Articles | Volume 9, issue 1
https://doi.org/10.5194/soil-9-189-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/soil-9-189-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Masked diversity and contrasting soil processes in tropical seagrass meadows: the control of environmental settings
Gabriel Nuto Nóbrega
Department of Soil Sciences, Federal University of
Ceará, Av. Mister Hull, 2977, Campus do Pici,
60356-001, Fortaleza, Ceará, Brazil
Xosé L. Otero
Cretus, Departamento de Edafoloxía e Química Agrícola, Facultade de Bioloxía, Universidade de Santiago de Compostela, Rúa Lope G Marzoa, s/n, Campus sur. 15782, Santiago de Compostela, Spain
Danilo Jefferson Romero
Department of Soil Science, College of Agriculture
Luiz de Queiroz, University of São Paulo,
ESALQ/USP, Av. Pádua Dias 11, 13.418-260,
Piracicaba, São Paulo, Brazil
Hermano Melo Queiroz
Department of Soil Science, College of Agriculture
Luiz de Queiroz, University of São Paulo,
ESALQ/USP, Av. Pádua Dias 11, 13.418-260,
Piracicaba, São Paulo, Brazil
Daniel Gorman
Commonwealth Scientific and Industrial Research
Organization (CSIRO), Environment, Crawley, WA,
Australia
Margareth da Silva Copertino
Institute of Oceanography, Federal University of Rio
Grande (FURG), Av. Itália Km 08, Carreiros, Rio
Grande – RS, CEP: 96.201-900, Brazil
Marisa de Cássia Piccolo
Laboratory of Nutrient Cycling, Center of Nuclear
Energy in Agriculture, University of São Paulo,
Av. Centenário 303, 13.400.970, Piracicaba,
São Paulo, Brazil
Tiago Osório Ferreira
CORRESPONDING AUTHOR
Department of Soil Science, College of Agriculture
Luiz de Queiroz, University of São Paulo,
ESALQ/USP, Av. Pádua Dias 11, 13.418-260,
Piracicaba, São Paulo, Brazil
Related authors
No articles found.
Danilo César de Mello, Clara Glória Oliveira Baldi, Cássio Marques Moquedace, Isabelle de Angeli Oliveira, Gustavo Vieira Veloso, Lucas Carvalho Gomes, Márcio Rocha Francelino, Carlos Ernesto Gonçalves Reynaud Schaefer, Elpídio Inácio Fernandes-Filho, Edgar Batista de Medeiros Júnior, Fabio Soares de Oliveira, José João Lelis Leal de Souza Souza, Tiago Ferreira, and José A. M. Demattê
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-2, https://doi.org/10.5194/gmd-2024-2, 2024
Preprint under review for GMD
Short summary
Short summary
The study explores Maritime Antarctica's geology, shaped by periglacial forces, using pioneering gamma-spectrometric and magnetic surveys on igneous rocks due to limited Antarctic surveys. Machine learning predicts radionuclide and magnetic content based on terrain features, linking their distribution to landscape processes, morphometrics, lithology, and pedogeomorphology. Inaccuracies arise due to complex periglacial processes and landscape complexities.
Danilo César de Mello, Tiago Osório Ferreira, Gustavo Vieira Veloso, Marcos Guedes de Lana, Fellipe Alcantara de Oliveira Mello, Luis Augusto Di Loreto Di Raimo, Diego Ribeiro Oquendo Cabrero, José João Lelis Leal de Souza, Elpídio Inácio Fernandes-Filho, Márcio Rocha Francelino, Carlos Ernesto Gonçalves Reynaud Schaefer, and José A. M. Demattê
SOIL Discuss., https://doi.org/10.5194/soil-2022-17, https://doi.org/10.5194/soil-2022-17, 2022
Revised manuscript not accepted
Short summary
Short summary
We proposed a different method to evaluate different intensities of weathering in a heterogeneous area (soils, geology and relief) and small number of samples. We use combined data from three geophysical sensors, clustering and machine learning (nested-leave-one-out-cross-validation) to distinguish weathering intensities and assess the relationship of these variables with weathering, relief, geology, and soil types and attributes. and we obtained satisfactory performances of models evaluation.
Valéria M. Lemos, Marianna Lanari, Margareth Copertino, Eduardo R. Secchi, Paulo Cesar O. V. de Abreu, José H. Muelbert, Alexandre M. Garcia, Felipe C. Dumont, Erik Muxagata, João P. Vieira, André Colling, and Clarisse Odebrecht
Earth Syst. Sci. Data, 14, 1015–1041, https://doi.org/10.5194/essd-14-1015-2022, https://doi.org/10.5194/essd-14-1015-2022, 2022
Short summary
Short summary
The Patos Lagoon estuary and adjacent marine coast (PLEA) has been a site of the Brazilian Long-Term Ecological Research (LTER) program since 1998. LTER-PLEA contributes information about the biota composition, distribution and abundance, and estuarine ecological processes. The LTER-PLEA database (8 datasets containing 6972 sampling events and records of 275 species) represents one of the most robust and longest databases of biological diversity in an estuarine coastal system of South America.
Related subject area
Soils and natural ecosystems
Advancing studies on global biocrust distribution
Mineral dust and pedogenesis in the alpine critical zone
The soil knowledge library (KLIB) – a structured literature database on soil process research
Biocrust-linked changes in soil aggregate stability along a climatic gradient in the Chilean Coastal Range
Content of soil organic carbon and labile fractions depend on local combinations of mineral-phase characteristics
Effects of environmental factors and soil properties on soil organic carbon stock in a natural dry tropical area of Cameroon
The role of ecosystem engineers in shaping the diversity and function of arid soil bacterial communities
SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty
Disaggregating a regional-extent digital soil map using Bayesian area-to-point regression kriging for farm-scale soil carbon assessment
Opportunities and limitations related to the application of plant-derived lipid molecular proxies in soil science
Spatial variability in soil organic carbon in a tropical montane landscape: associations between soil organic carbon and land use, soil properties, vegetation, and topography vary across plot to landscape scales
A probabilistic approach to quantifying soil physical properties via time-integrated energy and mass input
Arctic soil development on a series of marine terraces on central Spitsbergen, Svalbard: a combined geochronology, fieldwork and modelling approach
Local versus field scale soil heterogeneity characterization – a challenge for representative sampling in pollution studies
Analysis and definition of potential new areas for viticulture in the Azores (Portugal)
The interdisciplinary nature of SOIL
Siqing Wang, Li Ma, Liping Yang, Yali Ma, Yafeng Zhang, Changming Zhao, and Ning Chen
SOIL, 10, 763–778, https://doi.org/10.5194/soil-10-763-2024, https://doi.org/10.5194/soil-10-763-2024, 2024
Short summary
Short summary
Biological soil crusts cover a substantial proportion of dryland ecosystems and play crucial roles in ecological processes. Consequently, studying the spatial distribution of biocrusts holds great significance. This study aimed to stimulate global-scale investigations of biocrust distribution by introducing three major approaches. Then, we summarized present understandings of biocrust distribution. Finally, we proposed several potential research topics.
Jeffrey S. Munroe, Abigail A. Santis, Elsa J. Soderstrom, Michael J. Tappa, and Ann M. Bauer
SOIL, 10, 167–187, https://doi.org/10.5194/soil-10-167-2024, https://doi.org/10.5194/soil-10-167-2024, 2024
Short summary
Short summary
This study investigated how the deposition of mineral dust delivered by the wind influences soil development in mountain environments. At six mountain locations in the southwestern United States, modern dust was collected along with samples of soil and local bedrock. Analysis indicates that at all sites the properties of dust and soil are very similar and are very different from underlying rock. This result indicates that soils are predominantly composed of dust delivered by the wind over time.
Hans-Jörg Vogel, Bibiana Betancur-Corredor, Leonard Franke, Sara König, Birgit Lang, Maik Lucas, Eva Rabot, Bastian Stößel, Ulrich Weller, Martin Wiesmeier, and Ute Wollschläger
SOIL, 9, 533–543, https://doi.org/10.5194/soil-9-533-2023, https://doi.org/10.5194/soil-9-533-2023, 2023
Short summary
Short summary
Our paper presents a new web-based software tool to support soil process research. It is designed to categorize publications in this field according to site and soil characteristics, as well as experimental conditions, which is of critical importance for the interpretation of the research results. The software tool is provided open access for the soil science community such that anyone can contribute to improve the contents of the literature data base.
Nicolás Riveras-Muñoz, Steffen Seitz, Kristina Witzgall, Victoria Rodríguez, Peter Kühn, Carsten W. Mueller, Rómulo Oses, Oscar Seguel, Dirk Wagner, and Thomas Scholten
SOIL, 8, 717–731, https://doi.org/10.5194/soil-8-717-2022, https://doi.org/10.5194/soil-8-717-2022, 2022
Short summary
Short summary
Biological soil crusts (biocrusts) stabilize the soil surface mainly in arid regions but are also present in Mediterranean and humid climates. We studied this stabilizing effect through wet and dry sieving along a large climatic gradient in Chile and found that the stabilization of soil aggregates persists in all climates, but their role is masked and reserved for a limited number of size fractions under humid conditions by higher vegetation and organic matter contents in the topsoil.
Malte Ortner, Michael Seidel, Sebastian Semella, Thomas Udelhoven, Michael Vohland, and Sören Thiele-Bruhn
SOIL, 8, 113–131, https://doi.org/10.5194/soil-8-113-2022, https://doi.org/10.5194/soil-8-113-2022, 2022
Short summary
Short summary
Soil organic carbon (SOC) and its labile fractions are influenced by soil use and mineral properties. These parameters interact with each other and affect SOC differently depending on local conditions. To investigate the latter, the dependence of SOC content on parameters that vary on a local scale depending on parent material, soil texture, and land use as well as parameter combinations was statistically assessed. Relevance and superiority of local models compared to total models were shown.
Désiré Tsozué, Nérine Mabelle Moudjie Noubissie, Estelle Lionelle Tamto Mamdem, Simon Djakba Basga, and Dieudonne Lucien Bitom Oyono
SOIL, 7, 677–691, https://doi.org/10.5194/soil-7-677-2021, https://doi.org/10.5194/soil-7-677-2021, 2021
Short summary
Short summary
Studies on soil organic carbon stock (SOCS) in the Sudano-Sahelian part of Cameroon are very rare. Organic C storage decreases with increasing latitude and more than 60 % of the SOCS is stored below the first 25 cm depth. In addition, a good correlation is noted between precipitation which decreases with increasing latitude and the total SOCS, indicating the importance of climate in the distribution of the total SOCS in the study area, which directly influence the productivity of the vegetation.
Capucine Baubin, Arielle M. Farrell, Adam Št'ovíček, Lusine Ghazaryan, Itamar Giladi, and Osnat Gillor
SOIL, 7, 611–637, https://doi.org/10.5194/soil-7-611-2021, https://doi.org/10.5194/soil-7-611-2021, 2021
Short summary
Short summary
In this paper, we describe changes in desert soil bacterial diversity and function when two ecosystem engineers, shrubs and ant nests, in an arid environment are present. The results show that bacterial activity increases when there are ecosystem engineers and that their impact is non-additive. This is one of a handful of studies that investigated the separate and combined effects of ecosystem engineers on soil bacterial communities investigating both composition and function.
Laura Poggio, Luis M. de Sousa, Niels H. Batjes, Gerard B. M. Heuvelink, Bas Kempen, Eloi Ribeiro, and David Rossiter
SOIL, 7, 217–240, https://doi.org/10.5194/soil-7-217-2021, https://doi.org/10.5194/soil-7-217-2021, 2021
Short summary
Short summary
This paper focuses on the production of global maps of soil properties with quantified spatial uncertainty, as implemented in the SoilGrids version 2.0 product using DSM practices and adapting them for global digital soil mapping with legacy data. The quantitative evaluation showed metrics in line with previous studies. The qualitative evaluation showed that coarse-scale patterns are well reproduced. The spatial uncertainty at global scale highlighted the need for more soil observations.
Sanjeewani Nimalka Somarathna Pallegedara Dewage, Budiman Minasny, and Brendan Malone
SOIL, 6, 359–369, https://doi.org/10.5194/soil-6-359-2020, https://doi.org/10.5194/soil-6-359-2020, 2020
Short summary
Short summary
Most soil management activities are implemented at farm scale, yet digital soil maps are commonly available at regional/national scales. This study proposes Bayesian area-to-point kriging to downscale regional-/national-scale soil property maps to farm scale. A regional soil carbon map with a resolution of 100 m (block support) was disaggregated to 10 m (point support) information for a farm in northern NSW, Australia. Results are presented with the uncertainty of the downscaling process.
Boris Jansen and Guido L. B. Wiesenberg
SOIL, 3, 211–234, https://doi.org/10.5194/soil-3-211-2017, https://doi.org/10.5194/soil-3-211-2017, 2017
Short summary
Short summary
The application of lipids in soils as molecular proxies, also often referred to as biomarkers, has dramatically increased in the last decades. Applications range from inferring changes in past vegetation composition to unraveling the turnover of soil organic matter. However, the application of soil lipids as molecular proxies comes with several constraining factors. Here we provide a critical review of the current state of knowledge on the applicability of molecular proxies in soil science.
Marleen de Blécourt, Marife D. Corre, Ekananda Paudel, Rhett D. Harrison, Rainer Brumme, and Edzo Veldkamp
SOIL, 3, 123–137, https://doi.org/10.5194/soil-3-123-2017, https://doi.org/10.5194/soil-3-123-2017, 2017
Short summary
Short summary
We examined the spatial variability in SOC in a 10 000 ha landscape in SW China. The spatial variability in SOC was largest at the plot scale (1 ha) and the associations between SOC and land use, soil properties, vegetation, and topographical attributes varied across plot to landscape scales. Our results show that sampling designs must consider the controlling factors at the scale of interest in order to elucidate their effects on SOC against the variability within and between plots.
Christopher Shepard, Marcel G. Schaap, Jon D. Pelletier, and Craig Rasmussen
SOIL, 3, 67–82, https://doi.org/10.5194/soil-3-67-2017, https://doi.org/10.5194/soil-3-67-2017, 2017
Short summary
Short summary
Here we demonstrate the use of a probabilistic approach for quantifying soil physical properties and variability using time and environmental input. We applied this approach to a synthesis of soil chronosequences, i.e., soils that change with time. The model effectively predicted clay content across the soil chronosequences and for soils in complex terrain using soil depth as a proxy for hill slope. This model represents the first attempt to model soils from a probabilistic viewpoint.
W. Marijn van der Meij, Arnaud J. A. M. Temme, Christian M. F. J. J. de Kleijn, Tony Reimann, Gerard B. M. Heuvelink, Zbigniew Zwoliński, Grzegorz Rachlewicz, Krzysztof Rymer, and Michael Sommer
SOIL, 2, 221–240, https://doi.org/10.5194/soil-2-221-2016, https://doi.org/10.5194/soil-2-221-2016, 2016
Short summary
Short summary
This study combined fieldwork, geochronology and modelling to get a better understanding of Arctic soil development on a landscape scale. Main processes are aeolian deposition, physical and chemical weathering and silt translocation. Discrepancies between model results and field observations showed that soil and landscape development is not as straightforward as we hypothesized. Interactions between landscape processes and soil processes have resulted in a complex soil pattern in the landscape.
Z. Kardanpour, O. S. Jacobsen, and K. H. Esbensen
SOIL, 1, 695–705, https://doi.org/10.5194/soil-1-695-2015, https://doi.org/10.5194/soil-1-695-2015, 2015
J. Madruga, E. B. Azevedo, J. F. Sampaio, F. Fernandes, F. Reis, and J. Pinheiro
SOIL, 1, 515–526, https://doi.org/10.5194/soil-1-515-2015, https://doi.org/10.5194/soil-1-515-2015, 2015
Short summary
Short summary
Vineyards in the Azores have been traditionally settled on lava field terroirs whose workability and trafficability limitations make them presently unsustainable.
A landscape zoning approach based on a GIS analysis, incorporating factors of climate and topography combined with the soil mapping units suitable for viticulture was developed in order to define the most representative land units, providing an overall perspective of the potential for expansion of viticulture in the Azores.
E. C. Brevik, A. Cerdà, J. Mataix-Solera, L. Pereg, J. N. Quinton, J. Six, and K. Van Oost
SOIL, 1, 117–129, https://doi.org/10.5194/soil-1-117-2015, https://doi.org/10.5194/soil-1-117-2015, 2015
Short summary
Short summary
This paper provides a brief accounting of some of the many ways that the study of soils can be interdisciplinary, therefore giving examples of the types of papers we hope to see submitted to SOIL.
Cited articles
Albuquerque, A. G. B. M., Ferreira, T. O., Nóbrega, G. N., Romero, R.
E., Júnior, V. S. S. S., Meireles, A. J. A. A., and Otero, X. L.: Soil
genesis on hypersaline tidal flats (apicum ecosystem) in a tropical semiarid
estuary (Ceará, Brazil), Soil Res., 52, 140,
https://doi.org/10.1071/SR13179, 2014.
Alvares, C. A., Stape, J. L., Sentelhas, P. C., De Moraes Gonçalves, J.
L., and Sparovek, G.: Köppen's climate classification map for Brazil,
Meteorol. Z., 22, 711–728,
https://doi.org/10.1127/0941-2948/2013/0507, 2013.
Banco de dados climáticos do Brasil:
https://www.cnpm.embrapa.br/projetos/bdclima/index.html, last access: 26
August 2019.
Baden, S., Emanuelsson, A., Pihl, L., Svensson, C., and Åberg, P.: Shift
in seagrass food web structure over decades is linked to overfishing, Mar.
Ecol. Prog. Ser., 451, 61–73, https://doi.org/10.3354/meps09585, 2012.
Berner, R. A.: Sedimentary pyrite formation: An update, Geochim. Cosmochim.
Ac., 48, 605–615, https://doi.org/10.1016/0016-7037(84)90089-9, 1984.
Berner, R. A.: Sedimentary pyrite formation, Am. J. Sci., 268, 1–23,
https://doi.org/10.2475/ajs.268.1.1, 1970.
Bezerra, C. E. E., Ferreira, T. O., Romero, R. E., Mota, J. C. A., Vieira,
J. M., Duarte, L. R. S., and Cooper, M.: Genesis of cohesive soil horizons
from north-east Brazil: Role of argilluviation and sorting of sand, Soil
Res., 53, 43–55, https://doi.org/10.1071/SR13188, 2015.
Bower, C. A., Reitemeier, R. F., and Fireman, M.: Exchangeable cation
analysis of saline and alkali soilS, Soil Sci., 73, 251–262,
https://doi.org/10.1097/00010694-195204000-00001, 1952.
Bradley, M. P. and Stolt, M. H.: Subaqueous Soil-Landscape Relationships in
a Rhode Island Estuary, Soil Sci. Soc. Am. J., 67, 1487–1495,
https://doi.org/10.2136/sssaj2003.1487, 2003.
Bradley, M. P. and Stolt, M. H.: Landscape-level seagrass–sediment
relations in a coastal lagoon, Aquat. Bot., 84, 121–128,
https://doi.org/10.1016/j.aquabot.2005.08.003, 2006.
Brodersen, K. E., Koren, K., Moßhammer, M., Ralph, P. J., Kühl, M.,
and Santner, J.: Seagrass-Mediated Phosphorus and Iron Solubilization in
Tropical Sediments, Environ. Sci. Technol., 51, 14155–14163,
https://doi.org/10.1021/acs.est.7b03878, 2017.
Campos, E. J. D., Mulkherjee, S., Piola, A. R., and de Carvalho, F. M. S.: A
note on a mineralogical analysis of the sediments associated with the Plata
River and Patos Lagoon outflows, Cont. Shelf Res., 28, 1687–1691,
https://doi.org/10.1016/j.csr.2008.03.014, 2008.
Canfield, D. E., Thamdrup, B., and Hansen, J. W.: The anaerobic degradation
of organic matter in Danish coastal sediments: Iron reduction, manganese
reduction, and sulfate reduction, Geochim. Cosmochim. Ac., 57, 3867–3883,
https://doi.org/10.1016/0016-7037(93)90340-3, 1993.
Christian, R. R. and Luczkovich, J. J.: Organizing and understanding a
winter's seagrass foodweb network through effective trophic levels, Ecol.
Modell., 117, 99–124, https://doi.org/10.1016/S0304-3800(99)00022-8, 1999.
Copertino, M. S., Creed, J. C., Lanari, M. O., Magalhães, K., Barros,
K., Lana, P. C., Sordo, L., and Horta, P. A.: Seagrass and Submerged Aquatic
Vegetation (VAS) Habitats off the Coast of Brazil: state of knowledge,
conservation and main threats, Brazilian J. Oceanogr., 64, 53–80,
https://doi.org/10.1590/S1679-875920161036064sp2, 2016.
Costanza, R., de Groot, R., Sutton, P., van der Ploeg, S., Anderson, S. J.,
Kubiszewski, I., Farber, S., and Turner, R. K.: Changes in the global value
of ecosystem services, Glob. Environ. Chang., 26, 152–158,
https://doi.org/10.1016/j.gloenvcha.2014.04.002, 2014.
Copertino, M.: Add coastal vegetation to the climate critical list,
Nature, 473, 255–255, https://doi.org/10.1038/473255a, 2011.
Demas, G. P.: Submerged Soils: A New Frontier in Soil Survey, Soil Horizons,
34, 44, https://doi.org/10.2136/sh1993.2.0044, 1993.
Demas, G. P., Rabenhorst, M. C., and Stevenson, J. C.: Subaqueous Soils: A
Pedological Approach to the Study of Shallow-Water Habitats, 19, 229,
https://doi.org/10.2307/1352228, 1996.
Dominguez, J. M. L.: The Coastal Zone of Brazil: an Overview, J. Coast.
Res., 1, 16–20, 2006.
Duarte, C. M. and Chiscano, C. L.: Seagrass biomass and production: a
reassessment, Aquat. Bot., 65, 159–174,
https://doi.org/10.1016/S0304-3770(99)00038-8, 1999.
Duarte, C. M., Middelburg, J. J., and Caraco, N.: Major role of marine vegetation on the oceanic carbon cycle, Biogeosciences, 2, 1–8, https://doi.org/10.5194/bg-2-1-2005, 2005.
Duarte, C. M., Marbà, N., Gacia, E., Fourqurean, J. W., Beggins, J.,
Barrón, C., and Apostolaki, E. T.: Seagrass community metabolism:
Assessing the carbon sink capacity of seagrass meadows, Global Biogeochem. Cy., 24, GB4032,, https://doi.org/10.1029/2010GB003793, 2010.
Erich, E. and Drohan, P. J.: Genesis of freshwater subaqueous soils
following flooding of a subaerial landscape, Geoderma, 179, 53–62,
https://doi.org/10.1016/j.geoderma.2012.02.004, 2012.
FAO: Standard operating procedure for soil calcium carbonate equivalent,
Titrimetric method, Rome, https://www.fao.org/3/ca8620en/ca8620en.pdf (last access: 14 March 2023), 2020.
Ferreira, T. O., Vidal-Torrado, P., Otero, X. L., and Macías, F.: Are
mangrove forest substrates sediments or soils?, A case study in southeastern
Brazil, Catena, 70, 79–91, https://doi.org/10.1016/j.catena.2006.07.006, 2007.
Ferreira, T. O., Queiroz, H. M., Nóbrega, G. N., de Souza Júnior, V.
S., Barcellos, D., Ferreira, A. D., and Otero, X. L.: Litho-climatic
characteristics and its control over mangrove soil geochemistry: A
macro-scale approach, Sci. Total Environ., 811, 152152,
https://doi.org/10.1016/j.scitotenv.2021.152152, 2022.
Ferronato, C., Falsone, G., Natale, M., Zannoni, D., Buscaroli, A.,
Vianello, G., and Vittori Antisari, L.: Chemical and pedological features of
subaqueous and hydromorphic soils along a hydrosequence within a coastal
system (San Vitale Park, Northern Italy), Geoderma, 265, 141–151,
https://doi.org/10.1016/j.geoderma.2015.11.018, 2016.
Flemming, B. W.: A revised textural classification of gravel-free muddy
sediments on the basis of ternary diagrams, Cont. Shelf Res., 20,
1125–1137, https://doi.org/10.1016/S0278-4343(00)00015-7, 2000.
Fourqurean, J. W., Duarte, C. M., Kennedy, H., Marbà, N., Holmer, M.,
Mateo, M. A., Apostolaki, E. T., Kendrick, G. A., Krause-Jensen, D.,
McGlathery, K. J., and Serrano, O.: Seagrass ecosystems as a globally
significant carbon stock, Nat. Geosci., 5, 505–509,
https://doi.org/10.1038/ngeo1477, 2012.
Furlan, A., Bonotto, D. M., and Gumiere, S. J.: Development of environmental
and natural vulnerability maps for Brazilian coastal at São
Sebastião in São Paulo State, Environ. Earth Sci., 64, 659–669,
https://doi.org/10.1007/s12665-010-0886-7, 2011.
Furquim, S. A. C., Graham, R. C., Barbiero, L., de Queiroz Neto, J. P., and
Vallès, V.: Mineralogy and genesis of smectites in an alkaline-saline
environment of Pantanal wetland, Brazil, Clays Clay Miner., 56, 579–595,
https://doi.org/10.1346/CCMN.2008.0560511, 2008.
Gee, G. W. and Bauder, J. W.: Particle-size analysis, in: Methods of soil
analysis: Part 1 – Physical and mineralogical methods, Soil Science Society
of America, Am. Soc. Agron., 383–411, 1986.
Giblin, A. E.: Pyrite formation in marshes during early diagenesis,
Geomicrobiol. J., 6, 77–97, https://doi.org/10.1080/01490458809377827,
1988.
Green, E. P. and Short, F. T.: World Atlas of Seagrasses, UNEP-WCMC,
Cambridge, 336 pp., 2003.
Holmer, M., Andersen, F. Ø., Nielsen, S. L., and Boschker, H. T. S.: The
importance of mineralization based on sulfate reduction for nutrient
regeneration in tropical seagrass sediments, Aquat. Bot., 71, 1–17,
https://doi.org/10.1016/S0304-3770(01)00170-X, 2001.
Howard, J., Hoyt, S., Isensee, K., Telszewski, M., Pidgeon, E., and
Telszewski, M.: Coastal blue carbon: methods for assessing carbon stocks and
emissions factors in mangroves, tidal salt marshes, and seagrasses,
Conservation International, Intergovernmental Oceanographic Commission of
UNESCO, International Union for Conservation of Nature, Arlington, VA, USA,
Arlington, VA, USA, 184 pp., 2014.
Inoue, T., Nohara, S., Takagi, H., and Anzai, Y.: Contrast of nitrogen
contents around roots of mangrove plants, Plant Soil, 339, 471–483,
https://doi.org/10.1007/s11104-010-0604-y, 2011.
IUSS Working Group WRB: World Reference Base for Soil Resources 2014, update
2015 International soil classification system for naming soils and creating
legends for soil maps, FAO, Rome, 1–191 pp., 2015.
Jahn, R., Blume, H. P., Asio, V. B., Spaargaren, O., and Schad, P.:
Guidelines for soil description, FAO, ISBN 92-5-105521-1, 2006.
Jimenez, L. C. Z., Queiroz, H. M., Nóbrega, G. N., Romero, D. J., Deng,
Y., Otero, X. L., and Ferreira, T. O.: Recovery of soil processes in replanted
mangroves: implications for soil functions, Forests, 13, 422,
https://doi.org/10.3390/f13030422, 2022.
Kennedy, H., Beggins, J., Duarte, C. M., Fourqurean, J. W., Holmer, M.,
Marbà, N., and Middelburg, J. J.: Seagrass sediments as a global carbon
sink: Isotopic constraints, Global Biogeochem. Cy., 24, GB4026,
https://doi.org/10.1029/2010GB003848, 2010.
Kida, M., Tomotsune, M., Iimura, Y., Kinjo, K., Ohtsuka, T., and Fujitake,
N.: High salinity leads to accumulation of soil organic carbon in mangrove
soil, Chemosphere, 177, 51–55,
https://doi.org/10.1016/j.chemosphere.2017.02.074, 2017.
Konsten, C. J. M., Brinkman, R., and Andriesse, W.: A field laboratory
method to determine total potential and actual acidity in acid sulphate
soils, in: Selected papers of the Dakar symposium on acid sulphate soils:
Dakar, Senegal, January 1986, 106–134, 1988.
Lacerda, L. D., de Menezes, M. O. T., and Molisani, M. M.: Changes in
mangrove extension at the Pacoti River estuary, CE, NE Brazil due to
regional environmental changes between 1958 and 2004, Biota Neotrop.,
https://doi.org/10.1590/s1676-06032007000300007, 2007.
Larcombe, P., Costen, A., and Woolfe, K. J.: The hydrodynamic and
sedimentary setting of nearshore coral reefs, central Great Barrier Reef
shelf, Australia: Paluma Shoals, a case study, Sedimentology, 48, 811–835,
https://doi.org/10.1046/j.1365-3091.2001.00396.x, 2001.
Lehmann, J. and Kleber, M.: The contentious nature of soil organic matter,
Nature, 528, 60–68, https://doi.org/10.1038/nature16069, 2015.
Lemos, R. C., Azolim, M. Â. D., Abrão, P. U. R., and Santos, M. C.
L.: Levantamento de reconhecimento dos solos do Estado do Rio Grande do Sul,
Ministério da Agricultura, Recife, 431 pp., 1973.
Lopes, R. P., Dillenburg, S. R., and Schultz, C. L.: Cordão formation:
Loess deposits in the southern coastal plain of the state of Rio Grande do
Sul, Brazil, An. Acad. Bras. Cienc., 88, 2143–2166,
https://doi.org/10.1590/0001-3765201620150738, 2016.
Lord III, C. J.: A selective and precise method for pyrite determination in
sedimentary materials, J. Sediment. Res., 52, 664–666,
https://doi.org/10.1306/212F7FF4-2B24-11D7-8648000102C1865D, 1982.
Lowry, G. V., Espinasse, B. P., Badireddy, A. R., Richardson, C. J.,
Reinsch, B. C., Bryant, L. D., Bone, A. J., Deonarine, A., Chae, S.,
Therezien, M., Colman, B. P., Hsu-Kim, H., Bernhardt, E. S., Matson, C. W.,
and Wiesner, M. R.: Long-Term Transformation and Fate of Manufactured Ag
Nanoparticles in a Simulated Large Scale Freshwater Emergent Wetland,
Environ. Sci. Technol., 46, 7027–7036, https://doi.org/10.1021/es204608d,
2012.
Macías, F. and Camps-Arbestain, M.: A biogeochemical view of the world
reference base soil classification system: Homage to Ward Chesworth, 1st
ed., Elsevier Inc., 295–342,
https://doi.org/10.1016/bs.agron.2019.11.002, 2020.
Marbà, N., Arias-Ortiz, A., Masqué, P., Kendrick, G. A., Mazarrasa,
I., Bastyan, G. R., Garcia-Orellana, J., and Duarte, C. M.: Impact of
seagrass loss and subsequent revegetation on carbon sequestration and
stocks, J. Ecol., 103, 296–302, https://doi.org/10.1111/1365-2745.12370,
2015.
Mazarrasa, I., Marbà, N., Lovelock, C. E., Serrano, O., Lavery, P. S., Fourqurean, J. W., Kennedy, H., Mateo, M. A., Krause-Jensen, D., Steven, A. D. L., and Duarte, C. M.: Seagrass meadows as a globally significant carbonate reservoir, Biogeosciences, 12, 4993–5003, https://doi.org/10.5194/bg-12-4993-2015, 2015.
Melo, V. F., Novais, R. F., Schaefer, C. E. G. R., Fontes, M. P. F., and
Singh, B.: Mineralogia das frações areia, silte e argila de
sedimentos do grupo barreiras no município de Aracruz, estado do
Espírito Santo, Rev. Bras. Ciência do Solo, 26, 29–41,
https://doi.org/10.1590/s0100-06832002000100004, 2002.
Minuzzi, R. B., Sediyama, G. C., Barbosa, E. da M., and de Melo Júnior, J.
C. F. : Climatologia do comportamento do período chuvoso da
região sudeste do Brasil, Rev. Bras. Meteorol., 22, 338–344,
https://doi.org/10.1590/S0102-77862007000300007, 2007.
Nobrega, G. N.: Subaqueous soils of the Brazilian seagrass meadows:
biogeochemistry, genesis, and classification, Universidade de São Paulo,
Piracicaba, 123 pp., https://doi.org/10.11606/T.11.2018.tde-26102017-143348,
2018.
Nóbrega, G. N., Ferreira, T. O., Romero, R. E., Marques, A. G. B., and
Otero, X. L.: Iron and sulfur geochemistry in semiarid mangrove soils
(Ceará, Brazil) in relation to seasonal changes and shrimp farming
effluents, Environ. Monit. Assess., 185, 7393–7407,
https://doi.org/10.1007/s10661-013-3108-4, 2013.
Nóbrega, G. N., Otero, X. L., Macías, F., and Ferreira, T. O.:
Phosphorus geochemistry in a Brazilian semiarid mangrove soil affected by
shrimp farm effluents, Environ. Monit. Assess., 186, 5749–5762,
https://doi.org/10.1007/s10661-014-3817-3, 2014.
Nóbrega, G. N., Ferreira, T. O., Siqueira Neto, M., Queiroz, H. M.,
Artur, A. G., Mendonça, E. D. S., Silva, E. D. O., and Otero, X. L.:
Edaphic factors controlling summer (rainy season) greenhouse gas emissions
(CO2 and CH4) from semiarid mangrove soils (NE-Brazil), Sci. Total Environ.,
542, 685–693, https://doi.org/10.1016/j.scitotenv.2015.10.108, 2016.
Nóbrega, G. N., Romero, D. J., Otero, X. L., and Ferreira, T. O.:
Pedological Studies of Subaqueous Soils as a Contribution to the Protection
of Seagrass Meadows in Brazil, Rev. Bras. Ciência do Solo, 42, 1–12,
https://doi.org/10.1590/18069657rbcs20170117, 2018.
Nóbrega, G. N., Ferreira, T. O., Siqueira Neto, M., de Mendonça, E.
S., Romero, R. E., and Otero, X. L.: The importance of blue carbon soil
stocks in tropical semiarid mangroves: a case study in Northeastern Brazil,
Environ. Earth Sci., 78, 369, https://doi.org/10.1007/s12665-019-8368-z,
2019.
Nollet, L. M. L. and De Gelder, L. S. P.: Handbook of water analysis, CRC
press, 784 pp., 2000.
Ooi, J. L. S., Kendrick, G. A., Van Niel, K. P., and Affendi, Y. A.:
Knowledge gaps in tropical Southeast Asian seagrass systems, Estuar. Coast.
Shelf Sci., 92, 118–131, https://doi.org/10.1016/j.ecss.2010.12.021, 2011.
Orth, R. J., Carruthers, T. I. M. J. B., Dennison, W. C., Carlos, M.,
Fourqurean, J. W., Jr, K. L. H., Hughes, A. R., Kendrick, A., Kenworthy, W.
J., Olyarnik, S., Short, F. T., Waycott, M., Williams, S. L. K. L. H.,
Hughes, A. R., Kendrick, G. A., and Kenworthy, W. J.: A Global Crisis for
Seagrass Ecosystems, Bioscience, 56, 987–996,
https://doi.org/10.1641/0006-3568(2006)56[987:AGCFSE]2.0.CO;2, 2006.
Osher, L. J. and Flannagan, C. T.: Soil/Landscape Relationships in a
Mesotidal Maine Estuary, Soil Sci. Soc. Am. J., 71, 1323–1334,
https://doi.org/10.2136/sssaj2006.0224, 2007.
Otero, X. L., Ferreira, T. O., Vidal-Torrado, P., Macias, F., and Chesworth,
W.: Thionic Soils, edited by: Chesworth, W., Springer, Berlin, Encycl. Soil Sci.,
777–780, 2008.
Otero, X. L., Ferreira, T. O., Huerta-Díaz, M. A., Partiti, C. S. M.,
Souza, V., Vidal-Torrado, P., and Macías, F.: Geochemistry of iron and
manganese in soils and sediments of a mangrove system, Island of Pai Matos
(Cananeia – SP, Brazil), Geoderma, 148, 318–335,
https://doi.org/10.1016/j.geoderma.2008.10.016, 2009.
Payne, M. K. and Stolt, M. H.: Understanding sulfide distribution in
subaqueous soil systems in southern New England, USA, Geoderma, 308,
207–214, https://doi.org/10.1016/j.geoderma.2017.08.015, 2017.
Peel, M. C., Finlayson, B. L., and McMahon, T. A.: Updated world map of the Köppen-Geiger climate classification, Hydrol. Earth Syst. Sci., 11, 1633–1644, https://doi.org/10.5194/hess-11-1633-2007, 2007.
Prada-Gamero, R. M., Vidal-Torrado, P., and Ferreira, T. O.: Mineralogia e
físico-química dos solos de mangue do rio Iriri no canal de
Bertioga (Santos, SP), Rev. Bras. Ciência do Solo, 28, 233–243,
https://doi.org/10.1590/s0100-06832004000200002, 2004.
Pugliese Andrade, G. R., de Azevedo, A. C., Cuadros, J., Souza, V. S.,
Correia Furquim, S. A., Kiyohara, P. K., and Vidal-Torrado, P.:
Transformation of Kaolinite into Smectite and Iron-Illite in Brazilian
Mangrove Soils, Soil Sci. Soc. Am. J., 78, 655–672,
https://doi.org/10.2136/sssaj2013.09.0381, 2014.
Queiroz, H. M., Ferreira, T. O., Fandiño, V. A., Bragantini, I. O. B.
F., Barcellos, D., Nóbrega, G. N., Ferreira, A. D., Gomes, L. E. O.,
and Bernardino, A. F.: Changes in soil iron biogeochemistry in response to
mangrove dieback, Biogeochem., 158, 357–372,
https://doi.org/10.1007/s10533-022-00903-1, 2022.
Reimann, C., Filzmoser, P., Garrett, R. G., and Dutter, R.: Statistical Data
Analysis Explained, John Wiley & Sons, Ltd, Chichester, UK,
https://doi.org/10.1002/9780470987605, 2008.
Reverte, F. C. and da Garcia, M.: O patrimônio geológico de
São Sebastião – SP: inventário e uso potencial de
geossítios com valor científico, 35, 496–511, 2016.
Schaeffer-Novelli, Y., de Souza Lima Mesquita, H., Cintrón-Molero, G.,
and Cintron-Molero, G.: The Cananéia Lagoon Estuarine System, São
Paulo, Brazil, 13, 193, https://doi.org/10.2307/1351589, 1990.
Schaetzl, R. J. and Thompson, M. L.: Soils: Genesis and Geomorphology, 2nd
ed., Cambridge University Press, New York, NY, 795 pp., 2015.
Schmidt, M. W. I., Torn, M. S., Abiven, S., Dittmar, T., Guggenberger, G.,
Janssens, I. A., Kleber, M., Kögel-Knabner, I., Lehmann, J., Manning, D.
A. C., Nannipieri, P., Rasse, D. P., Weiner, S., and Trumbore, S. E.:
Persistence of soil organic matter as an ecosystem property, Nature, 478,
49–56, https://doi.org/10.1038/nature10386, 2011.
Schoeneberger, P. J., Wysocki, D. A., Benham, E. C., and Broderson, W. D.:
Field Book for Describing and Sampling Soils, Natl. Soil Surv. Cent., 33,
1–228, 2002.
Seeliger, U.: The Patos Lagoon Estuary, Brazil, in: Coastal Marine
Ecosystems of Latin America, Springer, 167–183,
https://doi.org/10.1007/978-3-662-04482-7_ 13, 2001.
Serrano, O., Ricart, A. M., Lavery, P. S., Mateo, M. A., Arias-Ortiz, A., Masque, P., Rozaimi, M., Steven, A., and Duarte, C. M.: Key biogeochemical factors affecting soil carbon storage in Posidonia meadows, Biogeosciences, 13, 4581–4594, https://doi.org/10.5194/bg-13-4581-2016, 2016a.
Serrano, O., Lavery, P. S., Duarte, C. M., Kendrick, G. A., Calafat, A., York, P. H., Steven, A., and Macreadie, P. I.: Can mud (silt and clay) concentration be used to predict soil organic carbon content within seagrass ecosystems?, Biogeosciences, 13, 4915–4926, https://doi.org/10.5194/bg-13-4915-2016, 2016b.
Short, F., Carruthers, T., Dennison, W., and Waycott, M.: Global seagrass
distribution and diversity: A bioregional model, J. Exp. Mar. Bio. Ecol.,
350, 3–20, https://doi.org/10.1016/j.jembe.2007.06.012, 2007.
Short, F. T., Polidoro, B., Livingstone, S. R., Carpenter, K. E., Bandeira,
S., Bujang, J. S., Calumpong, H. P., Carruthers, T. J. B., Coles, R. G.,
Dennison, W. C., Erftemeijer, P. L. A., Fortes, M. D., Freeman, A. S.,
Jagtap, T. G., Kamal, A. H. M., Kendrick, G. A., Judson Kenworthy, W., La
Nafie, Y. A., Nasution, I. M., Orth, R. J., Prathep, A., Sanciangco, J. C.,
Tussenbroek, B. van, Vergara, S. G., Waycott, M., and Zieman, J. C.:
Extinction risk assessment of the world's seagrass species, Biol. Conserv.,
144, 1961–1971, https://doi.org/10.1016/j.biocon.2011.04.010, 2011.
Søndergaard, M.: Redox Potential, in: Encyclopedia of Inland Waters,
Elsevier, 852–859, https://doi.org/10.1016/B978-012370626-3.00115-0, 2009.
Souza-Júnior, V. S., Vidal-Torrado, P., Garcia-Gonzaléz, M. T.,
Otero, X. L., and Macías, F.: Soil Mineralogy of Mangrove Forests from
the State of São Paulo, Southeastern Brazil, Soil Sci. Soc. Am. J., 72,
848–857, https://doi.org/10.2136/sssaj2007.0197, 2008.
Souza-Júnior, V. S. de, Vidal-Torrado, P., Tessler, M. G., Pessenda, L.
C. R., Ferreira, T. O., Otero, X. L., and Macías, F.: Evolução
quaternária, distribuição de partículas nos solos e
ambientes de sedimentação em manguezais do estado de São Paulo,
Rev. Bras. Ciência do Solo, 31, 753–769,
https://doi.org/10.1590/S0100-06832007000400016, 2007.
Souza-Júnior, V. S. de, Vidal-Torrado, P., Garcia-González, M. T.,
Macías, F., and Otero, X. L.: Smectite in mangrove soils of the State
of São Paulo, Brazil, Sci. Agric., 67, 47–52,
https://doi.org/10.1590/s0103-90162010000100007, 2010.
Środoń, J.: Nature of mixed-layer clays and mechanisms of their
formation and alteration, Annu. Rev. Earth Planet. Sci., 27, 19–53,
https://doi.org/10.1146/annurev.earth.27.1.19, 1999.
Still, B. M. and Stolt, M. H.: Subaqueous Soils and Coastal Acidification: A
Hydropedology Perspective with Implications for Calcifying Organisms,
https://doi.org/10.2136/sssaj2014.09.0366, 2015.
Sumner, M. E. and Miller, W. P.: Cation Exchange Capacity and Exchange
Coefficients, in: Methods of soil analysis, Part 3 – chemical methods,
1201–1229, https://doi.org/10.2136/sssabookser5.3.c40, 2018.
Thorhaug, A., Poulos, H. M., López-Portillo, J., Ku, T. C. W., and
Berlyn, G. P.: Seagrass blue carbon dynamics in the Gulf of Mexico: Stocks,
losses from anthropogenic disturbance, and gains through seagrass
restoration, Sci. Total Environ., 605, 626–636,
https://doi.org/10.1016/j.scitotenv.2017.06.189, 2017.
Toldo Jr., E. E., Dillenburg, S. R., Corrêa, I. C. S., and Almeida, L.
E. S. B.: Holocene Sedimentation in Lagoa dos Patos Lagoon, Rio Grande do
Sul, Brazil, J. Coast. Res., 16, 816–822, 2000.
Van Reeuwijk, L. P.: Procedures for soil analysis, 6th Editio., ISRIC –
World Soil Information, Wageningen, Netherlands, ISBN 90-6672-044-1, 2002.
Velde, B. and Church, T.: Rapid clay transformations in Delaware salt
marshes, 14, 559–568, 1999.
Veneman, P. L. M., Spokas, L. A., and Lindbo, D. L.: Soil Moisture and
Redoximorphic Features: A Historical Perspective, 1–23,
https://doi.org/10.2136/sssaspecpub54.c1, 2015.
Vilas Bôas, G. S., Sampaio, F. J., and Pereira, A. M. S.: The Barreiras
Group in the Northeastern coast of the State of Bahia, Brazil: depositional
mechanisms and processes, An. Acad. Bras. Cienc., 73, 417–427,
https://doi.org/10.1590/S0001-37652001000300010, 2001.
Vittori Antisari, L., De Nobili, M., Ferronato, C., Natale, M., Pellegrini,
E., and Vianello, G.: Hydromorphic to subaqueous soils transitions in the
central Grado lagoon (Northern Adriatic Sea, Italy), Estuar. Coast. Shelf
Sci., 173, 39–48, https://doi.org/10.1016/j.ecss.2016.02.004, 2016.
Walker, D. and McComb, A.: Seagrass degradation in Australian coastal
waters, Mar. Pollut. Bull., 25, 191–195,
https://doi.org/10.1016/0025-326X(92)90224-T, 1992.
Weiss, J. V., Emerson, D., and Megonigal, J. P.: Geochemical control of
microbial Fe(III) reduction potential in wetlands: comparison of the
rhizosphere to non-rhizosphere soil, FEMS Microbiol. Ecol., 48, 89–100,
https://doi.org/10.1016/j.femsec.2003.12.014, 2004.
Wessel, B. M., Rabenhorst, M. C., and Needelman, B. A.: A subaqueous
soil-landscape conceptual model to guide soil survey in Chesapeake Bay
subestuaries, Soil Sci. Soc. Am. J., 85, 1727–1740,
https://doi.org/10.1002/saj2.20305, 2021.
Zarnoch, C. B., Hoellein, T. J., Furman, B. T., and Peterson, B. J.:
Eelgrass meadows, Zostera marina (L.), facilitate the ecosystem service of
nitrogen removal during simulated nutrient pulses in Shinnecock Bay, New
York, USA, Mar. Pollut. Bull., 124, 376–387,
https://doi.org/10.1016/j.marpolbul.2017.07.061, 2017.
Short summary
The present study addresses the soil information gap in tropical seagrass meadows. The different geological and bioclimatic settings caused a relevant soil diversity. Contrasting geochemical conditions promote different intensities of soil processes. Seagrass soils from the northeastern semiarid coast are marked by a more intense sulfidization. Understanding soil processes may help in the sustainable management of seagrasses.
The present study addresses the soil information gap in tropical seagrass meadows. The different...