Articles | Volume 9, issue 1
https://doi.org/10.5194/soil-9-189-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/soil-9-189-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Masked diversity and contrasting soil processes in tropical seagrass meadows: the control of environmental settings
Gabriel Nuto Nóbrega
Department of Soil Sciences, Federal University of
Ceará, Av. Mister Hull, 2977, Campus do Pici,
60356-001, Fortaleza, Ceará, Brazil
Xosé L. Otero
Cretus, Departamento de Edafoloxía e Química Agrícola, Facultade de Bioloxía, Universidade de Santiago de Compostela, Rúa Lope G Marzoa, s/n, Campus sur. 15782, Santiago de Compostela, Spain
Danilo Jefferson Romero
Department of Soil Science, College of Agriculture
Luiz de Queiroz, University of São Paulo,
ESALQ/USP, Av. Pádua Dias 11, 13.418-260,
Piracicaba, São Paulo, Brazil
Hermano Melo Queiroz
Department of Soil Science, College of Agriculture
Luiz de Queiroz, University of São Paulo,
ESALQ/USP, Av. Pádua Dias 11, 13.418-260,
Piracicaba, São Paulo, Brazil
Daniel Gorman
Commonwealth Scientific and Industrial Research
Organization (CSIRO), Environment, Crawley, WA,
Australia
Margareth da Silva Copertino
Institute of Oceanography, Federal University of Rio
Grande (FURG), Av. Itália Km 08, Carreiros, Rio
Grande – RS, CEP: 96.201-900, Brazil
Marisa de Cássia Piccolo
Laboratory of Nutrient Cycling, Center of Nuclear
Energy in Agriculture, University of São Paulo,
Av. Centenário 303, 13.400.970, Piracicaba,
São Paulo, Brazil
Tiago Osório Ferreira
CORRESPONDING AUTHOR
Department of Soil Science, College of Agriculture
Luiz de Queiroz, University of São Paulo,
ESALQ/USP, Av. Pádua Dias 11, 13.418-260,
Piracicaba, São Paulo, Brazil
Related authors
No articles found.
Danilo César de Mello, Clara Glória Oliveira Baldi, Cássio Marques Moquedace, Isabelle de Angeli Oliveira, Gustavo Vieira Veloso, Lucas Carvalho Gomes, Márcio Rocha Francelino, Carlos Ernesto Gonçalves Reynaud Schaefer, Elpídio Inácio Fernandes-Filho, Edgar Batista de Medeiros Júnior, Fabio Soares de Oliveira, José João Lelis Leal de Souza Souza, Tiago Ferreira, and José A. M. Demattê
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-2, https://doi.org/10.5194/gmd-2024-2, 2024
Revised manuscript under review for GMD
Short summary
Short summary
The study explores Maritime Antarctica's geology, shaped by periglacial forces, using pioneering gamma-spectrometric and magnetic surveys on igneous rocks due to limited Antarctic surveys. Machine learning predicts radionuclide and magnetic content based on terrain features, linking their distribution to landscape processes, morphometrics, lithology, and pedogeomorphology. Inaccuracies arise due to complex periglacial processes and landscape complexities.
Danilo César de Mello, Tiago Osório Ferreira, Gustavo Vieira Veloso, Marcos Guedes de Lana, Fellipe Alcantara de Oliveira Mello, Luis Augusto Di Loreto Di Raimo, Diego Ribeiro Oquendo Cabrero, José João Lelis Leal de Souza, Elpídio Inácio Fernandes-Filho, Márcio Rocha Francelino, Carlos Ernesto Gonçalves Reynaud Schaefer, and José A. M. Demattê
SOIL Discuss., https://doi.org/10.5194/soil-2022-17, https://doi.org/10.5194/soil-2022-17, 2022
Revised manuscript not accepted
Short summary
Short summary
We proposed a different method to evaluate different intensities of weathering in a heterogeneous area (soils, geology and relief) and small number of samples. We use combined data from three geophysical sensors, clustering and machine learning (nested-leave-one-out-cross-validation) to distinguish weathering intensities and assess the relationship of these variables with weathering, relief, geology, and soil types and attributes. and we obtained satisfactory performances of models evaluation.
Valéria M. Lemos, Marianna Lanari, Margareth Copertino, Eduardo R. Secchi, Paulo Cesar O. V. de Abreu, José H. Muelbert, Alexandre M. Garcia, Felipe C. Dumont, Erik Muxagata, João P. Vieira, André Colling, and Clarisse Odebrecht
Earth Syst. Sci. Data, 14, 1015–1041, https://doi.org/10.5194/essd-14-1015-2022, https://doi.org/10.5194/essd-14-1015-2022, 2022
Short summary
Short summary
The Patos Lagoon estuary and adjacent marine coast (PLEA) has been a site of the Brazilian Long-Term Ecological Research (LTER) program since 1998. LTER-PLEA contributes information about the biota composition, distribution and abundance, and estuarine ecological processes. The LTER-PLEA database (8 datasets containing 6972 sampling events and records of 275 species) represents one of the most robust and longest databases of biological diversity in an estuarine coastal system of South America.
Cited articles
Albuquerque, A. G. B. M., Ferreira, T. O., Nóbrega, G. N., Romero, R.
E., Júnior, V. S. S. S., Meireles, A. J. A. A., and Otero, X. L.: Soil
genesis on hypersaline tidal flats (apicum ecosystem) in a tropical semiarid
estuary (Ceará, Brazil), Soil Res., 52, 140,
https://doi.org/10.1071/SR13179, 2014.
Alvares, C. A., Stape, J. L., Sentelhas, P. C., De Moraes Gonçalves, J.
L., and Sparovek, G.: Köppen's climate classification map for Brazil,
Meteorol. Z., 22, 711–728,
https://doi.org/10.1127/0941-2948/2013/0507, 2013.
Banco de dados climáticos do Brasil:
https://www.cnpm.embrapa.br/projetos/bdclima/index.html, last access: 26
August 2019.
Baden, S., Emanuelsson, A., Pihl, L., Svensson, C., and Åberg, P.: Shift
in seagrass food web structure over decades is linked to overfishing, Mar.
Ecol. Prog. Ser., 451, 61–73, https://doi.org/10.3354/meps09585, 2012.
Berner, R. A.: Sedimentary pyrite formation: An update, Geochim. Cosmochim.
Ac., 48, 605–615, https://doi.org/10.1016/0016-7037(84)90089-9, 1984.
Berner, R. A.: Sedimentary pyrite formation, Am. J. Sci., 268, 1–23,
https://doi.org/10.2475/ajs.268.1.1, 1970.
Bezerra, C. E. E., Ferreira, T. O., Romero, R. E., Mota, J. C. A., Vieira,
J. M., Duarte, L. R. S., and Cooper, M.: Genesis of cohesive soil horizons
from north-east Brazil: Role of argilluviation and sorting of sand, Soil
Res., 53, 43–55, https://doi.org/10.1071/SR13188, 2015.
Bower, C. A., Reitemeier, R. F., and Fireman, M.: Exchangeable cation
analysis of saline and alkali soilS, Soil Sci., 73, 251–262,
https://doi.org/10.1097/00010694-195204000-00001, 1952.
Bradley, M. P. and Stolt, M. H.: Subaqueous Soil-Landscape Relationships in
a Rhode Island Estuary, Soil Sci. Soc. Am. J., 67, 1487–1495,
https://doi.org/10.2136/sssaj2003.1487, 2003.
Bradley, M. P. and Stolt, M. H.: Landscape-level seagrass–sediment
relations in a coastal lagoon, Aquat. Bot., 84, 121–128,
https://doi.org/10.1016/j.aquabot.2005.08.003, 2006.
Brodersen, K. E., Koren, K., Moßhammer, M., Ralph, P. J., Kühl, M.,
and Santner, J.: Seagrass-Mediated Phosphorus and Iron Solubilization in
Tropical Sediments, Environ. Sci. Technol., 51, 14155–14163,
https://doi.org/10.1021/acs.est.7b03878, 2017.
Campos, E. J. D., Mulkherjee, S., Piola, A. R., and de Carvalho, F. M. S.: A
note on a mineralogical analysis of the sediments associated with the Plata
River and Patos Lagoon outflows, Cont. Shelf Res., 28, 1687–1691,
https://doi.org/10.1016/j.csr.2008.03.014, 2008.
Canfield, D. E., Thamdrup, B., and Hansen, J. W.: The anaerobic degradation
of organic matter in Danish coastal sediments: Iron reduction, manganese
reduction, and sulfate reduction, Geochim. Cosmochim. Ac., 57, 3867–3883,
https://doi.org/10.1016/0016-7037(93)90340-3, 1993.
Christian, R. R. and Luczkovich, J. J.: Organizing and understanding a
winter's seagrass foodweb network through effective trophic levels, Ecol.
Modell., 117, 99–124, https://doi.org/10.1016/S0304-3800(99)00022-8, 1999.
Copertino, M. S., Creed, J. C., Lanari, M. O., Magalhães, K., Barros,
K., Lana, P. C., Sordo, L., and Horta, P. A.: Seagrass and Submerged Aquatic
Vegetation (VAS) Habitats off the Coast of Brazil: state of knowledge,
conservation and main threats, Brazilian J. Oceanogr., 64, 53–80,
https://doi.org/10.1590/S1679-875920161036064sp2, 2016.
Costanza, R., de Groot, R., Sutton, P., van der Ploeg, S., Anderson, S. J.,
Kubiszewski, I., Farber, S., and Turner, R. K.: Changes in the global value
of ecosystem services, Glob. Environ. Chang., 26, 152–158,
https://doi.org/10.1016/j.gloenvcha.2014.04.002, 2014.
Copertino, M.: Add coastal vegetation to the climate critical list,
Nature, 473, 255–255, https://doi.org/10.1038/473255a, 2011.
Demas, G. P.: Submerged Soils: A New Frontier in Soil Survey, Soil Horizons,
34, 44, https://doi.org/10.2136/sh1993.2.0044, 1993.
Demas, G. P., Rabenhorst, M. C., and Stevenson, J. C.: Subaqueous Soils: A
Pedological Approach to the Study of Shallow-Water Habitats, 19, 229,
https://doi.org/10.2307/1352228, 1996.
Dominguez, J. M. L.: The Coastal Zone of Brazil: an Overview, J. Coast.
Res., 1, 16–20, 2006.
Duarte, C. M. and Chiscano, C. L.: Seagrass biomass and production: a
reassessment, Aquat. Bot., 65, 159–174,
https://doi.org/10.1016/S0304-3770(99)00038-8, 1999.
Duarte, C. M., Middelburg, J. J., and Caraco, N.: Major role of marine vegetation on the oceanic carbon cycle, Biogeosciences, 2, 1–8, https://doi.org/10.5194/bg-2-1-2005, 2005.
Duarte, C. M., Marbà, N., Gacia, E., Fourqurean, J. W., Beggins, J.,
Barrón, C., and Apostolaki, E. T.: Seagrass community metabolism:
Assessing the carbon sink capacity of seagrass meadows, Global Biogeochem. Cy., 24, GB4032,, https://doi.org/10.1029/2010GB003793, 2010.
Erich, E. and Drohan, P. J.: Genesis of freshwater subaqueous soils
following flooding of a subaerial landscape, Geoderma, 179, 53–62,
https://doi.org/10.1016/j.geoderma.2012.02.004, 2012.
FAO: Standard operating procedure for soil calcium carbonate equivalent,
Titrimetric method, Rome, https://www.fao.org/3/ca8620en/ca8620en.pdf (last access: 14 March 2023), 2020.
Ferreira, T. O., Vidal-Torrado, P., Otero, X. L., and Macías, F.: Are
mangrove forest substrates sediments or soils?, A case study in southeastern
Brazil, Catena, 70, 79–91, https://doi.org/10.1016/j.catena.2006.07.006, 2007.
Ferreira, T. O., Queiroz, H. M., Nóbrega, G. N., de Souza Júnior, V.
S., Barcellos, D., Ferreira, A. D., and Otero, X. L.: Litho-climatic
characteristics and its control over mangrove soil geochemistry: A
macro-scale approach, Sci. Total Environ., 811, 152152,
https://doi.org/10.1016/j.scitotenv.2021.152152, 2022.
Ferronato, C., Falsone, G., Natale, M., Zannoni, D., Buscaroli, A.,
Vianello, G., and Vittori Antisari, L.: Chemical and pedological features of
subaqueous and hydromorphic soils along a hydrosequence within a coastal
system (San Vitale Park, Northern Italy), Geoderma, 265, 141–151,
https://doi.org/10.1016/j.geoderma.2015.11.018, 2016.
Flemming, B. W.: A revised textural classification of gravel-free muddy
sediments on the basis of ternary diagrams, Cont. Shelf Res., 20,
1125–1137, https://doi.org/10.1016/S0278-4343(00)00015-7, 2000.
Fourqurean, J. W., Duarte, C. M., Kennedy, H., Marbà, N., Holmer, M.,
Mateo, M. A., Apostolaki, E. T., Kendrick, G. A., Krause-Jensen, D.,
McGlathery, K. J., and Serrano, O.: Seagrass ecosystems as a globally
significant carbon stock, Nat. Geosci., 5, 505–509,
https://doi.org/10.1038/ngeo1477, 2012.
Furlan, A., Bonotto, D. M., and Gumiere, S. J.: Development of environmental
and natural vulnerability maps for Brazilian coastal at São
Sebastião in São Paulo State, Environ. Earth Sci., 64, 659–669,
https://doi.org/10.1007/s12665-010-0886-7, 2011.
Furquim, S. A. C., Graham, R. C., Barbiero, L., de Queiroz Neto, J. P., and
Vallès, V.: Mineralogy and genesis of smectites in an alkaline-saline
environment of Pantanal wetland, Brazil, Clays Clay Miner., 56, 579–595,
https://doi.org/10.1346/CCMN.2008.0560511, 2008.
Gee, G. W. and Bauder, J. W.: Particle-size analysis, in: Methods of soil
analysis: Part 1 – Physical and mineralogical methods, Soil Science Society
of America, Am. Soc. Agron., 383–411, 1986.
Giblin, A. E.: Pyrite formation in marshes during early diagenesis,
Geomicrobiol. J., 6, 77–97, https://doi.org/10.1080/01490458809377827,
1988.
Green, E. P. and Short, F. T.: World Atlas of Seagrasses, UNEP-WCMC,
Cambridge, 336 pp., 2003.
Holmer, M., Andersen, F. Ø., Nielsen, S. L., and Boschker, H. T. S.: The
importance of mineralization based on sulfate reduction for nutrient
regeneration in tropical seagrass sediments, Aquat. Bot., 71, 1–17,
https://doi.org/10.1016/S0304-3770(01)00170-X, 2001.
Howard, J., Hoyt, S., Isensee, K., Telszewski, M., Pidgeon, E., and
Telszewski, M.: Coastal blue carbon: methods for assessing carbon stocks and
emissions factors in mangroves, tidal salt marshes, and seagrasses,
Conservation International, Intergovernmental Oceanographic Commission of
UNESCO, International Union for Conservation of Nature, Arlington, VA, USA,
Arlington, VA, USA, 184 pp., 2014.
Inoue, T., Nohara, S., Takagi, H., and Anzai, Y.: Contrast of nitrogen
contents around roots of mangrove plants, Plant Soil, 339, 471–483,
https://doi.org/10.1007/s11104-010-0604-y, 2011.
IUSS Working Group WRB: World Reference Base for Soil Resources 2014, update
2015 International soil classification system for naming soils and creating
legends for soil maps, FAO, Rome, 1–191 pp., 2015.
Jahn, R., Blume, H. P., Asio, V. B., Spaargaren, O., and Schad, P.:
Guidelines for soil description, FAO, ISBN 92-5-105521-1, 2006.
Jimenez, L. C. Z., Queiroz, H. M., Nóbrega, G. N., Romero, D. J., Deng,
Y., Otero, X. L., and Ferreira, T. O.: Recovery of soil processes in replanted
mangroves: implications for soil functions, Forests, 13, 422,
https://doi.org/10.3390/f13030422, 2022.
Kennedy, H., Beggins, J., Duarte, C. M., Fourqurean, J. W., Holmer, M.,
Marbà, N., and Middelburg, J. J.: Seagrass sediments as a global carbon
sink: Isotopic constraints, Global Biogeochem. Cy., 24, GB4026,
https://doi.org/10.1029/2010GB003848, 2010.
Kida, M., Tomotsune, M., Iimura, Y., Kinjo, K., Ohtsuka, T., and Fujitake,
N.: High salinity leads to accumulation of soil organic carbon in mangrove
soil, Chemosphere, 177, 51–55,
https://doi.org/10.1016/j.chemosphere.2017.02.074, 2017.
Konsten, C. J. M., Brinkman, R., and Andriesse, W.: A field laboratory
method to determine total potential and actual acidity in acid sulphate
soils, in: Selected papers of the Dakar symposium on acid sulphate soils:
Dakar, Senegal, January 1986, 106–134, 1988.
Lacerda, L. D., de Menezes, M. O. T., and Molisani, M. M.: Changes in
mangrove extension at the Pacoti River estuary, CE, NE Brazil due to
regional environmental changes between 1958 and 2004, Biota Neotrop.,
https://doi.org/10.1590/s1676-06032007000300007, 2007.
Larcombe, P., Costen, A., and Woolfe, K. J.: The hydrodynamic and
sedimentary setting of nearshore coral reefs, central Great Barrier Reef
shelf, Australia: Paluma Shoals, a case study, Sedimentology, 48, 811–835,
https://doi.org/10.1046/j.1365-3091.2001.00396.x, 2001.
Lehmann, J. and Kleber, M.: The contentious nature of soil organic matter,
Nature, 528, 60–68, https://doi.org/10.1038/nature16069, 2015.
Lemos, R. C., Azolim, M. Â. D., Abrão, P. U. R., and Santos, M. C.
L.: Levantamento de reconhecimento dos solos do Estado do Rio Grande do Sul,
Ministério da Agricultura, Recife, 431 pp., 1973.
Lopes, R. P., Dillenburg, S. R., and Schultz, C. L.: Cordão formation:
Loess deposits in the southern coastal plain of the state of Rio Grande do
Sul, Brazil, An. Acad. Bras. Cienc., 88, 2143–2166,
https://doi.org/10.1590/0001-3765201620150738, 2016.
Lord III, C. J.: A selective and precise method for pyrite determination in
sedimentary materials, J. Sediment. Res., 52, 664–666,
https://doi.org/10.1306/212F7FF4-2B24-11D7-8648000102C1865D, 1982.
Lowry, G. V., Espinasse, B. P., Badireddy, A. R., Richardson, C. J.,
Reinsch, B. C., Bryant, L. D., Bone, A. J., Deonarine, A., Chae, S.,
Therezien, M., Colman, B. P., Hsu-Kim, H., Bernhardt, E. S., Matson, C. W.,
and Wiesner, M. R.: Long-Term Transformation and Fate of Manufactured Ag
Nanoparticles in a Simulated Large Scale Freshwater Emergent Wetland,
Environ. Sci. Technol., 46, 7027–7036, https://doi.org/10.1021/es204608d,
2012.
Macías, F. and Camps-Arbestain, M.: A biogeochemical view of the world
reference base soil classification system: Homage to Ward Chesworth, 1st
ed., Elsevier Inc., 295–342,
https://doi.org/10.1016/bs.agron.2019.11.002, 2020.
Marbà, N., Arias-Ortiz, A., Masqué, P., Kendrick, G. A., Mazarrasa,
I., Bastyan, G. R., Garcia-Orellana, J., and Duarte, C. M.: Impact of
seagrass loss and subsequent revegetation on carbon sequestration and
stocks, J. Ecol., 103, 296–302, https://doi.org/10.1111/1365-2745.12370,
2015.
Mazarrasa, I., Marbà, N., Lovelock, C. E., Serrano, O., Lavery, P. S., Fourqurean, J. W., Kennedy, H., Mateo, M. A., Krause-Jensen, D., Steven, A. D. L., and Duarte, C. M.: Seagrass meadows as a globally significant carbonate reservoir, Biogeosciences, 12, 4993–5003, https://doi.org/10.5194/bg-12-4993-2015, 2015.
Melo, V. F., Novais, R. F., Schaefer, C. E. G. R., Fontes, M. P. F., and
Singh, B.: Mineralogia das frações areia, silte e argila de
sedimentos do grupo barreiras no município de Aracruz, estado do
Espírito Santo, Rev. Bras. Ciência do Solo, 26, 29–41,
https://doi.org/10.1590/s0100-06832002000100004, 2002.
Minuzzi, R. B., Sediyama, G. C., Barbosa, E. da M., and de Melo Júnior, J.
C. F. : Climatologia do comportamento do período chuvoso da
região sudeste do Brasil, Rev. Bras. Meteorol., 22, 338–344,
https://doi.org/10.1590/S0102-77862007000300007, 2007.
Nobrega, G. N.: Subaqueous soils of the Brazilian seagrass meadows:
biogeochemistry, genesis, and classification, Universidade de São Paulo,
Piracicaba, 123 pp., https://doi.org/10.11606/T.11.2018.tde-26102017-143348,
2018.
Nóbrega, G. N., Ferreira, T. O., Romero, R. E., Marques, A. G. B., and
Otero, X. L.: Iron and sulfur geochemistry in semiarid mangrove soils
(Ceará, Brazil) in relation to seasonal changes and shrimp farming
effluents, Environ. Monit. Assess., 185, 7393–7407,
https://doi.org/10.1007/s10661-013-3108-4, 2013.
Nóbrega, G. N., Otero, X. L., Macías, F., and Ferreira, T. O.:
Phosphorus geochemistry in a Brazilian semiarid mangrove soil affected by
shrimp farm effluents, Environ. Monit. Assess., 186, 5749–5762,
https://doi.org/10.1007/s10661-014-3817-3, 2014.
Nóbrega, G. N., Ferreira, T. O., Siqueira Neto, M., Queiroz, H. M.,
Artur, A. G., Mendonça, E. D. S., Silva, E. D. O., and Otero, X. L.:
Edaphic factors controlling summer (rainy season) greenhouse gas emissions
(CO2 and CH4) from semiarid mangrove soils (NE-Brazil), Sci. Total Environ.,
542, 685–693, https://doi.org/10.1016/j.scitotenv.2015.10.108, 2016.
Nóbrega, G. N., Romero, D. J., Otero, X. L., and Ferreira, T. O.:
Pedological Studies of Subaqueous Soils as a Contribution to the Protection
of Seagrass Meadows in Brazil, Rev. Bras. Ciência do Solo, 42, 1–12,
https://doi.org/10.1590/18069657rbcs20170117, 2018.
Nóbrega, G. N., Ferreira, T. O., Siqueira Neto, M., de Mendonça, E.
S., Romero, R. E., and Otero, X. L.: The importance of blue carbon soil
stocks in tropical semiarid mangroves: a case study in Northeastern Brazil,
Environ. Earth Sci., 78, 369, https://doi.org/10.1007/s12665-019-8368-z,
2019.
Nollet, L. M. L. and De Gelder, L. S. P.: Handbook of water analysis, CRC
press, 784 pp., 2000.
Ooi, J. L. S., Kendrick, G. A., Van Niel, K. P., and Affendi, Y. A.:
Knowledge gaps in tropical Southeast Asian seagrass systems, Estuar. Coast.
Shelf Sci., 92, 118–131, https://doi.org/10.1016/j.ecss.2010.12.021, 2011.
Orth, R. J., Carruthers, T. I. M. J. B., Dennison, W. C., Carlos, M.,
Fourqurean, J. W., Jr, K. L. H., Hughes, A. R., Kendrick, A., Kenworthy, W.
J., Olyarnik, S., Short, F. T., Waycott, M., Williams, S. L. K. L. H.,
Hughes, A. R., Kendrick, G. A., and Kenworthy, W. J.: A Global Crisis for
Seagrass Ecosystems, Bioscience, 56, 987–996,
https://doi.org/10.1641/0006-3568(2006)56[987:AGCFSE]2.0.CO;2, 2006.
Osher, L. J. and Flannagan, C. T.: Soil/Landscape Relationships in a
Mesotidal Maine Estuary, Soil Sci. Soc. Am. J., 71, 1323–1334,
https://doi.org/10.2136/sssaj2006.0224, 2007.
Otero, X. L., Ferreira, T. O., Vidal-Torrado, P., Macias, F., and Chesworth,
W.: Thionic Soils, edited by: Chesworth, W., Springer, Berlin, Encycl. Soil Sci.,
777–780, 2008.
Otero, X. L., Ferreira, T. O., Huerta-Díaz, M. A., Partiti, C. S. M.,
Souza, V., Vidal-Torrado, P., and Macías, F.: Geochemistry of iron and
manganese in soils and sediments of a mangrove system, Island of Pai Matos
(Cananeia – SP, Brazil), Geoderma, 148, 318–335,
https://doi.org/10.1016/j.geoderma.2008.10.016, 2009.
Payne, M. K. and Stolt, M. H.: Understanding sulfide distribution in
subaqueous soil systems in southern New England, USA, Geoderma, 308,
207–214, https://doi.org/10.1016/j.geoderma.2017.08.015, 2017.
Peel, M. C., Finlayson, B. L., and McMahon, T. A.: Updated world map of the Köppen-Geiger climate classification, Hydrol. Earth Syst. Sci., 11, 1633–1644, https://doi.org/10.5194/hess-11-1633-2007, 2007.
Prada-Gamero, R. M., Vidal-Torrado, P., and Ferreira, T. O.: Mineralogia e
físico-química dos solos de mangue do rio Iriri no canal de
Bertioga (Santos, SP), Rev. Bras. Ciência do Solo, 28, 233–243,
https://doi.org/10.1590/s0100-06832004000200002, 2004.
Pugliese Andrade, G. R., de Azevedo, A. C., Cuadros, J., Souza, V. S.,
Correia Furquim, S. A., Kiyohara, P. K., and Vidal-Torrado, P.:
Transformation of Kaolinite into Smectite and Iron-Illite in Brazilian
Mangrove Soils, Soil Sci. Soc. Am. J., 78, 655–672,
https://doi.org/10.2136/sssaj2013.09.0381, 2014.
Queiroz, H. M., Ferreira, T. O., Fandiño, V. A., Bragantini, I. O. B.
F., Barcellos, D., Nóbrega, G. N., Ferreira, A. D., Gomes, L. E. O.,
and Bernardino, A. F.: Changes in soil iron biogeochemistry in response to
mangrove dieback, Biogeochem., 158, 357–372,
https://doi.org/10.1007/s10533-022-00903-1, 2022.
Reimann, C., Filzmoser, P., Garrett, R. G., and Dutter, R.: Statistical Data
Analysis Explained, John Wiley & Sons, Ltd, Chichester, UK,
https://doi.org/10.1002/9780470987605, 2008.
Reverte, F. C. and da Garcia, M.: O patrimônio geológico de
São Sebastião – SP: inventário e uso potencial de
geossítios com valor científico, 35, 496–511, 2016.
Schaeffer-Novelli, Y., de Souza Lima Mesquita, H., Cintrón-Molero, G.,
and Cintron-Molero, G.: The Cananéia Lagoon Estuarine System, São
Paulo, Brazil, 13, 193, https://doi.org/10.2307/1351589, 1990.
Schaetzl, R. J. and Thompson, M. L.: Soils: Genesis and Geomorphology, 2nd
ed., Cambridge University Press, New York, NY, 795 pp., 2015.
Schmidt, M. W. I., Torn, M. S., Abiven, S., Dittmar, T., Guggenberger, G.,
Janssens, I. A., Kleber, M., Kögel-Knabner, I., Lehmann, J., Manning, D.
A. C., Nannipieri, P., Rasse, D. P., Weiner, S., and Trumbore, S. E.:
Persistence of soil organic matter as an ecosystem property, Nature, 478,
49–56, https://doi.org/10.1038/nature10386, 2011.
Schoeneberger, P. J., Wysocki, D. A., Benham, E. C., and Broderson, W. D.:
Field Book for Describing and Sampling Soils, Natl. Soil Surv. Cent., 33,
1–228, 2002.
Seeliger, U.: The Patos Lagoon Estuary, Brazil, in: Coastal Marine
Ecosystems of Latin America, Springer, 167–183,
https://doi.org/10.1007/978-3-662-04482-7_ 13, 2001.
Serrano, O., Ricart, A. M., Lavery, P. S., Mateo, M. A., Arias-Ortiz, A., Masque, P., Rozaimi, M., Steven, A., and Duarte, C. M.: Key biogeochemical factors affecting soil carbon storage in Posidonia meadows, Biogeosciences, 13, 4581–4594, https://doi.org/10.5194/bg-13-4581-2016, 2016a.
Serrano, O., Lavery, P. S., Duarte, C. M., Kendrick, G. A., Calafat, A., York, P. H., Steven, A., and Macreadie, P. I.: Can mud (silt and clay) concentration be used to predict soil organic carbon content within seagrass ecosystems?, Biogeosciences, 13, 4915–4926, https://doi.org/10.5194/bg-13-4915-2016, 2016b.
Short, F., Carruthers, T., Dennison, W., and Waycott, M.: Global seagrass
distribution and diversity: A bioregional model, J. Exp. Mar. Bio. Ecol.,
350, 3–20, https://doi.org/10.1016/j.jembe.2007.06.012, 2007.
Short, F. T., Polidoro, B., Livingstone, S. R., Carpenter, K. E., Bandeira,
S., Bujang, J. S., Calumpong, H. P., Carruthers, T. J. B., Coles, R. G.,
Dennison, W. C., Erftemeijer, P. L. A., Fortes, M. D., Freeman, A. S.,
Jagtap, T. G., Kamal, A. H. M., Kendrick, G. A., Judson Kenworthy, W., La
Nafie, Y. A., Nasution, I. M., Orth, R. J., Prathep, A., Sanciangco, J. C.,
Tussenbroek, B. van, Vergara, S. G., Waycott, M., and Zieman, J. C.:
Extinction risk assessment of the world's seagrass species, Biol. Conserv.,
144, 1961–1971, https://doi.org/10.1016/j.biocon.2011.04.010, 2011.
Søndergaard, M.: Redox Potential, in: Encyclopedia of Inland Waters,
Elsevier, 852–859, https://doi.org/10.1016/B978-012370626-3.00115-0, 2009.
Souza-Júnior, V. S., Vidal-Torrado, P., Garcia-Gonzaléz, M. T.,
Otero, X. L., and Macías, F.: Soil Mineralogy of Mangrove Forests from
the State of São Paulo, Southeastern Brazil, Soil Sci. Soc. Am. J., 72,
848–857, https://doi.org/10.2136/sssaj2007.0197, 2008.
Souza-Júnior, V. S. de, Vidal-Torrado, P., Tessler, M. G., Pessenda, L.
C. R., Ferreira, T. O., Otero, X. L., and Macías, F.: Evolução
quaternária, distribuição de partículas nos solos e
ambientes de sedimentação em manguezais do estado de São Paulo,
Rev. Bras. Ciência do Solo, 31, 753–769,
https://doi.org/10.1590/S0100-06832007000400016, 2007.
Souza-Júnior, V. S. de, Vidal-Torrado, P., Garcia-González, M. T.,
Macías, F., and Otero, X. L.: Smectite in mangrove soils of the State
of São Paulo, Brazil, Sci. Agric., 67, 47–52,
https://doi.org/10.1590/s0103-90162010000100007, 2010.
Środoń, J.: Nature of mixed-layer clays and mechanisms of their
formation and alteration, Annu. Rev. Earth Planet. Sci., 27, 19–53,
https://doi.org/10.1146/annurev.earth.27.1.19, 1999.
Still, B. M. and Stolt, M. H.: Subaqueous Soils and Coastal Acidification: A
Hydropedology Perspective with Implications for Calcifying Organisms,
https://doi.org/10.2136/sssaj2014.09.0366, 2015.
Sumner, M. E. and Miller, W. P.: Cation Exchange Capacity and Exchange
Coefficients, in: Methods of soil analysis, Part 3 – chemical methods,
1201–1229, https://doi.org/10.2136/sssabookser5.3.c40, 2018.
Thorhaug, A., Poulos, H. M., López-Portillo, J., Ku, T. C. W., and
Berlyn, G. P.: Seagrass blue carbon dynamics in the Gulf of Mexico: Stocks,
losses from anthropogenic disturbance, and gains through seagrass
restoration, Sci. Total Environ., 605, 626–636,
https://doi.org/10.1016/j.scitotenv.2017.06.189, 2017.
Toldo Jr., E. E., Dillenburg, S. R., Corrêa, I. C. S., and Almeida, L.
E. S. B.: Holocene Sedimentation in Lagoa dos Patos Lagoon, Rio Grande do
Sul, Brazil, J. Coast. Res., 16, 816–822, 2000.
Van Reeuwijk, L. P.: Procedures for soil analysis, 6th Editio., ISRIC –
World Soil Information, Wageningen, Netherlands, ISBN 90-6672-044-1, 2002.
Velde, B. and Church, T.: Rapid clay transformations in Delaware salt
marshes, 14, 559–568, 1999.
Veneman, P. L. M., Spokas, L. A., and Lindbo, D. L.: Soil Moisture and
Redoximorphic Features: A Historical Perspective, 1–23,
https://doi.org/10.2136/sssaspecpub54.c1, 2015.
Vilas Bôas, G. S., Sampaio, F. J., and Pereira, A. M. S.: The Barreiras
Group in the Northeastern coast of the State of Bahia, Brazil: depositional
mechanisms and processes, An. Acad. Bras. Cienc., 73, 417–427,
https://doi.org/10.1590/S0001-37652001000300010, 2001.
Vittori Antisari, L., De Nobili, M., Ferronato, C., Natale, M., Pellegrini,
E., and Vianello, G.: Hydromorphic to subaqueous soils transitions in the
central Grado lagoon (Northern Adriatic Sea, Italy), Estuar. Coast. Shelf
Sci., 173, 39–48, https://doi.org/10.1016/j.ecss.2016.02.004, 2016.
Walker, D. and McComb, A.: Seagrass degradation in Australian coastal
waters, Mar. Pollut. Bull., 25, 191–195,
https://doi.org/10.1016/0025-326X(92)90224-T, 1992.
Weiss, J. V., Emerson, D., and Megonigal, J. P.: Geochemical control of
microbial Fe(III) reduction potential in wetlands: comparison of the
rhizosphere to non-rhizosphere soil, FEMS Microbiol. Ecol., 48, 89–100,
https://doi.org/10.1016/j.femsec.2003.12.014, 2004.
Wessel, B. M., Rabenhorst, M. C., and Needelman, B. A.: A subaqueous
soil-landscape conceptual model to guide soil survey in Chesapeake Bay
subestuaries, Soil Sci. Soc. Am. J., 85, 1727–1740,
https://doi.org/10.1002/saj2.20305, 2021.
Zarnoch, C. B., Hoellein, T. J., Furman, B. T., and Peterson, B. J.:
Eelgrass meadows, Zostera marina (L.), facilitate the ecosystem service of
nitrogen removal during simulated nutrient pulses in Shinnecock Bay, New
York, USA, Mar. Pollut. Bull., 124, 376–387,
https://doi.org/10.1016/j.marpolbul.2017.07.061, 2017.
Short summary
The present study addresses the soil information gap in tropical seagrass meadows. The different geological and bioclimatic settings caused a relevant soil diversity. Contrasting geochemical conditions promote different intensities of soil processes. Seagrass soils from the northeastern semiarid coast are marked by a more intense sulfidization. Understanding soil processes may help in the sustainable management of seagrasses.
The present study addresses the soil information gap in tropical seagrass meadows. The different...