the 10-fold cross-validation) with a frequency of 72 % (i.e.
18 replicates out of 25). A screening analysis is performed
within the cross-validation procedure using HSIC measures
combined with a hypothesis testing procedure using the se-
quential random-permutation-based algorithm developed by
El Amri and Marrel (2022) with up to 5000 random repli-
cates. Averaged over the replicates of the 10-fold cross val-
idation (repeated 25 times), the p values for the first four
covariates reach a maximum value of 2 % (Sect. S1 in the
Supplement). The p values of the last two covariates are 16 %
(with a standard deviation of 10 %) and 20 % (with a standard
deviation of 12 %). Using a significance threshold of 5 %,
this means that the last two covariates are not statistically
significant; hence, the number of covariates can reasonably
be reduced from six to four. This result is consistent with the
construction of the synthetic case described by Eq. (1).

Using the trained RF model, Fig. 6 shows the best esti-
mate of the true value of the synthetic variable of interest
(panel a) and the prediction best estimate (panel b) together
with the uncertainty measure (panel c) at 10 000 grid points

across the European study area (with a spatial resolution of
≈ 13.5km×13.5km). The RF predictions reproduce the true
spatial distribution relatively well (comparing panels a and b
in Fig. 6), with an average relative absolute error of approx-
imately 5 %. The uncertainty indicator reaches the highest
values (highlighted in yellow in Fig. 6c) where observations
are sparsely distributed, particularly in the Alps (zone Z1)
and in northern Germany (zone Z2). It is important to note
that our objective here goes beyond improving the predictive
capability of the RF model: given this level of prediction un-
certainty (Fig. 6c), we aim, in the following, to investigate the
main drivers of this uncertainty and whether they differ from
the drivers of the best estimate of the prediction (Fig. 6b).

To ease the interpretation, we group the temperature vari-
ables Tmax and Tmean because they are, by nature, physi-
cally related. To further support this choice, we apply a parti-
tioning around medoids clustering algorithm (Rdusseeun and
Kaufman, 1987) using the matrix of the pairwise HSIC de-
pendence measures (provided in Sect. S1). The average sil-
houette width reaches 0.32 and 0.41 for two and three groups,
respectively, which justifies the use of three groups – namely,
Tmean-max, Trange, and Pwettest.

Using the trained RF model and the selected groups of co-
variates, we apply the group-based SHAP approach to de-
compose the data at the 10 000 grid points of the study area.
An example of this analysis at the grid point of coordinates
4206729 m, 2149423 m is provided in Fig. 1. To facilitate
comparison across the study area, we plot the scaled Shap-
ley values, as defined in Sect. 3.2, and use them to map the
contributions to the prediction best estimate (i.e. the condi-
tional mean; Fig. 7a) and to the corresponding uncertainty
(i.e. IQW; Fig. 7b). With regard to the prediction best esti-
mate, the upper panels of Fig. 7 show that the three groups
of covariates have Shapley values in the range [25,50]%
over ≈ 75 % of the whole study area. Figure 7 shows that
the major contributors to the prediction best estimate and to
the uncertainty differ. This is exemplified by the two zones
where the uncertainty is the highest (see Fig. 6c). In the cen-
tral zone around the Alps (zone Z1 in Fig. 7), the major
contributors to the best estimate and to the uncertainty are
Pwettest (with contributions in the range of 50 %–75 %), the
group Tmean-max (with contributions in the range of 10 %–
25 %), and Trange over a more limited spatial extent. On the
other hand, in northern Germany (zone Z2 in Fig. 7), Pwettest
contributes the most to the uncertainty, with contributions in
the range of 10 %–25 %, whereas the group Tmean-max con-
tributes the most to the prediction mean, with contributions
in the range of 50 %–75 %. These differences in importance
may be related to the scarcity of soil samples in both zones
(see Fig. 2). This means that the training data are not rep-
resentative of both zones. The practical implication is that
decisions regarding the characterisation of the covariates are
different in these two zones; this is discussed in more detail
in Sect. 5.1.
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Figure 6. (a) Spatial distribution of the synthetic variable of interest modelled by Eq. (1). (b) Prediction best estimate using the conditional
mean of the RF model. (c) Interquartile width (IQW) computed using the 25th and 75th percentiles of the qRF model. The 25 soil samples are
indicated by squares whose sizes are proportional to the value of the synthetic variable of interest. The results are more specifically discussed
in Sect. 4.1 for the zones indicated by Z1 and Z2.

Figure 7. Scaled Shapley values (in %) for the synthetic test case considering the prediction best estimate modelled by the RF conditional
mean (a–c) and the prediction uncertainty modelled by the qRF interquartile width (IQW; d–f). The black squares indicate the spatial
locations of the 25 soil samples. The results are more specifically discussed in Sect. 4.1 for the zones indicated by Z1 and Z2.

4.2 Application to the real case

We construct an RF model using the 1043 soil samples de-
scribed in Sect. 2.2. We use the conditional mean as the best
estimate of the prediction and the interquartile width IQW as
the uncertainty estimate, with the 25th and 75th percentiles
computed using a qRF model. In our case, one additional dif-
ficulty is related to how the points are spatially distributed.
Figure 3a shows that the points are spatially clustered as they
overrepresent some regions while underrepresenting or even
missing others. This situation might lead to biased predic-
tions because the same weight is given to every point, and
thus regions with high sampling density are overweighted.
To alleviate this problem, we follow an approach similar to

that of Bel et al. (2009). First, we use an inverse sampling
intensity weighting to assign more weight to the observa-
tions in sparsely sampled zones and less weight to the ob-
servations in densely sampled zones. Second, to estimate the
sampling intensity, we use a two-dimensional normal kernel
density estimation with bandwidth values estimated based on
the rule of thumb of Venables and Ripley (2002). Finally, the
inverse sampling intensity weights, with prior normalisation
to between 0 and 1, are used for RF training during bootstrap
sampling (see Appendix B) to create individual trees with
different probability weights by following a method similar
to that of Xu et al. (2016).

To select the RF parameters ns and mtry, we use a cross-
validation exercise similar to that used for the synthetic case.
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Figure 8. Screening analysis showing the p values (denoted pval)
of the HSIC-based test of independence (described in Appendix C)
for the Toulouse case. The dots indicate the mean values estimated
over the replicates of a 10-fold cross-validation (repeated 25 times).
The lower and upper bounds of the error bars are defined as ± 1
standard deviation. When the dot merges with the error bar, the
value of the standard deviation is low. The vertical red line indi-
cates the significance threshold at 5 %. When the p value is lower
than 5 %, the null hypothesis should be rejected; i.e. the considered
covariate has a significant influence on the hydrocarbon concentra-
tion and is retained in the RF construction.

This tuning procedure selects the pairs of ns and mtry for
which the average relative absolute error is minimised, yield-
ing ns= 5 andmtry = 2 as the combination that results in the
lowest error of ≈ 12 % (averaged over 25 replicates of the
10-fold cross-validation) with a frequency of 76 % (i.e. 19
replicates out of 25).

A screening analysis is performed within the cross-
validation procedure using HSIC measures combined with
a hypothesis testing procedure. Figure 10 shows the statis-
tics of the p values calculated over the replicates of the 10-
fold cross-validation (repeated 25 times). Several observa-
tions can be made:

– The distance to potentially polluted sites, Dbasos, has a
minor influence, contrary to the distance to industrial
sites, Dbasias (abandoned or active). This is due to the
high dependence of Dbasos (whose HSIC is on the order
of 0.93–0.95; Sect. S2 in the Supplement) on elevation
and geographical coordinates. This is also supported by
Fig. 3, which suggests that polluted sites tend to be lo-
cated in relatively low-lying areas in the vicinity of the
city centre. In other words, the inclusion of Dbasos in

the analysis is redundant with respect to the information
provided by the covariates on which it is dependent.

– Land use has a strong impact, whereas lithology appears
to have little impact, with a p value on the order of 25 %,
i.e. larger than the significance threshold. This is inter-
preted as being related to the hydrocarbon nature of the
pollution, which is less strongly related to geological
processes than heavy-metal pollution, for instance.

– The distance to roads was not included even though
its relation to hydrocarbon concentration was expected.
This is less due to its dependence on the other covari-
ates, whose HSIC values are as high as 0.14 (Sect. S2),
than to its very dense spatial distribution: the value of
this covariate varies very little over a large area, as indi-
cated by the almost homogeneous colour in Fig. 3; i.e.
very few zones are discriminated by this covariate in
this case.

– Out of all the cross-validation replicates, nine covariates
have a statistically significant influence on hydrocarbon
concentration, considering a significance threshold of
5 %. These covariates are retained in the construction
of the final RF model that is used for the application of
the group-based SHAP approach.

Figure 9 shows the prediction (panel a) of the hydrocar-
bon concentration together with the uncertainty measure-
ment (panel b) at the grid points across the city with a spatial
resolution of 100m× 100m. Notably, a large proportion of
the city has a predicted concentration varying between 1 and
2 (on a log10 scale), with the exception of the southeastern
part, where the concentration is predicted to be > 3. In this
zone, the uncertainty in the prediction is the highest, with
values ranging up to ≈ 2.5. Outside this zone, a large pro-
portion of the study area has uncertainty estimates of < 1.0,
with some zones having uncertainties of < 0.01, particularly
in the vicinity of the observations.

To ease the interpretation of the Shapley values, we define
two groups of covariates whose contributions are considered
together with the land use and the elevation:

– The group Dbasias-water includes Dbasias and Dwater. The
analysis of the joint influence is meaningful because this
group reflects the general tendency of industrial sites to
be located close to a water supply.

– The geographical group includes Dne, Dse, Dnw, Dsw,
and the Y coordinate. This group of covariates was in-
troduced to improve the predictive capability of the RF
(see Sect. 2.2). Interpreting the respective influence of
each of these individual covariates is often difficult in
practice, and grouping them makes sense in this regard.

To support these choices, we analyse the pairwise depen-
dence measure (Sect. S2), which confirms the moderate-to-
high pairwise dependence of all variables in this group. This
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Figure 9. (a) Prediction best estimate of the hydrocarbon concentration (log10 scale) for the city of Toulouse using the conditional mean
of the RF model. The soil samples are indicated by squares whose sizes are proportional to the log10 of the hydrocarbon concentration.
(b) Interquartile width (IQW) computed using the 25th and 75th percentiles of the qRF model (expressed on the same scale as the hydrocarbon
concentration).

analysis also indicates that land use has a low dependence on
the other variables.

Using the trained RF model, we apply the group-based
SHAP approach to decompose the data at > 45000 grid
points in the study area. As for the synthetic test case, we
compute the scaled Shapley values and use them to map the
contribution to the prediction best estimate (i.e. the condi-
tional mean; Fig. 10, left) and to the corresponding uncer-
tainty (i.e. IQW; Fig. 10, right). With regard to the prediction
best estimate, the left panels of Fig. 10 show that the four co-
variate groups have contributions, to some extent, of approx-
imately the same order of magnitude. The different groups
have high influence, with scaled Shapley values within the
range [25,50]% but in different areas of the city – namely,
in the central part of the city for elevation and land use,
i.e. in low-lying industrial areas (Fig. 4); in the western part
for Dbasias-water; and in the eastern part for the geographical
group. The geographical group has the largest contribution in
the southeastern part of the city where the predicted values
are the largest, as outlined by the dark-green zone in Fig. 10,
left. This is also confirmed by the analysis of the boxplots
provided in Sect. S2. Regarding the prediction uncertainty,
the scaled Shapley’s values are mainly in the range [0,25]%,
but with some particular areas where the determining factors
for either the best prediction estimate or uncertainty or both
are not necessarily the same.

Three distinct situations are identified that are relevant
from the viewpoint of uncertainty management. The first sit-
uation corresponds to the locations outlined in Fig. 11, where

the groups of covariates significantly contribute to the pre-
diction best estimate, with a scaled Shapley value exceeding
that of the uncertainty by more than 25 %. Interestingly, the
main contributors to this situation are the three groups that
are relevant to the soil prediction problem as opposed to the
geographical group, whose objective is to account for spatial
dependence. This gives some confidence in the process un-
derlying the RF prediction because it indicates that the best
estimate is controlled mainly by the soil-relevant predictors.
This also indicates that their influence on the prediction is
not masked by the use of geographical covariates, i.e. the use
of spatial surrogate covariates, also called pseudocovariates,
as discussed by Wadoux et al. (2020, Sect. 3.3).

An examination of the distribution of the corresponding
covariates (Fig. 12) reveals that these locations have eleva-
tion values and distances Dbasias and Dwater of the same or-
der of magnitude as those in the training dataset, resulting in
an “optimal” prediction situation in which the RF model is
used to predict cases that are relatively similar to those used
for its training. In the areas where land use contributes most
to this situation, we show (Fig. 12, bottom right-hand panel)
that this is linked to agricultural areas and forests, i.e. areas
where there is a lower chance of finding potentially polluted
sites, as is also shown by the analysis of the training dataset.

The second situation is the opposite of the first and cor-
responds to locations where the groups of covariates signif-
icantly contribute to the uncertainty, exceeding their contri-
butions to the best estimate by more than 25 %. These are
shown in dark green and light red in Fig. 10 (right) and
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Figure 10. Scaled Shapley values (in %) for each group of covari-
ates of the Toulouse test case considering the prediction best esti-
mate using the RF conditional mean (a, c, e, g) and the prediction
uncertainty using the qRF interquartile width (IQW) (b, d, f, h). The
black squares indicate the locations of the soil samples used for RF
training.

only concern the geographical and Dbasias-water groups. In
these areas, the RF models predict cases that are well out-
side the range observed in the training dataset. This is clear
for the identified area for the geographical group, which is
located outside the spatial domain covered by the soil sam-
ples, with the exception of one soil sample located farthest
east. An examination of the distributions of the distances
Dbasias and Dwater reveals that the median values exceed
those of the training dataset by factors of 10 and 4, respec-
tively (Sect. S2). This indicates that the RF model is be-
ing used here beyond the area from which the training data
were taken. This is a situation of spatial extrapolations, where
tree-based methods such as RF can fail completely; see a
recent study highlighting the limitations by Takoutsing and
Heuvelink (2022).

Finally, the third situation corresponds to where the covari-
ate groups have negative contributions (outlined in light blue
in Fig. 10, right), i.e. where they participate directly in re-
ducing the prediction uncertainty. An examination of the dis-
tribution of the corresponding covariates (Sect. S2) indicates
the same result as for the first situation, with distances to the
nearest rivers even smaller than those observed in the train-
ing dataset and with even more marked land use behaviour,
where agriculture, forest, and urban are almost the only cat-
egories identified. We also note that the geographical group
negatively contributes to uncertainty only in the vicinity of
the soil samples at distances of 1 to 2 km.

5 Discussion

5.1 Usefulness of the results

To date, the Shapley values have been used to explain indi-
vidual predictions related to a certain instance of covariates
by computing the contribution of each of them to the predic-
tion. Translated for DSM, the Shapley values can be used to
determine why a spatial ML model reached a certain value
for the soil or chemical properties at a certain spatial loca-
tion. As discussed by Wadoux and Molnar (2022), the use of
Shapley values has the potential to constitute a key tool for
environmental soil scientists to improve the interpretation of
ML-based DSMs, particularly by providing insights into the
underlying physical processes that drive soil variations.

In this study, we complement this type of analysis by ad-
dressing the “why” question with respect to the prediction
uncertainty, i.e. by explaining why the spatial ML model is
confident. For this purpose, the SHAP approach for estimat-
ing the Shapley values is applied to decompose the uncer-
tainty indicator provided by the ML spatial model. The at-
tribution results are expected to facilitate communication be-
tween environmental soil scientists and stakeholders, which
is essential for the inclusion of these new digital soil map
products in current practices (see, for example, the discus-
sion by Arrouays et al., 2020). The SHAP results are ex-
pected to improve the framing of the prediction results to-
gether with the associated uncertainty as illustrated with the
synthetic test case described in the introduction as follows:
the predicted value of 12.20 is mainly attributable, by a pos-
itive factor of almost 50 %, to the maximum and mean tem-
perature of the warmest quarter of the year. The confidence
in this result measured by the uncertainty indicator of 1.98
is explained by the diurnal range of almost 50 %. To further
increase this confidence, i.e. by decreasing the uncertainty,
next efforts should concentrate on the characterisation of this
particular covariate.

The second implication of our study is in terms of uncer-
tainty management. Our application to hydrocarbon concen-
tration mapping in Toulouse as well as to the synthetic test
case reveals that the determining contributors to the best es-
timate or the uncertainty may not necessarily be the same.
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Figure 11. Locations where each corresponding group of covariates significantly contributes to the best estimate, with a scaled Shapley
value exceeding that of the uncertainty by more than 25 %. The colours indicate the scaled Shapley value for the best estimate. The areas
in grey correspond to grid points where the condition is not met. The black squares indicate the locations of the soil samples used for RF
training.

Figure 13 shows maps of the most important groups of co-
variates with respect to the scaled Shapley absolute values
for the real case. These maps show that the prediction uncer-
tainty is dominated by the geographical group over almost
65 % of the entire study area, whereas the best estimate is
influenced by this group of covariates over less than 35 %;
these areas are outlined in purple in Fig. 13a and b. Overall,
the most important group of covariates differs for both pre-
diction objectives over about 50 % of the entire study area
(outlined in red in Fig. 13c), mostly in the western and cen-
tral part of the city. The dichotomy between the drivers of
the best estimate and uncertainty is also illustrated for the
synthetic test case in Fig. 7.

On this basis, distinct situations can be identified with dif-
ferent practical implications for data collection and covari-
ate characterisation. This is illustrated in the Toulouse case
in Sect. 4.2. If the primary objective of environmental soil
scientists is to increase the confidence in the prediction, the
characterisation efforts should be concentrated in the zones
outside the spatial domain covered by the soil samples, i.e. in

regions where the RF models appear to be used to make spa-
tial extrapolations. Two improvements are particularly no-
table: (1) the modelling of the spatial dependence in the ML
model, as revealed by the high importance of the geograph-
ical group, and (2) the need for more samples outside the
range covered by the soil samples to better characterise the
pair of distances Dbasias and Dwater. On the other hand, if the
primary objective of environmental soil scientists is to sup-
port the communication of the prediction results to end users,
this analysis provides two key elements. First, the results can
be explained in the same form as the example provided above
by stressing that the predicted pollutant concentration values
in the central and western zones of the city are influenced
mainly by the covariates that are relevant to the soil predic-
tion problem; different parts of the city being influenced by
different groups of covariates (Fig. 11). Second, the results
provide evidence for confidence in how the RF model can
make predictions, as discussed in Sect. 4.2 based on Fig. 12.
Finally, identifying areas where groups of covariates have
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Figure 12. Boxplots of the covariate values for the training dataset and for the locations (named selection) where the corresponding group
of covariates significantly contributes to the best estimate, with a scaled Shapley value exceeding that of the uncertainty by more than
25 %. Panel (d) compares the proportions of land use categories (AGR: agriculture, FOR: forests and grasslands, and IND: industrial and
commercial economic activities) for the selection and training datasets.

negative contributions is essential for prioritising actions to
reduce prediction uncertainty.

5.2 Applicability to global-scale projects

The application cases analysed in this study correspond to
situations with a moderate number of covariates (a few tens)
and predictions at either the city scale or the national scale,
with several tens of thousands of grid cells, which are rep-
resentative of other real case situations described in the lit-
erature, such as those of Meyer et al. (2018), de Bruin et
al. (2022), and Wadoux et al. (2023). In this section, we ex-
tend the discussion regarding the applicability to global-scale
projects such as that described by Poggio et al. (2021) with
hundreds of covariates and millions of grid cells. Applying
the SHAP approach is challenging in this context due to its

computational load, which is directly related to the number
of covariates (Sect. 3.2).

As an illustration, we run SHAP for the Toulouse test case
using the nine important covariates (without grouping) at 100
randomly selected grid points (on a Windows desktop x64
with a PC – Intel®Core™ i5-13600H, 2800 MHz, 12 cores,
16 logical processors, with 32 GB physical RAM), which led
to an average CPU time of 2.15 s. Given the constraints of
global-scale studies, a direct SHAP analysis would require at
least 200 d of calculation on a single laptop. The first solu-
tion relies on the use of a high-performance computing ar-
chitecture, as proposed by Wadoux et al. (2023). The second
option involves approximating the Shapley values using, for
instance, sampling algorithms (Chen et al., 2023), with some
approximation errors opposite to those of the exact method
used here. The third option explored in this study is the com-
bination of a screening analysis and a grouping approach.
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Figure 13. Spatial distributions of the most important group of covariates with respect to the scaled Shapley values for the prediction best
estimate (mean; panel a) and for the prediction uncertainty (IQW; panel b) in the city of Toulouse. Panel (c) shows the regions where the
most important group of covariates for the mean agrees with that for IQW. The black squares indicate the locations of the soil samples used
for RF training.

Although RF models can handle a large number of covari-
ates, eliminating the covariates before calculating the Shap-
ley values has a clear benefit for saving CPU time. In the real
case, the SHAP computational complexity is proportional to
215
= 32768. The application of screening analysis (Fig. 8)

decreases the number of features from 15 to 9, resulting in a
relative computational cost reduction of 215−9

= 64. An ad-
ditional step of grouping is proposed here, with the primary
objective of facilitating interpretation. Interestingly, Wadoux
et al. (2023) also presented Shapley values for groups of co-
variates (mean climate, climate extremes, vegetation, topog-
raphy, etc.) as indicated in Fig. 6 of their study. By group-
ing before calculating the Shapley values, an additional rel-
ative computational cost reduction can be achieved. In the
Toulouse case, this implies a cost reduction of 29−4

= 32,
and the analysis required less than 1 h for the group-based
SHAP (with an average CPU time of 0.054 s). Given the con-
straints of global-scale studies, this approach here would re-
quire less than 7 d of calculation on a single laptop. With the
growing concern regarding energy consumption (see, for ex-
ample, Jay et al., 2024) for scientific computing, this option
provides soil scientists with efficient, energy-saving analyt-
ical tools, although it requires a careful identification of the
covariates of negligible influence as well as the definition of
groups.

6 Summary and future work

Providing insights into the uncertainty impacting DSM is a
key challenge that requires appropriate diagnostic tools. In an
effort to complement the toolbox of environmental soil sci-
entists, in this study, we assessed the feasibility of using the
SHAP approach to quantify the contributions of covariates
to the machine-learning-based prediction uncertainty at any

location in the study area. Using a real case of pollution con-
centration mapping in the city of Toulouse as well as a syn-
thetic test case, we explored the benefits of jointly analysing
the contributors to the prediction best estimate and to the pre-
diction uncertainty. Our results revealed that the drivers of
the prediction best estimate are not necessarily the drivers of
the confidence in the predictions: this means that decisions in
terms of data collection and covariate characterisation may
differ depending on the target, the prediction best estimate or
the confidence/uncertainty, and the way in which the results
of the prediction (and their uncertainty) are communicated.

However, to integrate SHAP at a fully operational level,
several lines of improvement need to be considered. First, the
implementation to global-scale projects still remains chal-
lenging and deserves further work to find a compromise
between accuracy, efficiency, and interpretability by paying
particular attention to estimation algorithms (Chen et al.,
2023), with potential combination with screening and group-
ing analysis. Second, we focused on a unique uncertainty in-
dicator – namely, the interquartile width – but in some situa-
tions, it may not be representative of the total uncertainty, and
additional developments are necessary to integrate the entire
prediction probability distribution within the SHAP setting.
The use of an information-theoretic variant of Shapley val-
ues, as investigated by Watson et al. (2023), may be help-
ful here. Third, we focused on one type of machine learning
model, i.e. the quantile RF model. Alternative approaches
should be considered in future research: different types of
machine learning models, such as deep learning techniques,
which have shown promising results (see, for example, Kirk-
wood et al., 2022), and improved approaches, in particular,
to addressing complex sample distributions such as cluster-
ing (see, for example, de Bruin et al. (2022) and references
therein). Different uncertainty measures should also be tested
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– for example, geostatistical methods using the kriging vari-
ance or statistical quantities derived from stochastic simula-
tions (see, for example, Chilès and Delfiner, 2012), Bayesian
techniques (see Abdar et al., 2021, for deep learning tech-
niques), and data-driven approaches such as cross-validation
procedures (Ben Salem et al., 2017). These future studies are
made possible by the model-agnostic nature of SHAP.

Appendix A: Implementation

The R package ranger developed by Wright and Ziegler
(2017) is used to train the RF models as well for the
predictions and quantile estimates. The R package sen-
sitivity (https://cran.r-project.org/web/packages/sensitivity/
index.html, last access: 25 September 2024) is used to imple-
ment the HSIC-based analysis (screening and dependence).
The R package shapr developed by Sellereite et al. (2023)
is used to implement the group-based SHAP approach. The
R package cluster by Maechler et al. (2023) is used to im-
plement the PAM (partitioning around medoids) clustering
method. An R markdown based on the vignette of the R pack-
age CAST (available at https://hannameyer.github.io/CAST/
articles/cast02-AOA-tutorial.html, last access: 25 Septem-
ber 2024) is provided on the GitHub repository at https://
github.com/anrhouses/groupSHAP-uncertainty (last access:
25 September 2024).

Appendix B: Quantile random forest

The random forest (RF) model, as introduced by Breiman
(2001), is used here for regression. It is a non-parametric
technique based on a combination (ensemble named forest)
of regression trees (Breiman et al., 1984). Each tree is con-
structed by relying on recursive partitioning, which aims at
finding an optimal partition of the covariates’ domain of vari-
ation by dividing it into L disjoint sets, R1, . . ., RL, to have
homogeneous Yi values in each set Rl=1,...,L by minimising
a splitting criterion (e.g. based on the sum of squared errors;
see Breiman et al., 1984) or when the number of observations
in each partition reaches a minimal number termed nodesize
(denoted by ns). To sum up, the RF model aggregates the
different regression trees as follows: (1) a random bootstrap
sample is taken from the training data and mtry variables at
each split are randomly selected. Then, (2) ntree trees T (α)
are constructed, where αt denotes the parameter vector based
on which the t th tree is built. Finally, (3) the results from
the prediction of each single tree to estimate the conditional
mean of Y are aggregated as follows:

Y (s)= f (x(s))= E(Y |X= x(s))

=

∑n

j=1
wj (x(s))Yj ,

(B1)

where E(.) is the mathematical expectation and the weight
wj is defined as

wj (x(s))=
∑ntree
t=1wt (x(s),αt )

ntree
,

with wj (x(s),α)=
I{Xi∈Rl(x,α)}

#{j :Xi ∈ Rl(x,α)}
,

(B2)

where I (A) is the indicator operator which equals 1 if A is
true and 0 otherwise and Rl(x,α) is the partition of the tree
model with parameter α which contains x.

The RF method is very flexible and can be adapted to pre-
dict quantiles. The quantile random forest (qRF) model was
originally developed by Meinshausen (2006), who proposed
to estimate the conditional quantile, qτ (y|x), at level τ as

qτ (y|x)= inf(x : FH |X(y|x)≥ τ ), (B3)

where

FY |X(y|x)=
∑n

j=1
wj (x)I{Yj≤y}, (B4)

where the weight is calculated in the same manner as for the
regression RF model.

The major difference to the formulation for regression RF
is that the qRF model computes a weighed empirical CDF
(cumulative distribution function) of Y for each partition in-
stead of computing a weighed average value (as in Eqs. B2–
B4).

Appendix C: HSIC dependence measure

The number of covariates is 15 (Sect. 2), which is sufficiently
large to pose some difficulties regarding the computational
time cost of the SHAP approach (Sect. 3.2). To filter out co-
variates of negligible influence (screening analysis), we rely
on the HSIC (Hilbert–Schmidt independence criterion) mea-
sure, which can capture arbitrary dependence between two
random variables (potentially of mixed type, continuous or
categorical). In the following, we describe the main aspects,
and the interested readers can refer to Gretton et al. (2005)
and da Veiga (2015).

Let us associate Xi with a universal reproducing kernel
Hilbert-Schmidt (RKHS) space defined by the characteristic
kernel function ki(.,.). The same transformation is associated
with Y by considering a RKHS space with kernel k(.,.). We
define the HSIC measure as follows:

HSIC(Xi,Y )= E
(
ki
(
Xi,X

′

i

)
k(Y,Y ′)

)
+E

(
ki
(
Xi,X

′

i

))
E(k(Y,Y ′)

)
− 2E(E

(
ki
(
Xi,X

′

i

)∣∣Xi)E(ki(Y,Y ′)∣∣Y )), (C1)

where (X′i,Y
′) is an independent and identically distributed

copy of (Xi,Y ) and E(.) is the expectation operator.
The role of the characteristic kernel is central here be-

cause it can be defined depending on the type of the consid-
ered variable. For continuous variables, the Gaussian kernel
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is used and is defined as exp(−λ‖x− x′‖2), with λ being the
bandwidth parameter chosen as the inverse of the empirical
variance of the considered variable. For categorical variables,
the identity function is used as a characteristic kernel.

The pairwise dependence is measured by
HSIC(Xi,Xj )i 6=j . To ease the interpretability, the
scaled version of Eq. (C1) between 0 and 1 is prefer-
ably used – namely, the ratio between HSIC(Xi,Xj )
and the square root of a normalising constant equal to
HSIC(Xi,Xi)×HSIC(Xj ,Xj ) as proposed by da Veiga
(2015). From the scaled HSIC(Xi,Xj )i 6=j , we define the
similarity S(Xi,Xj )i 6=j = 1−HSIC(Xi,Xj )i 6=j .

To perform the screening analysis, we rely on the inter-
pretation of HSIC(Xi,Y ) from a sensitivity analysis per-
spective (da Veiga, 2015) – namely its nullity indicates that
Xi does not influence Y . To identify the significant Xi , the
null hypothesis H0 : HSIC(Xi,Y )= 0 (against the hypothe-
sis H1 : HSIC(Xi,Y )> 0) is tested, and the corresponding p
value can be evaluated (El Amri and Marrel, 2022). When
the p value is below a given significance threshold (typically
5 %), it indicates that the null hypothesis should be rejected;
i.e. the considered covariate Xi has a significant influence on
the variable of interest, Y .

Code and data availability. Sources of data of the covariates are
listed in Tables 1 and 2. We provide the R scripts to run the synthetic
test case in the form of an R markdown on the GitHub repository at
https://github.com/anrhouses/groupSHAP-uncertainty, last access:
25 September 2024 (https://doi.org/10.5281/zenodo.13838496,
Rohmer, 2024) based on the vignette of the R package
CAST available at https://hannameyer.github.io/CAST/articles/
cast02-AOA-tutorial.html (Meyer, 2024). The data of the Toulouse
test case, however, have restricted access.

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/soil-10-679-2024-supplement.
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