Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js
Articles | Volume 10, issue 2
https://doi.org/10.5194/soil-10-679-2024
https://doi.org/10.5194/soil-10-679-2024
Original research article
 | 
30 Sep 2024
Original research article |  | 30 Sep 2024

Insights into the prediction uncertainty of machine-learning-based digital soil mapping through a local attribution approach

Jeremy Rohmer, Stephane Belbeze, and Dominique Guyonnet

Viewed

Total article views: 991 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
743 128 120 991 16 29 29
  • HTML: 743
  • PDF: 128
  • XML: 120
  • Total: 991
  • Supplement: 16
  • BibTeX: 29
  • EndNote: 29
Views and downloads (calculated since 21 Feb 2024)
Created with Highstock 2.0.41068193465628265217516156363540846666334619214311910445313234191316128717209643332111224236485103HTML viewsPDF downloadsXML downloadsJul 2024Aug 2024Sep 2024Oct 2024Nov 2024Dec 2024Jan 2025Feb 2025Mar 2025050100150200
Cumulative views and downloads (calculated since 21 Feb 2024)
Created with Highstock 2.0.41061872803263824104364886638248809169519918415021624929531433537849760164667770974319324860687576831031121181221251283516171921252763111116117117120HTML viewsPDF downloadsXML downloadsJul 2024Aug 2024Sep 2024Oct 2024Nov 2024Dec 2024Jan 2025Feb 2025Mar 2025025050075010001250

Viewed (geographical distribution)

Total article views: 991 (including HTML, PDF, and XML) Thereof 976 with geography defined and 15 with unknown origin.
Country # Views %
United States of America128128
China217517
France3898
Germany4515
Netherlands5262
  • 1
  • 281
1
 
 
 
281
Latest update: 01 Apr 2025
Download
Short summary
Machine learning (ML) models have become key ingredients for digital soil mapping. To explain...
Share