Articles | Volume 9, issue 2
https://doi.org/10.5194/soil-9-443-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/soil-9-443-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Tropical Andosol organic carbon quality and degradability in relation to soil geochemistry as affected by land use
Sastrika Anindita
CORRESPONDING AUTHOR
Department of Environment, Ghent University, Ghent, 9000, Belgium
Peter Finke
Department of Environment, Ghent University, Ghent, 9000, Belgium
Steven Sleutel
Department of Environment, Ghent University, Ghent, 9000, Belgium
Related authors
No articles found.
W. Marijn van der Meij and Peter A. Finke
EGUsphere, https://doi.org/10.5194/egusphere-2025-5077, https://doi.org/10.5194/egusphere-2025-5077, 2025
This preprint is open for discussion and under review for SOIL (SOIL).
Short summary
Short summary
We used soil evolution model SoilGen to simulate long-term soil organic carbon sequestration under varying environmental conditions and internal protection mechanisms. Our results revealed a strong role of pedogenetic and environmental history on current-day and future SOC sequestration potential. We propose a framework for developing topical digital twins of long-term soil processes to monitor and project future soil development under global change.
Astrid Françoys, Orly Mendoza, Junwei Hu, Pascal Boeckx, Wim Cornelis, Stefaan De Neve, and Steven Sleutel
SOIL, 11, 121–140, https://doi.org/10.5194/soil-11-121-2025, https://doi.org/10.5194/soil-11-121-2025, 2025
Short summary
Short summary
To assess the impact of the groundwater table (GWT) depth on soil moisture and C mineralization, we designed a laboratory setup using 200 cm undisturbed soil columns. Surprisingly, the moisture increase induced by a shallower GWT did not result in enhanced C mineralization. We presume this upward capillary moisture effect was offset by increased C mineralization upon rewetting, particularly noticeable in drier soils when capillary rise affected the topsoil to a lesser extent due to a deeper GWT.
Orly Mendoza, Stefaan De Neve, Heleen Deroo, Haichao Li, Astrid Françoys, and Steven Sleutel
SOIL, 11, 105–119, https://doi.org/10.5194/soil-11-105-2025, https://doi.org/10.5194/soil-11-105-2025, 2025
Short summary
Short summary
Farmers frequently apply fresh organic matter such as crop residues to soil to boost its carbon content. Yet, one burning question remains: does the quantity of applied organic matter affect its decomposition and that of native soil organic matter? Our experiment suggests that smaller application doses might deplete soil organic matter more rapidly, at least in coarser-textured soil. In contrast, applying intermediate or high doses might be a promising strategy for maintaining it.
Lauren M. Gillespie, Nathalie Y. Triches, Diego Abalos, Peter Finke, Sophie Zechmeister-Boltenstern, Stephan Glatzel, and Eugenio Díaz-Pinés
SOIL, 9, 517–531, https://doi.org/10.5194/soil-9-517-2023, https://doi.org/10.5194/soil-9-517-2023, 2023
Short summary
Short summary
Forest soil is potentially an important source or sink of greenhouse gases (CO2, N2O, and CH4), but this is affected by soil conditions. We studied how land inclination and soil/litter properties influence the flux of these gases. CO2 and N2O were more affected by inclination than CH4; all were affected by soil/litter properties. This study underlines the importance of inclination and soil/litter properties in predicting greenhouse gas fluxes from forest soil and potential source–sink balance.
Vanesa García-Gamero, Tom Vanwalleghem, Adolfo Peña, Andrea Román-Sánchez, and Peter A. Finke
SOIL, 8, 319–335, https://doi.org/10.5194/soil-8-319-2022, https://doi.org/10.5194/soil-8-319-2022, 2022
Short summary
Short summary
Short-scale soil variability has received much less attention than at the regional scale. The chemical depletion fraction (CDF), a proxy for chemical weathering, was measured and simulated with SoilGen along two opposite slopes in southern Spain. The results show that differences in CDF could not be explained by topography alone but by hydrological parameters. The model sensitivity test shows the maximum CDF value for intermediate precipitation has similar findings to other soil properties.
Heleen Deroo, Masuda Akter, Samuel Bodé, Orly Mendoza, Haichao Li, Pascal Boeckx, and Steven Sleutel
Biogeosciences, 18, 5035–5051, https://doi.org/10.5194/bg-18-5035-2021, https://doi.org/10.5194/bg-18-5035-2021, 2021
Short summary
Short summary
We assessed if and how incorporation of exogenous organic carbon (OC) such as straw could affect decomposition of native soil organic carbon (SOC) under different irrigation regimes. Addition of exogenous OC promoted dissolution of native SOC, partly because of increased Fe reduction, leading to more net release of Fe-bound SOC. Yet, there was no proportionate priming of SOC-derived DOC mineralisation. Water-saving irrigation can retard both priming of SOC dissolution and mineralisation.
Cited articles
Anda, M. and Dahlgren, R. A.:
Long-term response of tropical Andisol properties to conversion from rainforest to agriculture, Catena, 194, 104679, https://doi.org/10.1016/j.catena.2020.104679, 2020.
Anindita, S., Sleutel, S., Vandenberghe, D., Grave, J. De, Vandenhende, V., and Finke, P.:
Land use impacts on weathering, soil properties, and carbon storage in wet Andosols, Indonesia, Geoderma, 423, 115963, https://doi.org/10.1016/j.geoderma.2022.115963, 2022.
Asano, M. and Wagai, R.:
Evidence of aggregate hierarchy at micro- to submicron scales in an allophanic andisol, Geoderma, 216, 62–74, https://doi.org/10.1016/j.geoderma.2013.10.005, 2014.
Asano, M. and Wagai, R.:
Distinctive organic matter pools among particle-size fractions detected by solid-state 13C-NMR, δ13C and δ15N analyses only after strong dispersion in an allophanic andisol, Soil Sci. Plant Nutr., 61, 242–248, https://doi.org/10.1080/00380768.2014.982492, 2015.
Asano, M., Wagai, R., Yamaguchi, N., Takeichi, Y., Maeda, M., Suga, H., and Takahashi, Y.:
In search of a binding agent: Nano-scale evidence of preferential carbon associations with poorly-crystalline mineral phases in physically-stable, clay-sized Aggregates, Soil Syst., 2, 32, https://doi.org/10.3390/soilsystems2020032, 2018.
Baldock, J. A.:
Composition and Cycling of Organic Carbon in Soil, in: Nutrient Cycling in Terrestrial Ecosystems, edited by: Marschner, P. and Rengel, Z., Springer Berlin, Heidelberg, 1–35, https://doi.org/10.1007/978-3-540-68027-7_1, 2007.
Baldock, J. A., Oades, J. M., Waters, A. G., Peng, X., Vassallo, A. M., and Wilson, M. A.:
Aspects of the chemical structure of soil organic materials as revealed by solid-state13C NMR spectroscopy, Biogeochemistry, 16, 1–42, https://doi.org/10.1007/bf00024251, 1992.
Bartoli, F., Burtin, G., and Herbillon, A. J.:
Disaggregation and clay dispersion of Oxisols: Na resin, a recommended methodology, Geoderma, 49, 301–317, https://doi.org/10.1016/0016-7061(91)90082-5, 1991.
Basile-Doelsch, I., Amundson, R., Stone, W. E. E., Masiello, C. A., Bottero, J. Y., Colin, F., Masin, F., Borschneck, D., and Meunier, J. D.:
Mineralogical control of organic carbon dynamics in a volcanic ash soil on La Réunion, Eur. J. Soil Sci., 56, 689–703, https://doi.org/10.1111/j.1365-2389.2005.00703.x, 2005.
Basile-Doelsch, I., Amundson, R., Stone, W. E. E., Borschneck, D., Bottero, J. Y., Moustier, S., Masin, F., and Colin, F.:
Mineral control of carbon pools in a volcanic soil horizon, Geoderma, 137, 477–489, https://doi.org/10.1016/j.geoderma.2006.10.006, 2007.
Berg, B. and McClaugherty, C.:
Plant litter: decomposition, humus formation, carbon sequestration, 3rd Edn., Springer Berlin Heidelberg, Berlin, Heidelberg, https://doi.org/10.1007/978-3-662-05349-2, 2003.
Besnard, E., Chenu, C., Balesdent, J., Puget, P., and Arrouays, D.:
Fate of particulate organic matter in soil aggregates during cultivation, Eur. J. Soil Sci., 47, 495–503, https://doi.org/10.1111/j.1365-2389.1996.tb01849.x, 1996.
Blagodatskaya, E., Khomyakov, N., Myachina, O., Bogomolova, I., Blagodatsky, S., and Kuzyakov, Y.:
Microbial interactions affect sources of priming induced by cellulose, Soil Biol. Biochem., 74, 39–49, https://doi.org/10.1016/j.soilbio.2014.02.017, 2014.
Blanco-Canqui, H. and Lal, R.:
Mechanisms of carbon sequestration in soil aggregates, CRC Cr. Rev. Plant Sci., 23, 481–504, https://doi.org/10.1080/07352680490886842, 2004.
Borggaard, O. K., Jørgensen, S. S., Møberg, J. P., and Raben-Lange, B.:
Influence of organic matter on phosphate adsorption by aluminium and iron oxides in sandy soils, J. Soil Sci., 41, 443–449, https://doi.org/10.1111/j.1365-2389.1990.tb00078.x, 1990.
Bruijnzeel, L. A.:
Nutrient Content of Litterfall in Coniferous Forest Plantations in Central Java, Indonesia, J. Trop. Ecol., 1, 353–372, http://www.jstor.org/stable/2559453 (last access: 6 April 2016), 1985.
Cerli, C., Celi, L., Kalbitz, K., Guggenberger, G., and Kaiser, K.:
Separation of light and heavy organic matter fractions in soil – Testing for proper density cut-off and dispersion level, Geoderma, 170, 403–416, https://doi.org/10.1016/j.geoderma.2011.10.009, 2012.
Chen, R., Senbayram, M., Blagodatsky, S., Myachina, O., Dittert, K., Lin, X., Blagodatskaya, E., and Kuzyakov, Y.:
Soil C and N availability determine the priming effect: Microbial N mining and stoichiometric decomposition theories, Glob. Change Biol., 20, 2356–2367, https://doi.org/10.1111/gcb.12475, 2014.
Churchman, G. J. and Lowe, D. J.:
Alteration, formation, and occurrence of minerals in soils, in: Handbook of Soil Sciences, Vol. 1, edited by: Huang, P. M., Li, Y., and Sumner, M. E., CRC Press (Taylor & Francis), Boca Raton, FL, 20.1–20.72, https://doi.org/10.1201/b11267, 2012.
Covaleda, S., Gallardo, J. F., García-Oliva, F., Kirchmann, H., Prat, C., Bravo, M., and Etchevers, J. D.:
Land-use effects on the distribution of soil organic carbon within particle-size fractions of volcanic soils in the Transmexican Volcanic Belt (Mexico), Soil Use Manage., 27, 186–194, https://doi.org/10.1111/j.1475-2743.2011.00341.x, 2011.
Cronan, C. S.:
Ecosystem Biogeochemistry, Springer, Orono, USA, https://doi.org/10.1007/978-3-319-66444-6, 2018.
Cusack, D. F., Chadwick, O. A., Ladefoged, T., and Vitousek, P. M.:
Long-term effects of agriculture on soil carbon pools and carbon chemistry along a Hawaiian environmental gradient, Biogeochemistry, 112, 229–243, https://doi.org/10.1007/s10533-012-9718-z, 2013.
De Clercq, T., Heiling, M., Dercon, G., Resch, C., Aigner, M., Mayer, L., Mao, Y., Elsen, A., Steier, P., Leifeld, J., and Merckx, R.:
Predicting soil organic matter stability in agricultural fields through carbon and nitrogen stable isotopes, Soil Biol. Biochem., 88, 29–38, https://doi.org/10.1016/j.soilbio.2015.05.011, 2015.
Derrien, D., Plain, C., Courty, P. E., Gelhaye, L., Moerdijk-Poortvliet, T. C. W., Thomas, F., Versini, A., Zeller, B., Koutika, L. S., Boschker, H. T. S., and Epron, D.:
Does the addition of labile substrate destabilise old soil organic matter?, Soil Biol. Biochem., 76, 149–160, https://doi.org/10.1016/j.soilbio.2014.04.030, 2014.
Doetterl, S., Stevens, A., Six, J., Merckx, R., Van Oost, K., Casanova Pinto, M., Casanova-Katny, A., Muñoz, C., Boudin, M., Zagal Venegas, E., and Boeckx, P.:
Soil carbon storage controlled by interactions between geochemistry and climate, Nat. Geosci., 8, 780–783, https://doi.org/10.1038/ngeo2516, 2015.
Dörner, J., Dec, D., Feest, E., Vásquez, N., and Díaz, M.:
Dynamics of soil structure and pore functions of a volcanic ash soil under tillage, Soil Till. Res., 125, 52–60, https://doi.org/10.1016/j.still.2012.05.019, 2012.
Don, A., Schumacher, J., and Freibauer, A.:
Impact of tropical land-use change on soil organic carbon stocks - a meta-analysis, Glob. Change Biol., 17, 1658–1670, https://doi.org/10.1111/j.1365-2486.2010.02336.x, 2011.
Du, Z. L., Wu, W. L., Zhang, Q. Z., Guo, Y. B., and Meng, F. Q.:
Long-Term Manure Amendments Enhance Soil Aggregation and Carbon Saturation of Stable Pools in North China Plain, J. Integr. Agr., 13, 2276–2285, https://doi.org/10.1016/S2095-3119(14)60823-6, 2014.
Dungait, J. A. J., Hopkins, D. W., Gregory, A. S., and Whitmore, A. P.:
Soil organic matter turnover is governed by accessibility not recalcitrance, Glob. Change Biol., 18, 1781–1796, https://doi.org/10.1111/j.1365-2486.2012.02665.x, 2012.
Gerzabek, M. H., Bajraktarevic, A., Keiblinger, K., Mentler, A., Rechberger, M., Tintner, J., Wriessnig, K., Gartner, M., Valenzuela, X. S., Troya, A., Couenberg, P. M., Jäger, H., Carrión, J. E., and Zehetner, F.:
Agriculture changes soil properties on the Galápagos Islands-two case studies, Soil Res., 57, 201–214, https://doi.org/10.1071/SR18331, 2019.
Gijsman, A. J. and Sanz, J. I.:
Soil organic matter pools in a volcanic-ash soil under fallow or cultivation with applied chicken manure, Eur. J. Soil Sci., 49, 427–436, https://doi.org/10.1046/j.1365-2389.1998.4930427.x, 1998.
Guillaume, T., Kotowska, M. M., Hertel, D., Knohl, A., Krashevska, V., Murtilaksono, K., Scheu, S., and Kuzyakov, Y.:
Carbon costs and benefits of Indonesian rainforest conversion to plantations, Nat. Commun., 9, 2388, https://doi.org/10.1038/s41467-018-04755-y, 2018.
Hernández, Z., Almendros, G., Carral, P., Álvarez, A., Knicker, H., and Pérez-Trujillo, J. P.:
Influence of non-crystalline minerals in the total amount, resilience and molecular composition of the organic matter in volcanic ash soils (Tenerife Island, Spain), Eur. J. Soil Sci., 63, 603–615, https://doi.org/10.1111/j.1365-2389.2012.01497.x, 2012.
Hertel, D., Moser, G., Culmsee, H., Erasmi, S., Horna, V., Schuldt, B., and Leuschner, C.:
Below- and above-ground biomass and net primary production in a paleotropical natural forest (Sulawesi, Indonesia) as compared to neotropical forests, Forest Ecol. Manag., 258, 1904–1912, https://doi.org/10.1016/j.foreco.2009.07.019, 2009.
Högberg, M. N., Högberg, P., and Myrold, D. D.:
Is microbial community composition in boreal forest soils determined by pH, C-to-N ratio, the trees, or all three?, Oecologia, 150, 590–601, https://doi.org/10.1007/s00442-006-0562-5, 2007.
Huygens, D., Boeckx, P., Van Cleemput, O., Oyarzún, C., and Godoy, R.:
Aggregate and soil organic carbon dynamics in South Chilean Andisols, Biogeosciences, 2, 159–174, https://doi.org/10.5194/bg-2-159-2005, 2005.
Kang, J., Hesterberg, D., and Osmond, D. L.:
Soil Organic Matter Effects on Phosphorus Sorption: A Path Analysis, Soil Sci. Soc. Am. J., 73, 360–366, https://doi.org/10.2136/sssaj2008.0113, 2009.
Keeling, D.:
The concentration and isotopic abundances of atmospheric carbon dioxide in rural areas, Geochim. Cosmochim. Ac., 13, 322–334, https://doi.org/10.1016/0016-7037(58)90033-4, 1958.
Keil, R. G. and Mayer, L. M.:
Mineral Matrices and Organic Matter, edited by: Holland, H. D. and Turekian, K. K., 2nd Edn., Elsevier Ltd., https://doi.org/10.1016/B978-0-08-095975-7.01024-X, 2013.
Kleber, M., Eusterhues, K., Keiluweit, M., Mikutta, C., Mikutta, R., and Nico, P. S.:
Mineral-Organic Associations: Formation, Properties, and Relevance in Soil Environments, in: Advances in Agronomy, Vol. 130, edited by: Sparks, D. L., Elsevier Ltd., 1–140, https://doi.org/10.1016/bs.agron.2014.10.005, 2015.
Lehmann, J. and Kleber, M.:
The contentious nature of soil organic matter, Nature, 528, 60–68, https://doi.org/10.1038/nature16069, 2015.
Lehmann, J., Kinyangi, J., and Solomon, D.:
Organic matter stabilization in soil microaggregates: Implications from spatial heterogeneity of organic carbon contents and carbon forms, Biogeochemistry, 85, 45–57, https://doi.org/10.1007/s10533-007-9105-3, 2007.
Li, J., Du, J., Zhong, S., Ci, E., and Wei, C.:
Changes in the profile properties and chemical weathering characteristics of cultivated soils affected by anthropic activities, Sci. Rep.-UK, 11, 20822, https://doi.org/10.1038/s41598-021-00302-w, 2021.
Linlin, G., Taku, N., Hiromi, I., and Zhigang, S.:
Carbon Mineralization Associated with Soil Aggregates as Affected by Short-Term Tillage, J. Resour. Ecol., 7, 101–106, https://doi.org/10.5814/j.issn.1674-764x.2016.02.004, 2016.
Liu, X. J. A., Sun, J., Mau, R. L., Finley, B. K., Compson, Z. G., van Gestel, N., Brown, J. R., Schwartz, E., Dijkstra, P., and Hungate, B. A.:
Labile carbon input determines the direction and magnitude of the priming effect, Appl. Soil Ecol., 109, 7–13, https://doi.org/10.1016/j.apsoil.2016.10.002, 2017.
Lyu, H., Watanabe, T., Kilasara, M., Hartono, A., and Funakawa, S.:
Soil organic carbon pools controlled by climate and geochemistry in tropical volcanic regions, Sci. Total Environ., 761, 143277, https://doi.org/10.1016/j.scitotenv.2020.143277, 2021.
Malik, A. A., Puissant, J., Buckeridge, K. M., Goodall, T., Jehmlich, N., Chowdhury, S., Gweon, H. S., Peyton, J. M., Mason, K. E., van Agtmaal, M., Blaud, A., Clark, I. M., Whitaker, J., Pywell, R. F., Ostle, N., Gleixner, G., and Griffiths, R. I.:
Land use driven change in soil pH affects microbial carbon cycling processes, Nat. Commun., 9, 1–10, https://doi.org/10.1038/s41467-018-05980-1, 2018.
Matus, F., Rumpel, C., Neculman, R., Panichini, M., and Mora, M. L.:
Soil carbon storage and stabilisation in andic soils: A review, Catena, 120, 102–110, https://doi.org/10.1016/j.catena.2014.04.008, 2014.
McKeague, J. A.:
An evaluation of 0.1 M pyrophosphate and pyrophosphate-dithionite in comparison with oxalate as extractants of the accumulation products in podzols and some other soils, Can. J. Soil Sci., 47, 95–99, https://doi.org/10.4141/cjss67-017, 1967.
Mikha, M. M. and Rice, C. W.:
Tillage and Manure Effects on Soil and Aggregate-Associated Carbon and Nitrogen, Soil Sci. Soc. Am. J., 68, 809–816, https://doi.org/10.2136/sssaj2004.8090, 2004.
Mikutta, R., Kleber, M., Torn, M. S., and Jahn, R.:
Stabilization of soil organic matter: Association with minerals or chemical recalcitrance?, Biogeochemistry, 77, 25–56, https://doi.org/10.1007/s10533-005-0712-6, 2006.
Mikutta, R., Schaumann, G. E., Gildemeister, D., Bonneville, S., Kramer, M. G., Chorover, J., Chadwick, O. A., and Guggenberger, G.:
Biogeochemistry of mineral-organic associations across a long-term mineralogical soil gradient (0.3–4100 kyr), Hawaiian Islands, Geochim. Cosmochim. Ac., 73, 2034–2060, https://doi.org/10.1016/j.gca.2008.12.028, 2009.
Miyazawa, M., Takahashi, T., Sato, T., Kanno, H., and Nanzyo, M.:
Factors controlling accumulation and decomposition of organic carbon in humus horizons of Andosols: A case study for distinctive non-allophanic Andosols in northeastern Japan, Biol. Fert. Soils, 49, 929–938, https://doi.org/10.1007/s00374-013-0792-8, 2013.
Oades, J. and Waters, A.: Aggregates hierarchy in soils, Austr. J. Soil Res., 29, 815–825, https://doi.org/10.1071/SR9910815, 1991.
Parfitt, R. L.:
Allophane and imogolite: role in soil biogeochemical processes, Clay Miner., 44, 135–155, https://doi.org/10.1180/claymin.2009.044.1.135, 2009.
Poeplau, C., Don, A., Dondini, M., Leifeld, J., Nemo, R., Schumacher, J., Senapati, N., and Wiesmeier, M.:
Reproducibility of a soil organic carbon fractionation method to derive RothC carbon pools, Eur. J. Soil Sci., 64, 735–746, https://doi.org/10.1111/ejss.12088, 2013.
Poirier, V., Basile-Doelsch, I., Balesdent, J., Borschneck, D., Whalen, J. K., and Angers, D. A.:
Organo-Mineral Interactions Are More Important for Organic Matter Retention in Subsoil Than Topsoil, Soil Syst., 4, 4, https://doi.org/10.3390/soilsystems4010004, 2020.
Qiao, N., Schaefer, D., Blagodatskaya, E., Zou, X., Xu, X., and Kuzyakov, Y.:
Labile carbon retention compensates for CO2 released by priming in forest soils, Glob. Change Biol., 20, 1943–1954, https://doi.org/10.1111/gcb.12458, 2014.
Rabbi, S. M. F., Daniel, H., Lockwood, P. V., Macdonald, C., Pereg, L., Tighe, M., Wilson, B. R., and Young, I. M.:
Physical soil architectural traits are functionally linked to carbon decomposition and bacterial diversity, Sci. Rep.-UK, 6, 33012, https://doi.org/10.1038/srep33012, 2016.
Rennert, T.:
Wet-chemical extractions to characterise pedogenic Al and Fe species –a critical review, Soil Res., 57, 1–16, https://doi.org/10.1071/SR18299, 2019.
Six, J., Elliott, E. T., and Paustian, K.:
Soil macroaggregate turnover and microaggregate formation: A mechanism for C sequestration under no-tillage agriculture, Soil Biol. Biochem., 32, 2099–2103, https://doi.org/10.1016/S0038-0717(00)00179-6, 2000a.
Six, J., Paustian, K., Elliott, E. T., and Combrink, C.:
Soil Structure and Organic Matter I. Distribution of Aggregate-Size Classes and Aggregate-Associated Carbon, Soil Sci. Soc. Am. J., 64, 681–689, https://doi.org/10.2136/sssaj2000.642681x, 2000b.
Six, J., Conant, R. T., Paul, E. A., and Paustian, K.:
Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils, Plant Soil, 241, 155–176, https://doi.org/10.1023/A:1016125726789, 2002.
Smith, W. K., Cleveland, C. C., Reed, S. C., and Running, S. W.:
Agricultural conversion without external water and nutrient inputs reduces terrestrial vegetation productivity, Geophys. Prospect., 41, 449–455, https://doi.org/10.1002/2013GL058857, 2014.
SSB and UGhent (The Soil Service of Belgium and Ghent University): Study LA BOD/STUD 2006 01 04 for the Flemish Government – Development of expertsystem for C-management advise for cropland soils: part 1 literature study & part 2 development of an advice system, Dept. Environment, Nature and Energy of the Flemish Government, Brussels, https://publicaties.vlaanderen.be/view-file/20207 (last access: 28 July 2023), 2008 (in Dutch).
Tamrat, W. ., Rose, J., Grauby, O., Doelsch, E., Levard, C., Chaurand, P., and Basile-Doelsch, I.:
Soil organo-mineral associations formed by co-precipitation of Fe, Si and Al in presence of organic ligands, Geochim. Cosmochim. Ac., 260, 15–28, https://doi.org/10.1016/j.gca.2019.05.043, 2019.
Taylor, M. D., Lowe, D. J., Hardi, P., Smidt, G. A., and Schnug, E.:
Comparing volcanic glass shards in unfertilised and fertilised Andisols derived from rhyolitic tephras, New Zealand: Evidence for accelerated weathering and implications for land management, Geoderma, 271, 91–98, https://doi.org/10.1016/j.geoderma.2016.01.035, 2016.
Van Breemen, N., Mulder, J., and Driscoll, C.:
Acidification and alkalinization of soils, Plant Soil, 75, 283–308, http://www.jstor.com/stable/42934465 (last access: 9 April 2021), 1983.
Wagai, R., Kajiura, M., Uchida, M., and Asano, M.:
Distinctive roles of two aggregate binding agents in allophanic andisols: Young carbon and poorly-crystalline metal phases with old carbon, Soil Syst., 2, 1–23, https://doi.org/10.3390/soilsystems2020029, 2018.
Wagai, R., Kajiura, M., and Asano, M.:
Iron and aluminum association with microbially processed organic matter via meso-density aggregate formation across soils: organo-metallic glue hypothesis, SOIL, 6, 597–627, https://doi.org/10.5194/soil-6-597-2020, 2020.
Wei, X., Shao, M., Gale, W., and Li, L.:
Global pattern of soil carbon losses due to the conversion of forests to agricultural land, Sci. Rep.-UK, 4, 6–11, https://doi.org/10.1038/srep04062, 2014.
Werth, M. and Kuzyakov, Y.:
13C fractionation at the root-microorganisms-soil interface: A review and outlook for partitioning studies, Soil Biol. Biochem., 42, 1372–1384, https://doi.org/10.1016/j.soilbio.2010.04.009, 2010.
Yu, H., Ding, W., Luo, J., Geng, R., Ghani, A., and Cai, Z.:
Effects of long-term compost and fertilizer application on stability of aggregate-associated organic carbon in an intensively cultivated sandy loam soil, Biol. Fert. Soils, 48, 325–336, https://doi.org/10.1007/s00374-011-0629-2, 2012.
Zheng, H., Liu, W., Zheng, J., Luo, Y., Li, R., Wang, H., and Qi, H.:
Effect of long-term tillage on soil aggregates and aggregate-associated carbon in black soil of northeast China, PLOS ONE, 13, 1–18, https://doi.org/10.1371/journal.pone.0199523, 2018.
Zimmermann, M., Leifeld, J., Schmidt, M. W. I., Smith, P., and Fuhrer, J.:
Measured soil organic matter fractions can be related to pools in the RothC model, Eur. J. Soil Sci., 58, 658–667, https://doi.org/10.1111/j.1365-2389.2006.00855.x, 2007.
Short summary
This study investigated how land use, through its impact on soil geochemistry, might indirectly control soil organic carbon (SOC) content in tropical volcanic soils in Indonesia. We analyzed SOC fractions, substrate-specific mineralization, and net priming of SOC. Our results indicated that the enhanced formation of aluminum (hydr)oxides promoted aggregation and physical occlusion of OC, which is consistent with the lesser degradability of SOC in agricultural soils.
This study investigated how land use, through its impact on soil geochemistry, might indirectly...