Articles | Volume 8, issue 1
https://doi.org/10.5194/soil-8-381-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/soil-8-381-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Evolutionary pathways in soil-landscape evolution models
W. Marijn van der Meij
CORRESPONDING AUTHOR
Institute of Geography, University of Cologne, Albertus-Magnus-Platz, 50923 Cologne, Germany
Related authors
W. Marijn van der Meij
Earth Surf. Dynam., 13, 845–860, https://doi.org/10.5194/esurf-13-845-2025, https://doi.org/10.5194/esurf-13-845-2025, 2025
Short summary
Short summary
A soil-landscape evolution model was used to calculate hillslope erosion rates from OSL-based (Optically Stimulated Luminescence) deposition ages through inverse modelling, with consideration of uncertainties in model input. The results show that erosion rates differ systematically from the deposition rates, highlighting important shortcomings of assessing land degradation through measurable deposition rates.
W. Marijn van der Meij, Svenja Riedesel, and Tony Reimann
SOIL, 11, 51–66, https://doi.org/10.5194/soil-11-51-2025, https://doi.org/10.5194/soil-11-51-2025, 2025
Short summary
Short summary
Soil mixing (bioturbation) plays a key role in soil functions, but the underlying processes are poorly understood and difficult to quantify. In this study, we use luminescence, a light-sensitive soil mineral property, and numerical models to better understand different types of bioturbation. We provide a conceptual model that helps to determine which types of bioturbation processes occur in a soil and a numerical model that can derive quantitative process rates from luminescence measurements.
W. Marijn van der Meij, Arnaud J. A. M. Temme, Steven A. Binnie, and Tony Reimann
Geochronology, 5, 241–261, https://doi.org/10.5194/gchron-5-241-2023, https://doi.org/10.5194/gchron-5-241-2023, 2023
Short summary
Short summary
We present our model ChronoLorica. We coupled the original Lorica model, which simulates soil and landscape evolution, with a geochronological module that traces cosmogenic nuclide inventories and particle ages through simulations. These properties are often measured in the field to determine rates of landscape change. The coupling enables calibration of the model and the study of how soil, landscapes and geochronometers change under complex boundary conditions such as intensive land management.
W. Marijn van der Meij
Earth Surf. Dynam., 13, 845–860, https://doi.org/10.5194/esurf-13-845-2025, https://doi.org/10.5194/esurf-13-845-2025, 2025
Short summary
Short summary
A soil-landscape evolution model was used to calculate hillslope erosion rates from OSL-based (Optically Stimulated Luminescence) deposition ages through inverse modelling, with consideration of uncertainties in model input. The results show that erosion rates differ systematically from the deposition rates, highlighting important shortcomings of assessing land degradation through measurable deposition rates.
W. Marijn van der Meij, Svenja Riedesel, and Tony Reimann
SOIL, 11, 51–66, https://doi.org/10.5194/soil-11-51-2025, https://doi.org/10.5194/soil-11-51-2025, 2025
Short summary
Short summary
Soil mixing (bioturbation) plays a key role in soil functions, but the underlying processes are poorly understood and difficult to quantify. In this study, we use luminescence, a light-sensitive soil mineral property, and numerical models to better understand different types of bioturbation. We provide a conceptual model that helps to determine which types of bioturbation processes occur in a soil and a numerical model that can derive quantitative process rates from luminescence measurements.
W. Marijn van der Meij, Arnaud J. A. M. Temme, Steven A. Binnie, and Tony Reimann
Geochronology, 5, 241–261, https://doi.org/10.5194/gchron-5-241-2023, https://doi.org/10.5194/gchron-5-241-2023, 2023
Short summary
Short summary
We present our model ChronoLorica. We coupled the original Lorica model, which simulates soil and landscape evolution, with a geochronological module that traces cosmogenic nuclide inventories and particle ages through simulations. These properties are often measured in the field to determine rates of landscape change. The coupling enables calibration of the model and the study of how soil, landscapes and geochronometers change under complex boundary conditions such as intensive land management.
Cited articles
Adhikari, K. and Hartemink, A. E.: Linking soils to ecosystem services – A global review, Geoderma, 262, 101–111, https://doi.org/10.1016/j.geoderma.2015.08.009, 2016.
Amundson, R. and Jenny, H.: The place of humans in the state factor theory of ecosystems and their soils, Soil Sci., 151, 99–109, 1991.
Angelini, M. E., Heuvelink, G. B. M., Kempen, B., and Morrás, H. J. M.: Mapping the soils of an Argentine Pampas region using structural equation modelling, Geoderma, 281, 102–118, https://doi.org/10.1016/j.geoderma.2016.06.031, 2016.
Bock, M., Conrad, O., Günther, A., Gehrt, E., Baritz, R., and Böhner, J.: SaLEM (v1.0) – the Soil and Landscape Evolution Model (SaLEM) for simulation of regolith depth in periglacial environments, Geosci. Model Dev., 11, 1641–1652, https://doi.org/10.5194/gmd-11-1641-2018, 2018.
Bouchoms, S., Wang, Z., Vanacker, V., Doetterl, S., and Van Oost, K.: Modelling long-term soil organic carbon dynamics under the impact of land cover change and soil redistribution, CATENA, 151, 63–73, https://doi.org/10.1016/j.catena.2016.12.008, 2017.
Brubaker, S. C., Holzhey, C. S., and Brasher, B. R.: Estimating the water-dispersible clay content of soils, Soil Sci. Soc. Am. J., 56, 1226–1232, https://doi.org/10.2136/sssaj1992.03615995005600040036x, 1992.
Dominati, E., Patterson, M., and Mackay, A.: A framework for classifying and quantifying the natural capital and ecosystem services of soils, Ecol. Econ., 69, 1858–1868, https://doi.org/10.1016/j.ecolecon.2010.05.002, 2010.
Dotterweich, M.: The history of human-induced soil erosion: Geomorphic legacies, early descriptions and research, and the development of soil conservation – A global synopsis, Geomorphology, 201, 1–34, https://doi.org/10.1016/j.geomorph.2013.07.021, 2013.
Dudal, R.: The sixth factor of soil formation, Eurasian Soil Sci.+, 38, S60, 2005.
Dümig, A., Smittenberg, R., and Kögel-Knabner, I.: Concurrent evolution of organic and mineral components during initial soil development after retreat of the Damma glacier, Switzerland, Geoderma, 163, 83–94, https://doi.org/10.1016/j.geoderma.2011.04.006, 2011.
Elmer, M., Gerwin, W., Schaaf, W., Zaplata, M. K., Hohberg, K., Nenov, R., Bens, O., and Hüttl, R. F.: Dynamics of initial ecosystem development at the artificial catchment Chicken Creek, Lusatia, Germany, Environ. Earth Sci., 69, 491–505, https://doi.org/10.1007/s12665-013-2330-2, 2013.
Hunter, N. M., Bates, P. D., Horritt, M. S., and Wilson, M. D.: Simple spatially-distributed models for predicting flood inundation: A review, Geomorphology, 90, 208–225, https://doi.org/10.1016/j.geomorph.2006.10.021, 2007.
Jagercikova, M., Cornu, S., Bourlès, D., Antoine, P., Mayor, M., and Guillou, V.: Understanding long-term soil processes using meteoric 10Be: A first attempt on loessic deposits, Quat. Geochronol., 27, 11–21, https://doi.org/10.1016/j.quageo.2014.12.003, 2015.
Johnson, D. L. and Watson-Stegner, D.: Evolution model of pedogenesis, Soil Sci., 143, 349–366, 1987.
Kabala, C. and Zapart, J.: Initial soil development and carbon accumulation on moraines of the rapidly retreating Werenskiold Glacier, SW Spitsbergen, Svalbard archipelago, Geoderma, 175, 9–20, https://doi.org/10.1016/j.geoderma.2012.01.025, 2012.
Kirkby, M. J.: A conceptual model for physical and chemical soil profile evolution, Geoderma, 331, 121–130, https://doi.org/10.1016/j.geoderma.2018.06.009, 2018.
Krasilnikov, P. V. and Targulian, V. O.: Towards “New Soil Geography”: Challenges and Solutions. A Review, Eurasian Soil Sci.+, 52, 113–121, https://doi.org/10.1134/S1064229319020091, 2019.
Kwang, J. S., Thaler, E. A., Quirk, B. J., Quarrier, C. L., and Larsen, I. J.: A Landscape Evolution Modeling Approach for Predicting Three-Dimensional Soil Organic Carbon Redistribution in Agricultural Landscapes, J. Geophys. Res.-Biogeo., 127, e2021JG006616, https://doi.org/10.1029/2021JG006616, 2022.
Larsen, L., Thomas, C., Eppinga, M., and Coulthard, T.: Exploratory Modeling: Extracting Causality From Complexity, Eos T. Am. Geophys. Un., 95, 285–286, https://doi.org/10.1002/2014EO320001, 2014.
Ma, Y., Minasny, B., Malone, B. P., and Mcbratney, A. B.: Pedology and digital soil mapping (DSM), Eur. J. Soil Sci., 70, 216–235, https://doi.org/10.1111/ejss.12790, 2019.
Minasny, B., Finke, P., Stockmann, U., Vanwalleghem, T., and McBratney, A. B.: Resolving the integral connection between pedogenesis and landscape evolution, Earth-Sci. Rev., 150, 102–120, https://doi.org/10.1016/j.earscirev.2015.07.004, 2015.
Minasny, B., Malone, B. P., McBratney, A. B., Angers, D. A., Arrouays, D., Chambers, A., Chaplot, V., Chen, Z.-S., Cheng, K., Das, B. S., Field, D. J., Gimona, A., Hedley, C. B., Hong, S. Y., Mandal, B., Marchant, B. P., Martin, M., McConkey, B. G., Mulder, V. L., O'Rourke, S., Richer-de-Forges, A. C., Odeh, I., Padarian, J., Paustian, K., Pan, G., Poggio, L., Savin, I., Stolbovoy, V., Stockmann, U., Sulaeman, Y., Tsui, C.-C., Vågen, T.-G., Van Wesemael, B., and Winowiecki, L.: Soil carbon 4 per mille, Geoderma, 292, 59–86, https://doi.org/10.1016/j.geoderma.2017.01.002, 2017.
Nearing, M. A., Xie, Y., Liu, B., and Ye, Y.: Natural and anthropogenic rates of soil erosion, Int. Soil Water Conserv. Res., 5, 77–84, https://doi.org/10.1016/j.iswcr.2017.04.001, 2017.
Phillips, J. D.: Progressive and Regressive Pedogenesis and Complex Soil Evolution, Quaternary Res., 40, 169–176, https://doi.org/10.1006/qres.1993.1069, 1993.
Phillips, J. D.: Divergent evolution and the spatial structure of soil landscape variability, CATENA, 43, 101–113, https://doi.org/10.1016/S0341-8162(00)00122-3, 2001.
Phillips, J. D.: The convenient fiction of steady-state soil thickness, Geoderma, 156, 389–398, https://doi.org/10.1016/j.geoderma.2010.03.008, 2010.
Phillips, J. D.: Complexity of Earth Surface System Evolutionary Pathways, Math. Geosci., 48, 743–765, https://doi.org/10.1007/s11004-016-9642-1, 2016.
Phillips, J. D.: Soil Complexity and Pedogenesis, Soil Sci., 182, 1, https://doi.org/10.1097/SS.0000000000000204, 2017.
Phillips, J. D.: Evolutionary Pathways in Soil-Geomorphic Systems, Soil Sci., 184, 1–12, https://doi.org/10.1097/SS.0000000000000246, 2019.
Richter, D. deB. and Yaalon, D. H.: “The Changing Model of Soil” Revisited, Soil Sci. Soc. Am. J., 76, 766–778, https://doi.org/10.2136/sssaj2011.0407, 2012.
Šamonil, P., Daněk, P., Schaetzl, R. J., Tejnecký, V., and Drábek, O.: Converse pathways of soil evolution caused by tree uprooting: A synthesis from three regions with varying soil formation processes, CATENA, 161, 122–136, https://doi.org/10.1016/j.catena.2017.09.032, 2018.
Sauer, D.: Pedological concepts to be considered in soil chronosequence studies, Soil Res., 53, 577–591, https://doi.org/10.1071/SR14282, 2015.
Smetanová, A., Follain, S., David, M., Ciampalini, R., Raclot, D., Crabit, A., and Le Bissonnais, Y.: Landscaping compromises for land degradation neutrality: The case of soil erosion in a Mediterranean agricultural landscape, J. Environ. Manage., 235, 282–292, https://doi.org/10.1016/j.jenvman.2019.01.063, 2019.
Sommer, M., Gerke, H. H., and Deumlich, D.: Modelling soil landscape genesis – A “time split” approach for hummocky agricultural landscapes, Geoderma, 145, 480–493, https://doi.org/10.1016/j.geoderma.2008.01.012, 2008.
Temme, A. J. A. M. and Vanwalleghem, T.: LORICA – A new model for linking landscape and soil profile evolution: development and sensitivity analysis, Comput. Geosci., 90, 131–143, https://doi.org/10.1016/j.cageo.2015.08.004, 2016.
Temme, A. J. A. M., Claessens, L., Veldkamp, A., and Schoorl, J. M.: Evaluating choices in multi-process landscape evolution models, Geomorphology, 125, 271–281, https://doi.org/10.1016/j.geomorph.2010.10.007, 2011.
Temme, A. J. A. M., Lange, K., and Schwering, M. F. A.: Time development of soils in mountain landscapes – divergence and convergence of properties with age, J. Soil. Sediment., 15, 1373–1382, https://doi.org/10.1007/s11368-014-0947-8, 2015.
Temme, A. J. A. M., Armitage, J., Attal, M., van Gorp, W., Coulthard, T. J., and Schoorl, J. M.: Developing, choosing and using landscape evolution models to inform field-based landscape reconstruction studies, Earth Surf. Proc. Land., 42, 2167–2183, https://doi.org/10.1002/esp.4162, 2017.
Turner, B. L.: Soil as an Archetype of Complexity: A Systems Approach to Improve Insights, Learning, and Management of Coupled Biogeochemical Processes and Environmental Externalities, Soil Syst., 5, 39, https://doi.org/10.3390/soilsystems5030039, 2021.
Van der Meij, W. M., Temme, A. J. A. M., Lin, H. S., Gerke, H. H., and Sommer, M.: On the role of hydrologic processes in soil and landscape evolution modeling: concepts, complications and partial solutions, Earth-Sci. Rev., 185, 1088–1106, https://doi.org/10.1016/j.earscirev.2018.09.001, 2018.
Van der Meij, W. M., Temme, A. J. A. M., Wallinga, J., and Sommer, M.: Modeling soil and landscape evolution – the effect of rainfall and land-use change on soil and landscape patterns, SOIL, 6, 337–358, https://doi.org/10.5194/soil-6-337-2020, 2020.
Vogel, H.-J., Bartke, S., Daedlow, K., Helming, K., Kögel-Knabner, I., Lang, B., Rabot, E., Russell, D., Stößel, B., Weller, U., Wiesmeier, M., and Wollschläger, U.: A systemic approach for modeling soil functions, SOIL, 4, 83–92, https://doi.org/10.5194/soil-4-83-2018, 2018.
Welivitiya, W. D. D. P., Willgoose, G. R., and Hancock, G. R.: A coupled soilscape–landform evolution model: model formulation and initial results, Earth Surf. Dynam., 7, 591–607, https://doi.org/10.5194/esurf-7-591-2019, 2019.
Wilkinson, B. H.: Humans as geologic agents: A deep-time perspective, Geology, 33, 161–164, https://doi.org/10.1130/g21108.1, 2005.
Yoo, K., Amundson, R., Heimsath, A. M., and Dietrich, W. E.: Spatial patterns of soil organic carbon on hillslopes: Integrating geomorphic processes and the biological C cycle, Geoderma, 130, 47–65, https://doi.org/10.1016/j.geoderma.2005.01.008, 2006.
Short summary
The development of soils and landscapes can be complex due to changes in climate and land use. Computer models are required to simulate this complex development. This research presents a new method to analyze and visualize the results of these models. This is done with the use of evolutionary pathways (EPs), which describe how soil properties change in space and through time. I illustrate the EPs with examples from the field and give recommendations for further use of EPs in soil model studies.
The development of soils and landscapes can be complex due to changes in climate and land use....