Articles | Volume 7, issue 2
https://doi.org/10.5194/soil-7-767-2021
https://doi.org/10.5194/soil-7-767-2021
Original research article
 | 
25 Nov 2021
Original research article |  | 25 Nov 2021

Assessing soil and land health across two landscapes in eastern Rwanda to inform restoration activities

Leigh Ann Winowiecki, Aida Bargués-Tobella, Athanase Mukuralinda, Providence Mujawamariya, Elisée Bahati Ntawuhiganayo, Alex Billy Mugayi, Susan Chomba, and Tor-Gunnar Vågen

Related authors

Continental-scale controls on soil organic carbon across sub-Saharan Africa
Sophie F. von Fromm, Alison M. Hoyt, Markus Lange, Gifty E. Acquah, Ermias Aynekulu, Asmeret Asefaw Berhe, Stephan M. Haefele, Steve P. McGrath, Keith D. Shepherd, Andrew M. Sila, Johan Six, Erick K. Towett, Susan E. Trumbore, Tor-G. Vågen, Elvis Weullow, Leigh A. Winowiecki, and Sebastian Doetterl
SOIL, 7, 305–332, https://doi.org/10.5194/soil-7-305-2021,https://doi.org/10.5194/soil-7-305-2021, 2021
Short summary
Spatial assessments of soil organic carbon for stakeholder decision-making – a case study from Kenya
Tor-Gunnar Vågen, Leigh Ann Winowiecki, Constance Neely, Sabrina Chesterman, and Mieke Bourne
SOIL, 4, 259–266, https://doi.org/10.5194/soil-4-259-2018,https://doi.org/10.5194/soil-4-259-2018, 2018
Short summary

Related subject area

Soil systems
Evolutionary pathways in soil-landscape evolution models
W. Marijn van der Meij
SOIL, 8, 381–389, https://doi.org/10.5194/soil-8-381-2022,https://doi.org/10.5194/soil-8-381-2022, 2022
Short summary
Effects of environmental factors on the influence of tillage conversion on saturated soil hydraulic conductivity obtained with different methodologies: a global meta-analysis
Kaihua Liao, Juan Feng, Xiaoming Lai, and Qing Zhu
SOIL, 8, 309–317, https://doi.org/10.5194/soil-8-309-2022,https://doi.org/10.5194/soil-8-309-2022, 2022
Short summary
Nonlinear turnover rates of soil carbon following cultivation of native grasslands and subsequent afforestation of croplands
Guillermo Hernandez-Ramirez, Thomas J. Sauer, Yury G. Chendev, and Alexander N. Gennadiev
SOIL, 7, 415–431, https://doi.org/10.5194/soil-7-415-2021,https://doi.org/10.5194/soil-7-415-2021, 2021
Short summary
The effect of soil properties on zinc lability and solubility in soils of Ethiopia – an isotopic dilution study
Abdul-Wahab Mossa, Dawd Gashu, Martin R. Broadley, Sarah J. Dunham, Steve P. McGrath, Elizabeth H. Bailey, and Scott D. Young
SOIL, 7, 255–268, https://doi.org/10.5194/soil-7-255-2021,https://doi.org/10.5194/soil-7-255-2021, 2021
Short summary
Comparison of regolith physical and chemical characteristics with geophysical data along a climate and ecological gradient, Chilean Coastal Cordillera (26 to 38° S)
Mirjam Schaller, Igor Dal Bo, Todd A. Ehlers, Anja Klotzsche, Reinhard Drews, Juan Pablo Fuentes Espoz, and Jan van der Kruk
SOIL, 6, 629–647, https://doi.org/10.5194/soil-6-629-2020,https://doi.org/10.5194/soil-6-629-2020, 2020
Short summary

Cited articles

Akayezu, P., Musinguzi, L., Natugonza, V., Ogutu-Ohwayo, R., Mwathe, K., Dutton, C., and Manyifika, M.: Using sediment fingerprinting to identify erosion hotspots in a sub-catchment of Lake Kivu, Rwanda, Environ. Monit. Assess., 192, 12, 2020. 
Allen D. E., Singh B. P., and Dalal R. C.: Soil Health Indicators Under Climate Change: A Review of Current Knowledge, in: Soil Health and Climate Change, Soil Biology, edited by: Singh B., Cowie A., and Chan K., Springer, Berlin, Heidelberg, Germany, v29, https://doi.org/10.1007/978-3-642-20256-8_2, 2011. 
Bastin, J., Finegold, Y., Garcia, C., Mollicone, D., Rezende, M., Routh, D., Zohner, C. M., and Crowther, T.: The global tree restoration potential, Science, 365, 76–79, https://doi.org/10.1126/science.aax0848, 2019. 
Bates, D., Maechler, M., Bolker, B., and Walker, S.: Fitting Linear Mixed-Effects Models Using lme4, J. Stat. Softw., 67, 1–48, https://doi.org/10.18637/jss.v067.i01, 2015. 
Bennett, H. H.: Soil changes due to erosion, Soil Sci. Soc. Am. Pro., 4, pp. 399–401, https://doi.org/10.2136/sssaj1940.036159950004000C0119x, 1940. 
Download
Short summary
Achieving global restoration targets requires scaling of context-specific restoration options on the ground. We implemented the Land Degradation Surveillance Framework in Rwanda to assess indicators of soil and land health, including soil organic carbon (SOC), erosion prevalence, infiltration capacity, and tree biodiversity. Maps of soil erosion and SOC were produced at 30 m resolution with high accuracy. These data provide a rigorous biophysical baseline for tracking changes over time.