Articles | Volume 9, issue 2
https://doi.org/10.5194/soil-9-425-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/soil-9-425-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Back to the future? Conservative grassland management can preserve soil health in the changing landscapes of Uruguay
Integrative Research Institute THESys Transformation of
Human-Environment-Systems Humboldt-Universität zu Berlin, Unter den
Linden 6, 10099 Berlin, Germany
Leonardo R. Ramírez
Integrative Research Institute THESys Transformation of
Human-Environment-Systems Humboldt-Universität zu Berlin, Unter den
Linden 6, 10099 Berlin, Germany
Sarah Tietjen
Leibniz Institute of Vegetable and Ornamental Crops (IGZ) e.V.,
Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany
Marcos Barra
Städtisches Klinikum Dessau, Auenweg 38, 06847
Dessau-Roßlau, Germany
Erick Zagal
Departamento de Suelos y Recursos Naturales, Universidad de
Concepción, Campus Chillán, Vicente Méndez 595, Chillán,
Chile
Related authors
No articles found.
Marco Pfeiffer, José Padarian, Rodrigo Osorio, Nelson Bustamante, Guillermo Federico Olmedo, Mario Guevara, Felipe Aburto, Francisco Albornoz, Monica Antilén, Elías Araya, Eduardo Arellano, Maialen Barret, Juan Barrera, Pascal Boeckx, Margarita Briceño, Sally Bunning, Lea Cabrol, Manuel Casanova, Pablo Cornejo, Fabio Corradini, Gustavo Curaqueo, Sebastian Doetterl, Paola Duran, Mauricio Escudey, Angelina Espinoza, Samuel Francke, Juan Pablo Fuentes, Marcel Fuentes, Gonzalo Gajardo, Rafael García, Audrey Gallaud, Mauricio Galleguillos, Andrés Gomez, Marcela Hidalgo, Jorge Ivelic-Sáez, Lwando Mashalaba, Francisco Matus, Francisco Meza, Maria de la Luz Mora, Jorge Mora, Cristina Muñoz, Pablo Norambuena, Carolina Olivera, Carlos Ovalle, Marcelo Panichini, Aníbal Pauchard, Jorge F. Pérez-Quezada, Sergio Radic, José Ramirez, Nicolás Riveras, Germán Ruiz, Osvaldo Salazar, Iván Salgado, Oscar Seguel, Maria Sepúlveda, Carlos Sierra, Yasna Tapia, Francisco Tapia, Balfredo Toledo, José Miguel Torrico, Susana Valle, Ronald Vargas, Michael Wolff, and Erick Zagal
Earth Syst. Sci. Data, 12, 457–468, https://doi.org/10.5194/essd-12-457-2020, https://doi.org/10.5194/essd-12-457-2020, 2020
Short summary
Short summary
The CHLSOC database is the biggest soil organic carbon (SOC) database that has been compiled for Chile yet, comprising 13 612 data points. This database is the product of the compilation of numerous sources including unpublished and difficult-to-access data, allowing us to fill numerous spatial gaps where no SOC estimates were publicly available before. The values of SOC compiled in CHLSOC have a wide range, reflecting the variety of ecosystems that exists in Chile.
Related subject area
Soils and global change
Thermodynamic and hydrological drivers of the soil and bedrock thermal regimes in central Spain
The effect of different biopreparations on soil physical properties and CO2 emissions when growing winter wheat and oilseed rape
Earthworm-invaded boreal forest soils harbour distinct microbial communities
Effects of a warmer climate and forest composition on soil carbon cycling, soil organic matter stability and stocks in a humid boreal region
Effects of mild alternate wetting and drying irrigation and rice straw application on N2O emissions in rice cultivation
Whole-soil warming decreases abundance and modifies the community structure of microorganisms in the subsoil but not in surface soil
Short- and long-term temperature responses of soil denitrifier net N2O efflux rates, inter-profile N2O dynamics, and microbial genetic potentials
Acute glyphosate exposure does not condition the response of microbial communities to a dry–rewetting disturbance in a soil with a long history of glyphosate-based herbicides
Depletion of soil carbon and aggregation after strong warming of a subarctic Andosol under forest and grassland cover
Effect of deforestation and subsequent land use management on soil carbon stocks in the South American Chaco
The effects of worms, clay and biochar on CO2 emissions during production and soil application of co-composts
Climate and soil factors influencing seedling recruitment of plant species used for dryland restoration
A call for international soil experiment networks for studying, predicting, and managing global change impacts
Global distribution of soil organic carbon – Part 2: Certainty of changes related to land use and climate
The economics of soil C sequestration and agricultural emissions abatement
Félix García-Pereira, Jesús Fidel González-Rouco, Thomas Schmid, Camilo Melo-Aguilar, Cristina Vegas-Cañas, Norman Julius Steinert, Pedro José Roldán-Gómez, Francisco José Cuesta-Valero, Almudena García-García, Hugo Beltrami, and Philipp de Vrese
SOIL, 10, 1–21, https://doi.org/10.5194/soil-10-1-2024, https://doi.org/10.5194/soil-10-1-2024, 2024
Short summary
Short summary
This work addresses air–ground temperature coupling and propagation into the subsurface in a mountainous area in central Spain using surface and subsurface data from six meteorological stations. Heat transfer of temperature changes at the ground surface occurs mainly by conduction controlled by thermal diffusivity of the subsurface, which varies with depth and time. A new methodology shows that near-surface diffusivity and soil moisture content changes with time are closely related.
Sidona Buragienė, Egidijus Šarauskis, Aida Adamavičienė, Kęstutis Romaneckas, Kristina Lekavičienė, Daiva Rimkuvienė, and Vilma Naujokienė
SOIL, 9, 593–608, https://doi.org/10.5194/soil-9-593-2023, https://doi.org/10.5194/soil-9-593-2023, 2023
Short summary
Short summary
The aim of this study was to investigate the effects of different biopreparations on soil porosity, temperature, and CO2 emission from the soil in northeast Europe (Lithuania) when growing food-type crops. The application of the biopreparations showed a cumulative effect on the soil properties. In the third year of the study, the total porosity of the soil was higher in all scenarios compared to the control, ranging between 51% and 74%.
Justine Lejoly, Sylvie Quideau, Jérôme Laganière, Justine Karst, Christine Martineau, Mathew Swallow, Charlotte Norris, and Abdul Samad
SOIL, 9, 461–478, https://doi.org/10.5194/soil-9-461-2023, https://doi.org/10.5194/soil-9-461-2023, 2023
Short summary
Short summary
Earthworm invasion in North American forests can alter soil functioning. We investigated how the presence of invasive earthworms affected microbial communities, key drivers of soil biogeochemistry, across the major soil types of the Canadian boreal forest, which is a region largely understudied. Although total microbial biomass did not change, community composition shifted in earthworm-invaded mineral soils, where we also found higher fungal biomass and greater microbial species diversity.
David Paré, Jérôme Laganière, Guy R. Larocque, and Robert Boutin
SOIL, 8, 673–686, https://doi.org/10.5194/soil-8-673-2022, https://doi.org/10.5194/soil-8-673-2022, 2022
Short summary
Short summary
Major soil carbon pools and fluxes were assessed along a climatic gradient expanding 4 °C in mean annual temperature for two important boreal conifer forest stand types. Species and a warmer climate affected soil organic matter (SOM) cycling but not stocks. Contrarily to common hypotheses, SOM lability was not reduced by warmer climatic conditions and perhaps increased. Results apply to cold and wet conditions and a stable vegetation composition along the climate gradient.
Kaikuo Wu, Wentao Li, Zhanbo Wei, Zhi Dong, Yue Meng, Na Lv, and Lili Zhang
SOIL, 8, 645–654, https://doi.org/10.5194/soil-8-645-2022, https://doi.org/10.5194/soil-8-645-2022, 2022
Short summary
Short summary
We explored the effects of mild alternate wetting and drying (AWD) irrigation combined with rice straw return on N2O emissions and rice yield through rice pot experiments. Mild AWD irrigation significantly increased both N2O and yield-scaled N2O emissions. The addition of rice straw under mild AWD irrigation could promote N2O emissions. Mild AWD irrigation could reduce soil-nitrogen uptake by rice when urea was applied. Mild AWD irrigation reduced rice aboveground biomass but not rice yield.
Cyrill U. Zosso, Nicholas O. E. Ofiti, Jennifer L. Soong, Emily F. Solly, Margaret S. Torn, Arnaud Huguet, Guido L. B. Wiesenberg, and Michael W. I. Schmidt
SOIL, 7, 477–494, https://doi.org/10.5194/soil-7-477-2021, https://doi.org/10.5194/soil-7-477-2021, 2021
Short summary
Short summary
How subsoil microorganisms respond to warming is largely unknown, despite their crucial role in the soil organic carbon cycle. We observed that the subsoil microbial community composition was more responsive to warming compared to the topsoil community composition. Decreased microbial abundance in subsoils, as observed in this study, might reduce the magnitude of the respiration response over time, and a shift in the microbial community will likely affect the cycling of soil organic carbon.
Kate M. Buckeridge, Kate A. Edwards, Kyungjin Min, Susan E. Ziegler, and Sharon A. Billings
SOIL, 6, 399–412, https://doi.org/10.5194/soil-6-399-2020, https://doi.org/10.5194/soil-6-399-2020, 2020
Short summary
Short summary
We do not understand the short- and long-term temperature response of soil denitrifiers, which produce and consume N2O. Boreal forest soils from a long-term climate gradient were incubated in short-term warming experiments. We found stronger N2O consumption at depth, inconsistent microbial gene abundance and function, and consistent higher N2O emissions from warmer-climate soils at warmer temperatures. Consideration of our results in models will contribute to improved climate projections.
Marco Allegrini, Elena Gomez, and María Celina Zabaloy
SOIL, 6, 291–297, https://doi.org/10.5194/soil-6-291-2020, https://doi.org/10.5194/soil-6-291-2020, 2020
Short summary
Short summary
Research was conducted to assess the response of microbial communities in a soil with a long history of glyphosate-based herbicides to a secondary imposed perturbation (dry–rewetting event). Both perturbations could increase their frequency under current agricultural practices and climate change. The results of this study demonstrate that acute exposure to a glyphosate-based herbicide does not have a conditioning effect on the response of microbial communities to the dry–rewetting event.
Christopher Poeplau, Páll Sigurðsson, and Bjarni D. Sigurdsson
SOIL, 6, 115–129, https://doi.org/10.5194/soil-6-115-2020, https://doi.org/10.5194/soil-6-115-2020, 2020
Short summary
Short summary
Global warming leads to increased mineralisation of soil organic matter, inducing a positive climate–carbon cycle feedback loop. Loss of organic matter can be associated with loss of soil structure. Here we use a strong geothermal gradient to investigate soil warming effects on soil organic matter and structural parameters in subarctic forest and grassland soils. Strong depletion of organic matter caused a collapse of aggregates, highlighting the potential impact of warming on soil function.
Natalia Andrea Osinaga, Carina Rosa Álvarez, and Miguel Angel Taboada
SOIL, 4, 251–257, https://doi.org/10.5194/soil-4-251-2018, https://doi.org/10.5194/soil-4-251-2018, 2018
Short summary
Short summary
The sub-humid Argentine Chaco, originally covered by forest, has been subjected to clearing since the end of the 1970s and replacement of the forest by no-till farming. The organic carbon stock content up to 1 m depth varied as follows: forest > pasture > continuous cropping, with no impact of the number of years under cropping. The incorporation of pastures of warm-season grasses was able to mitigate the decrease of C stocks caused by cropping and so could be considered sustainable management.
Justine Barthod, Cornélia Rumpel, Remigio Paradelo, and Marie-France Dignac
SOIL, 2, 673–683, https://doi.org/10.5194/soil-2-673-2016, https://doi.org/10.5194/soil-2-673-2016, 2016
Short summary
Short summary
In this study we evaluated CO2 emissions during composting of green wastes with clay and/or biochar in the presence and absence of worms, as well as the effect of those amendments on carbon mineralization after application to soil. Our results indicated that the addition of clay or clay–biochar mixture reduced carbon mineralization during co-composting without worms by up to 44 %. In the presence of worms, CO2 emissions during composting increased for all treatments except for the low clay dose.
Miriam Muñoz-Rojas, Todd E. Erickson, Dylan C. Martini, Kingsley W. Dixon, and David J. Merritt
SOIL, 2, 287–298, https://doi.org/10.5194/soil-2-287-2016, https://doi.org/10.5194/soil-2-287-2016, 2016
M. S. Torn, A. Chabbi, P. Crill, P. J. Hanson, I. A. Janssens, Y. Luo, C. H. Pries, C. Rumpel, M. W. I. Schmidt, J. Six, M. Schrumpf, and B. Zhu
SOIL, 1, 575–582, https://doi.org/10.5194/soil-1-575-2015, https://doi.org/10.5194/soil-1-575-2015, 2015
M. Köchy, A. Don, M. K. van der Molen, and A. Freibauer
SOIL, 1, 367–380, https://doi.org/10.5194/soil-1-367-2015, https://doi.org/10.5194/soil-1-367-2015, 2015
Short summary
Short summary
Using ranges for variables in a model of organic C stocks of the top 1m of soil on a global 0.5° grid, we assessed the (un)certainty of changes in stocks over the next 75 years. Changes are more certain where land-use change strongly affects carbon inputs and where higher temperatures and adequate moisture favour decomposition, e.g. tropical mountain forests. Global stocks will increase by 1% with a certainty of 75% if inputs to the soil increase due to CO₂ fertilization of the vegetation.
P. Alexander, K. Paustian, P. Smith, and D. Moran
SOIL, 1, 331–339, https://doi.org/10.5194/soil-1-331-2015, https://doi.org/10.5194/soil-1-331-2015, 2015
Cited articles
Alfaro, M., Dube, F., and Zagal, E.: The Influence of Overmature, Degraded
Nothofagus Forests with Strong Anthropic Disturbance on the Quality of an
Andisol and its Gradual Recovery with Silvopasture in Southwestern South
America, in: Agroforestry for Degraded Landscapes, edited by: Dagar, J. C.,
Gupta, S. R., and Teketay, D., Springer, Singapore, 67–85,
https://doi.org/10.1007/978-981-15-6807-7_3, 2020.
Baize, D. and van Oort, F.: Potentially Harmful Elements in Forest Soils,
in: PHEs, Environment and Human Health, edited by: Bini, C. and Bech, J.,
Springer Netherlands, Dordrecht, 151–198,
https://doi.org/10.1007/978-94-017-8965-3_4, 2014.
Benjamini, Y. and Hochberg, Y.: Controlling the False Discovery Rate: A Practical
and Powerful Approach to Multiple Testing, J. Roy. Stat.
Soc. Ser. B, 57, 289–300, 1995.
Beretta-Blanco, A., Pérez, O., and Carrasco-Letelier, L.: Soil quality decrease
over 13 years of agricultural production, Nutr. Cycl. Agroecosyst.,
114, 45–55, 2019.
Beretta-Blanco, A. and Carrasco-Letelier, L.: Relevant factors in the
eutrophication of the Uruguay River and the Río Negro, Sci. Total
Environ., 761, 143299, https://doi.org/10.1016/j.scitotenv.2020.143299, 2021.
Berhongaray, G. and Alvarez, R.: Soil carbon sequestration of Mollisols and
Oxisols under grassland and tree plantations in South America – A review,
Geoderma Regional, 18, e00226, https://doi.org/10.1016/j.geodrs.2019.e00226, 2019.
Berthrong, S. T., Jobbágy, E. G., and Jackson, R. B.: A global
meta-analysis of soil exchangeable cations, pH, carbon, and nitrogen with
afforestation, Ecol. Appl., 19, 2228–2241,
https://doi.org/10.1890/08-1730.1, 2009.
Berthrong, S. T., Piñeiro, G., Jobbágy, E. G., and Jackson, R. B.:
Soil C and N changes with afforestation of grasslands across gradients of
precipitation and plantation age, Ecol. Appl., 22, 76–86,
https://doi.org/10.1890/10-2210.1, 2012.
Binkley, D., Campoe, O. C., Alvares, C., Carneiro, R. L., Cegatta, Í., and Stape, J. L.: The interactions of climate, spacing and genetics on
clonal Eucalyptus plantations across Brazil and Uruguay. Forest Ecology And
Management, Amsterdam, Elsevier Science Bv., 405, 271–283,
https://doi.org/10.1016/j.foreco.2017.09.050, 2017.
Bonfante, A., Basile, A., and Bouma, J.: Targeting the soil quality and soil
health concepts when aiming for the United Nations Sustainable Development
Goals and the EU Green Deal, SOIL, 6, 453–466,
https://doi.org/10.5194/soil-6-453-2020, 2020.
Borrelli, P., Robinson, D. A., Fleischer, L. R., Lugato, E., Ballabio, C.,
Alewell, C., Meusburger, K., Modugno, S., Schütt, B., Ferro, V.,
Bagarello, V., Oost, K. V., Montanarella, L., and Panagos, P.: An assessment
of the global impact of 21st century land use change on soil erosion, Nat.
Commun., 8, 2013, https://doi.org/10.1038/s41467-017-02142-7, 2017.
Caon, L. and Vargas, R.: Threats to soils: Global trends and
perspectives, A Contribution from the Intergovernmental Technical Panel on
Soils, Global Soil Partnership Food and Agriculture Organization of the
United Nations, in: Global land outlook
working paper, edited by: Pierzynski, G. and Brajendra, 28 pp., https://www.unccd.int/sites/default/files/2018-06/17.%20Threats%2Bto%2BSoils__Pierzynski_Brajendra.pdf (last access: 9 January 2022), 2017.
Carrasco-Letelier, L. and Beretta-Blanco, A.: Soil erosion by water
estimated for 99 Uruguayan basins, Cien. Inv. Agr., 44, 184–194, 2017.
Céspedes-Payret, C., Piñeiro, G., Gutiérrez, O., and Panario, D.: Land use change in a temperate grassland soil: Afforestation effects on chemical properties and their ecological and mineralogical implication, Sci. Total Environ., 438,
549–557, https://doi.org/10.1016/j.scitotenv.2012.08.075, 2012.
Cook, R. L., Binkley, D., and Stape, J. L.: Eucalyptus plantation effects on
soil carbon after 20years and three rotations in Brazil, Forest Ecol.
Manag., 359, 92–98, https://doi.org/10.1016/j.foreco.2015.09.035, 2016.
Dass, P. et al.: Grasslands may be more reliable carbon sinks than
forests in California, Environ. Res. Lett., 13, 074027,
https://doi.org/10.1088/1748-9326/aacb39, 2018.
Carvalho, P. C. D. F., Savian, J. V., Chiesa, T. D., Filho, W. D. S., Terra, J. A., Pinto, P., Martins, A. P., Villarino, S., Trindade, J. K. D., Nunes, P. A. D. A., and Piñeiro, G.: land-use intensification trends in The Rio De La Plata region of South America: toward specialization or recoupling crop and livestock production, Front. Agr. Sci. Eng., 8, 97–110, https://doi.org/10.15302/J-FASE-2020380, 2021.
Di Sacco, A., Hardwick, K., Blakesley, D., Brancalion, P. H. S., Breman, E.,
Cecilio Rebola, L., Chomba, S., Dixon, K., Elliott, S., Ruyonga, G., Shaw,
K., Smith, P., Smith, R. J., and Antonelli, A.: Ten Golden Rules for Reforestation
to Optimise Carbon Sequestration, Biodiversity Recovery and Livelihood
Benefits, Glob. Change Biol., 27, 1328–1348, https://doi.org/10.1111/gcb.15498, 2020.
Durán, A., Morrás, H., Studdert, G., and Liu, X.: Distribution,
properties, land use and management of Mollisols in South America, Chin.
Geogr. Sci., 21, 511–530, https://doi.org/10.1007/s11769-011-0491-z, 2011.
ESRI: ArcGIS Desktop: Release 10.3, Redlands, CA, Environmental Systems
Research Institute, https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_051232.pdf (last access: 18 April 2021), 2018.
Fernández, R., Frasier, I., Noellemeyer, E., and Quiroga, A.: Soil
quality and productivity under zero tillage and grazing on Mollisols in
Argentina – A long-term study, Geoderma Regional, 11, 44–52,
https://doi.org/10.1016/j.geodrs.2017.09.002, 2017.
Foley, J. A., DeFries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S. R., Chapin, F. S., Coe, M. T., Daily, G. C., Gibbs, H. K., Helkowski, J. H., Holloway, T., Howard, E. A., Kucharik, C. J., Monfreda, C., Patz, J. A., Prentice, I. C., Ramankutty, N., and Snyder, P. K.: Global Consequences of Land Use, Science, 309, 570–574, https://doi.org/10.1126/science.1111772, 2005.
Fox, J. and Weisberg, S.: An R Companion to Applied Regression,SAGE Publications Inc, ISBN: 978-1-5443-3647-3, 608 pp., 2019.
Friggens, N. L., Hester, A. J., Mitchell, R. J., Parker, T. C., Subke, J.,
and Wookey, P. A.: Tree planting in organic soils does not result in net
carbon sequestration on decadal timescales, Glob. Change Biol., 26,
5178–5188, https://doi.org/10.1111/gcb.15229, 2020.
Garcıìa-Préchac, F., Ernst, O., Siri-Prieto, G., and Terra, J. A.:
Integrating no-till into crop–pasture rotations in Uruguay, Soil
Till. Res., 77, 1–13, https://doi.org/10.1016/j.still.2003.12.002,
2004.
Gomiero, T.: Soil Degradation, Land Scarcity and Food Security:
Reviewing a Complex Challenge, Sustainability, 8, 281,
https://doi.org/10.3390/su8030281, 2016.
Hernaìndez, J., del Pino, A., Salvo, L., and Arrarte, G.: Nutrient export and harvest
residue decomposition patterns of a Eucalyptus dunnii Maiden plantation in temperate climate
of Uruguay, Forest Ecol. Manag., 258, 92–99,
https://doi.org/10.1016/j.foreco.2009.03.050, 2009.
Hernández, J., del Pino, A., Vance, E. D., Califra, Á., Del Giorgio,
F., Martínez, L., and González-Barrios, P.: Eucalyptus and Pinus stand density
effects on soil carbon sequestration, Forest Ecol. Manag., 368,
28–38, https://doi.org/10.1016/j.foreco.2016.03.007, 2016.
Hernandez-Ramirez, G., Sauer, T. J., Chendev, Y. G., and Gennadiev, A. N.:
Nonlinear turnover rates of soil carbon following cultivation of native
grasslands and subsequent afforestation of croplands, SOIL, 7, 415–431,
https://doi.org/10.5194/soil-7-415-2021, 2021.
IUSS Working Group WRB: World Reference Base for Soil Resources 2014,
update 2015 International soil classification system for naming soils and
creating legends for soil maps, World Soil Resources Reports No. 106, FAO,
Rome, https://www.fao.org/3/i3794en/I3794en.pdf (last access: 5 November 2020), 2015.
Jackson, R. B., Jobbágy, E. G., Avissar, R., Roy, S. B., Barrett, D. J., Cook, C. W., Farley, K. A., le Maitre, D. C., McCarl, B. A., and Murray, B. C.: Trading Water for Carbon with Biological Carbon
Sequestration, Science, 310, 1944–1947, https://doi.org/10.1126/science.1119282, 2005.
Jaurena, M., Durante, M., Devincenzi, T., Savian, J. V., Bendersky, D., Moojen, F. G.,
Pereira, M., Soca, P., Quadros, F. L. F., Pizzio, R., Nabinger, C., Carvalho, P. C. F., and
Lattanzi, F. A.: Native Grasslands at the Core: A New Paradigm of
Intensification for the Campos of Southern South America to Increase
Economic and Environmental Sustainability, Front. Sustain. Food Syst.,
5, 547834, https://doi.org/10.3389/fsufs.2021.547834, 2021.
Jobbagy, E. G. and Jackson, R. B.: Patterns and mechanisms of soil
acidification in the conversion of grasslands to forests, Biogeochemistry,
64, 205–229, 2003.
Jobbagy, E. G. and Jackson, R. B.: The uplift of soil nutrients by
plants: biogeochemical consequences across scales, Ecology, 85, 2380–2389, 2004.
Kaushal, S. S., Gold, A. J., Bernal, S., Johnson, T. A. N., Addy, K.,
Burgin, A., Burns, D. A., Coble, A. A., Hood, E., Lu, Y., Mayer, P., Minor,
E. C., Schroth, A. W., Vidon, P., Wilson, H., Xenopoulos, M. A., Doody, T.,
Galella, J. G., Goodling, P., Haviland, K., Haq, S., Wessel, B., Wood, K.
L., Jaworski, N., and Belt, K. T.: Watershed “chemical cocktails”: forming
novel elemental combinations in Anthropocene fresh waters, Biogeochemistry,
141, 281–305, https://doi.org/10.1007/s10533-018-0502-6, 2018.
Kellogg, C. E.: Soil survey division staff: soil survey manual, Chap. 3,
United States Department of Agriculture, Washington, 1993.
Kim, K., Daly, E. J., Gorzelak, M., and Hernandez-Ramirez, G.: Soil organic
matter pools response to perennial grain cropping and nitrogen fertilizer,
Soil Till. Res., 220, 105376,
https://doi.org/10.1016/j.still.2022.105376, 2022.
Lambin, E. F., Gibbs, H. K., Ferreira, L., Grau, R., Mayaux, P., Meyfroidt,
P., Morton, D. C., Rudel, T. K., Gasparri, I., and Munger, J.: Estimating the
world's potentially available cropland using a bottom-up approach, Glob.
Environ. Change, 23, 892–901, 2013.
Lanfranco, B. and Sapriza, G.: El índice CONEAT como medida de
productividad y valor de la tierra, Serie Técnica No. 17, ISBN: 978-9974-38-307-4, http://www.ainfo.inia.uy/digital/bitstream/item/2643/1/18429020511102255.pdf (last acces: 24 December 2021), 2011.
Lavado, R. S., Rodrírguez, M. B., Scheiner, S. D., Taboada, M. A., Rubio,
G., Alvarez, R., Alconada, M., and Zubillaga, M. S.: Heavy metals in soils
of Argentina: comparison between urban and agricultural soils, Commun. Soil Sci. Plant Anal., 29, 1913–1917, 1998.
Lavado, R. S., Zubillaga, M. S., Alvarez, R., and Taboada, M. A.: Baseline
levels of potentially toxic elements in pampas soils, Soil and Sediment
Contamination: An International Journal, 13, 329–339, 2004.
Li, H., Jiang, L., You, C., Tan, B., and Yang, W.: Dynamics of heavy metal
uptake and soil heavy metal stocks across a series of Masson pine
plantations, J. Clean. Prod., 269, 122395,
https://doi.org/10.1016/j.jclepro.2020.122395, 2020.
Liu, X., Lee Burras, C., Kravchenko, Y. S., Durán, A., Huffman, T.,
Morras, H., Studdert, G., Zhang, X., Cruse, R. M., and Yuan, X.: Overview of
Mollisols in the world: Distribution, land use and management, Can. J. Soil.
Sci., 92, 383–402, https://doi.org/10.4141/cjss2010-058, 2012.
Mayer, M., Prescott, C. E., Abaker, W. E. A., Augusto, L., Cécillon, L.,
Ferreira, G. W. D., James, J., Jandl, R., Katzensteiner, K., Laclau, J.-P.,
Laganière, J., Nouvellon, Y., Paré, D., Stanturf, J. A., Vanguelova, E. I., and
Vesterdal, L.: Influence of forest management activities on soil SOC stocks: A
knowledge synthesis, Forest Ecol. Manag., 466, 118127, https://doi.org/10.1016/j.foreco.2020.118127, 2020.
McMahon, D. E., Vergütz, L., Valadares, S. V., da Silva, I. R., and
Jackson, R. B.: Soil nutrient stocks are maintained over multiple rotations
in Brazilian Eucalyptus plantations, Forest Ecol. Manag., 448,
364–375, https://doi.org/10.1016/j.foreco.2019.06.027, 2019.
Merino, A., Balboa, M. A., Rodríguez Soalleiro, R., and González,
J. G. Á.: Nutrient exports under different harvesting regimes in
fast-growing forest plantations in southern Europe, Forest Ecol.
Manag., 207, 325–339, https://doi.org/10.1016/j.foreco.2004.10.074,
2005.
MGAP (Ministerio de Ganadería, Agricultura y Pesca): CONEAT,
https://www.gub.uy/ministerio-ganaderia-agricultura-pesca/politicas-y-gestion/coneat (last access: 6 March 2021), 2020.
Modernel, P., Rossing, W. A. H., Corbeels, M., Dogliotti, S., Picasso, V.,
and Tittonell, P.: Land use change and ecosystem service provision in Pampas
and Campos grasslands of southern South America, Environ. Res. Lett., 11,
113002, https://doi.org/10.1088/1748-9326/11/11/113002, 2016.
OAS (Organization of American States, Department of Sustainable Development): Uruguay – Proyecto Regional de Alternativas para la Inversión
Forestal,
http://www.oas.org/dsd/publications/unit/oea20s/oea20s.pdf (last access: 9 March 2021), 1994.
Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P.,
McGlinn, D., Minchin, P. R., O'Hara, R. B., Simpson, G. L., Solymos, P.,
Stevens, M. H. H., Szoecs, E., and Wagner, H.: vegan: Community Ecology
Package, R package version 2.6-4, https://CRAN.R-project.org/package=vegan (last access: 29 March 2021), 2022.
Ortiz, J., Dube, F., Neira, P., Panichini, M., Stolpe, N. B., Zagal, E., and
Martínez-Hernández, P. A.: Soil Quality Changes within a (Nothofagus obliqua) Forest
Under Silvopastoral Management in the Andes Mountain Range, South Central
Chile, Sustainability, 12, 6815, https://doi.org/10.3390/su12176815,
2020.
Paul, K. I., Polglase, P. J., Nyakuengama, J. G., and Khanna, P. K.: Change
in soil carbon following afforestation, Forest Ecol. Manag., 168,
241–257, https://doi.org/10.1016/S0378-1127(01)00740-X, 2002.
Piñeiro, D. E.: Land grabbing: concentration and “foreignisation” of
land in Uruguay, Can. J. Dev. Stud., 33, 471–489,
https://doi.org/10.1080/02255189.2012.746216, 2012.
R Core Team: R: A Language and Environment for Statistical Computing, R
Foundation for Statistical Computing, Vienna, Austria,
https://www.R-project.org/, last access: 2 March 2021.
Ramírez, L. R. and Säumel, I.: Beyond the boundaries: Do spatio-temporal trajectories of land-use change and cross boundary effects shape the diversity of woody species in Uruguayan native forests?, Agr. Ecosyst. Environ., 323, 107646, https://doi.org/10.1016/j.agee.2021.107646, 2022.
Richter, D. D.: Game Changer in Soil Science. The Anthropocene in soil
science and pedology, J. Plant Nutr. Soil Sci., 183, 5–11,
https://doi.org/10.1002/jpln.201900320, 2020.
Ritchie, H. and Roser, M.: Land Use, Our World in Data, https://ourworldindata.org/land-use (last access: 6 May 2021), 2013.
Roca, N.: Heavy metal background levels in rural soils: a case study in
Pampean soils (Argentina), Ciencia del Suelo, 33, 283–292, http://www.scielo.org.ar/pdf/cds/v33n2/v33n2a12.pdf (last access: 15 May 2021), 2015.
Sadzawka, A., Carrasco, R. M. A., Grez, Z. R., Mora, G. M, Flores, P. H.,
and Neaman, A.: Métodos de análisis recomendados para los suelos de
Chile, Santiago, Chile, Serie Actas – Instituto de
Investigaciones Agropecuarias,
https://hdl.handle.net/20.500.14001/8541 (last access: 22 October 2020), 2006.
Sandoval López, D. M., Arturi, M. F., Goya, J. F., Pérez, C. A., and Frangi, J. L.: Eucalyptus grandis plantations:
effects of management on soil carbon, nutrient contents and yields, J. Forest
Res., 31, 601–611, https://doi.org/10.1007/s11676-018-0850-z, 2020.
Soil Survey Staff: Soil taxonomy: A basic system of soil
classification for making and interpreting soil surveys, 2nd Edn.,
https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_051232.pdf (last access: 15 October 2020), 1999.
Veldman, J. W., Overbeck, G. E., Negreiros, D., Mahy, G., Le Stradic, S.,
Fernandes, G. W., Durigan, G., Buisson, E., Putz, F. E., and Bond, W. J.:
Where Tree Planting and Forest Expansion are Bad for Biodiversity and
Ecosystem Services, BioScience, 65, 1011–1018,
https://doi.org/10.1093/biosci/biv118, 2015.
Waters, C. N., Zalasiewicz, J., Summerhayes, C., Barnosky, A. D., Poirier,
C., Ga uszka, A., Cearreta, A., Edgeworth, M., Ellis, E. C., Ellis, M.,
Jeandel, C., Leinfelder, R., McNeill, J. R., Richter, D. d., Steffen, W.,
Syvitski, J., Vidas, D., Wagreich, M., Williams, M., Zhisheng, A.,
Grinevald, J., Odada, E., Oreskes, N., and Wolfe, A. P.: The Anthropocene is
functionally and stratigraphically distinct from the Holocene, Science, 351,
aad2622, https://doi.org/10.1126/science.aad2622, 2016.
Wingeyer, A. B., Amado, T. J. C., Peìrez-Bidegain, M., Studdert, G. A., Perdomo
Varela, C. H., Garcia, F. O., and Karlen, D. L.: Soil Quality Impacts of Current
South American Agricultural Practices, Sustainability, 7, 2213–2242, 2015.
Wu, R., Alvareda, E., Polya, D., Blanco, G., and Gamazo, P.: Distribution of
Groundwater Arsenic in Uruguay Using Hybrid Machine Learning and Expert
System Approaches, Water, 13, 527, https://doi.org/10.3390/w13040527, 2021.
Zagal, E. and Sadzawka, A.: Protocolo de métodos de análisis para
suelos y lodos,
https://www.sag.cl/sites/default/files/METODOS_LODOS_SUELOS.pdf (last access: 14 October 2020), 2007.
Zurbriggen, C., González-Lago, M., Baraibar, M., Baethgen, W., Mazzeo,
N., and Sierra, M.: Experimentation in the Design of Public Policies:
The Uruguayan Soils Conservation Plans, Iberoamericana – Nordic Journal of
Latin American and Caribbean Studies, 49, 52–62,
https://doi.org/10.16993/iberoamericana.459, 2020.
Short summary
We analyzed intensification of Uruguayan grasslands in a country-wide survey on fertility proxies, pH and trace metals in topsoils. We observed a loss of nutrients, trace metals and organic matter in grasslands, croplands and timber plantations and accumulation in riverine forests. This raises questions about the carrying capacity of Uruguayan soils with regard to currently implemented intensification strategies and supports more conservative forms of extensive grassland management.
We analyzed intensification of Uruguayan grasslands in a country-wide survey on fertility...