Articles | Volume 6, issue 2
https://doi.org/10.5194/soil-6-523-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/soil-6-523-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Nitrogen availability determines the long-term impact of land use change on soil carbon stocks in grasslands of southern Ghana
John Kormla Nyameasem
CORRESPONDING AUTHOR
Institute for Crop Science and Plant Breeding – Grass and Forage Science/Organic Agriculture, Christian Albrechts University, Kiel, Germany
Council for Scientific and Industrial Research – Animal Research
Institute, Achimota, Accra, Ghana
Thorsten Reinsch
Institute for Crop Science and Plant Breeding – Grass and Forage Science/Organic Agriculture, Christian Albrechts University, Kiel, Germany
Friedhelm Taube
Institute for Crop Science and Plant Breeding – Grass and Forage Science/Organic Agriculture, Christian Albrechts University, Kiel, Germany
Charles Yaw Fosu Domozoro
Council for Scientific and Industrial Research – Animal Research
Institute, Achimota, Accra, Ghana
Esther Marfo-Ahenkora
Council for Scientific and Industrial Research – Animal Research
Institute, Achimota, Accra, Ghana
Iraj Emadodin
Institute for Crop Science and Plant Breeding – Grass and Forage Science/Organic Agriculture, Christian Albrechts University, Kiel, Germany
Carsten Stefan Malisch
Institute for Crop Science and Plant Breeding – Grass and Forage Science/Organic Agriculture, Christian Albrechts University, Kiel, Germany
Related authors
No articles found.
Stephen Björn Wirth, Arne Poyda, Friedhelm Taube, Britta Tietjen, Christoph Müller, Kirsten Thonicke, Anja Linstädter, Kai Behn, Sibyll Schaphoff, Werner von Bloh, and Susanne Rolinski
Biogeosciences, 21, 381–410, https://doi.org/10.5194/bg-21-381-2024, https://doi.org/10.5194/bg-21-381-2024, 2024
Short summary
Short summary
In dynamic global vegetation models (DGVMs), the role of functional diversity in forage supply and soil organic carbon storage of grasslands is not explicitly taken into account. We introduced functional diversity into the Lund Potsdam Jena managed Land (LPJmL) DGVM using CSR theory. The new model reproduced well-known trade-offs between plant traits and can be used to quantify the role of functional diversity in climate change mitigation using different functional diversity scenarios.
Josue De Los Rios, Arne Poyda, Thorsten Reinsch, Christof Kluß, Ralf Loges, and Friedhelm Taube
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-6, https://doi.org/10.5194/bg-2022-6, 2022
Manuscript not accepted for further review
Short summary
Short summary
Land use change (LUC) and conventional tillage (CT) are resulting in the reduction of the high soil organic carbon (SOC) stocks stored in grassland ecosystems during their conversion and renovation, contributing thus to global warming. Using no-tillage (NT) is seen as an avenue to minimize or even conserve SOC stocks during these events. Our results show that SOC losses are greatly reduced after grassland conversion to arable land, whereas during renovation it contributes to conserve them.
Cited articles
Adamczyk, B., Karonen, M., Adamczyk, S., Engström, M. T., Laakso T.,
Saranpä, P., Kitunen, V., Smolander, A., and Simonc, J.: Tannins can
slow-down but also speed-up soil enzymatic activity in a boreal forest, Soil
Biol. Biochem., 107, 60–67, https://doi.org/10.1016/j.soilbio.2016.12.027,
2017.
Adamczyk, S., Kitunen, V., Lindroos, A. J., Adamczyk, B., and Smolander, A.:
Soil carbon and nitrogen cycling processes and composition of terpenes five
years after clear-cutting a Norway spruce stand: Effects of logging
residues, For. Ecol. Manag., 381, 318–326,
https://doi.org/10.1016/j.foreco.2016.09.034, 2016.
Adjolohoun, S., Bindelle, J., Adandedjan, C., and Buldgen, A.: Some suitable
grasses and legumes for ley pastures in Sudanian Africa: the case of the
Borgou region in Benin, Biotechnol. Agron. Soc. Environ., 12, 405–419,
2008.
Akaike, H.: Prediction and entropy, in: A Celebration of Statistics: The ISI
Centenary Volume, edited by: Atkinson, A. C. and Fienberg, S. E., Springer-Verlag, New York, pp. 1–24, 1985.
Alonso, I., Weston, K., Gregg, R., and Morecroft, M.: Carbon storage by
habitat – Review of the evidence of the impacts of management decisions and
condition on carbon stores and sources, Natural England Research Reports,
NERR043, 2012.
Amézquita, M. C., Amézquita, E., Casasola, F., Ramírez, B. L., Giraldo, H., Gómez, M. E., Llanderal, T., Velásquez, J., and Ibrahim, M.A.: C stocks and sequestration, in: Carbon sequestration in tropical grassland ecosystems, edited by: Mannetje, L.‘t, Amézquita, M. C., Buurman, P., and Ibrahim, M. A., Wageningen Academic Publishers, Wageningen, the Netherlands, pp. 49–67, ISBN 978-90-8686-026-5, 2008.
Apal Agricultural Laboratory: Soil Test Interpretation Guide, available at: https://pdf4pro.com/view/soil-test-interpretation-guide-apal-agricultural-laboratory-514162.html, last access: 2 November 2020.
Barnes, P.: Forage yield and soil improvement potential of some annual and short-term perennial legumes at two sites in Ghana, J. Agr. Sci., 32, 47–51, 1999.
Barnes, P. and Addo-Kwafo, A.: Research note; Evaluation of introduced
forage accessions for fodder production at a sub-humid site in southern
Ghana, Trop. Grassl., 30, 422–425, 1996.
Bationo, A., Fening, J. O., and Kwaw, A.: Assessment of soil fertility status
and integrated soil fertility management in Ghana, in: Improving the profitability,
sustainability and efficiency of nutrients through site specific fertilizer
recommendations in West Africa agro-ecosystems, edited by: Bationo, A., Ngaradoum, D., Youl, S., Lompo, F., and Fening, J., Springer, Cham,
https://doi.org/10.1007/978-3-319-58789-9_7, 2018.
Bessah, E., Bala, A., Agodzo, S. K., and Okhimamhe, A. A.: Dynamics of soil
organic carbon stocks in the Guinea Savannah and transition agro-ecology
under different land-use systems in Ghana, Cogent Geosci., 2, 1–11,
https://doi.org/10.1080/23312041.2016.1140319, 2016.
Bonsu, M.: Soil erosion studies under different cultural practices within
the various ecological zones of Ghana, Lecture Notes, FAO Training Course on
Soil Conservation and Management, Kwadaso, Kumasi, 1979.
Bradford, M. A., Fierer, N., Jackson, R. B., Maddox, T. R., and Reynolds, J.
F.: Nonlinear root-derived carbon sequestration across a gradient of
nitrogen and phosphorous deposition in experimental mesocosms, Glob. Change
Biol., 14, 1113–1124, https://doi.org/10.1111/j.1365-2486.2008.01564.x, 2008.
Bray, R. H. and Kurtz, L. T.: Determination of total, organic, and
available forms of phosphorus in soils, Soil Sci., 59, 39–45, 1945.
Bretz, F., Hothorn, T., and Westfall, P.: Multiple comparisons using R., Chapman and Hall/CRC, New York, https://doi.org/10.1201/9781420010909, 2011.
Brouwer, R.: Functional equilibrium: sense or nonsense?, Neth. J. Agr. Sci.,
31, 335–348, 1983.
Burnham, K. P. and Anderson, D. R.: Data-based selection of an appropriate biological model: the key to modern data analysis, in: Wildlife 2001: Populations, edited by: McCullough, D. R. and Barrett, R. H., Elsevier, London, 16–30, 1992.
Burnham, K. P. and White, G. C.: Evaluation of some random effects methodology applicable to bird ringing data, J. Appl. Stat., 29, 245–264, 2002.
Burnham, K. P., Anderson, D. R., and Huyvaert, K. P.: AIC model selection
and multimodel inference in behavioural ecology: some background,
observations, and comparisons, Behav. Ecol. Sociobiol., 65, 23–35,
https://doi.org/10.1007/s00265-010-1029-6, 2011.
Caquet, B., De Grandcourt, A., Thongo M'bou, A., Epron, D., Kinana, A.,
Saint André, L., and Nouvellon, Y.: Soil carbon balance in a tropical
grassland: Estimation of soil respiration and its partitioning using a
semi-empirical model, Agr. Forest Meteorol., 158–159, 71–79,
https://doi.org/10.1016/j.agrformet.2012.02.008, 2012.
Chabbi, A., Lehmann, J., Ciais, P., Loescher, H. W., Cotrufo, M. F., Don,
A., SanClements, M., Schipper, L., Six, J., Smith, P., and Rumpel, C.:
Aligning agriculture and climate policy, Nat. Clim. Change, 7, 307–309,
https://doi.org/10.1038/nclimate3286, 2017.
Chen, S., Wang, W., Xu, W., Wang, Y., Wan, H., Chen, D., Tang, Z., Tang, X.,
Zhou, G., Xie, Z., Zhou, D., Shangguan, Z., Huang, J., He, J. S., Wang, Y.,
Sheng, J., Tang, L., Li, X., Dong, M., Wu, Y., Wang, Q., Wang, Z., Wu, J.,
Chapin, F. S., and Bai, Y.: Plant diversity enhances productivity and soil
carbon storage, P. Natl. Acad. Sci. USA, 115, 4027–4032,
https://doi.org/10.1073/pnas.1700298114, 2018.
Chomel, M., Guittonny-Larchevêque, M., Fernandez, C., Gallet, C.,
DesRochers, A., Paré, D., Jackson, B. G., and Baldy, V.: Plant secondary
metabolites: a key driver of litter decomposition and soil nutrient cycling,
J. Ecol., 104, 1527–1541, https://doi.org/10.1111/1365-2745.12644, 2016.
Conant, R. T., Cerri, C. E. P., Osborne, B. B., and Paustian K.: Grassland
management impacts on soil carbon stocks: A new synthesis, Ecol. Appl.,
27, 662–668, https://doi.org/10.1002/eap.1473, 2017.
Crews, T. and Rumsey, B.: What agriculture can learn from native ecosystems
in building soil organic matter: A review, Sustainability, 9, 578,
https://doi.org/10.3390/su9040578, 2017.
Dong, L., Mao, Z., and Sun, T.: Condensed tannin effects on decomposition of
very fine roots among temperate tree species, Soil Biol. Biochem., 103,
489–492. https://doi.org/10.1016/j.soilbio.2016.10.003, 2016.
Fox, J. and Weisberg, S.: An R Companion to Applied Regression, 3rd
Edition, Sage, Thousand Oaks CA, 2019.
Franzel, S., Carsan, S., Lukuyu, B., Sinja, J., and Wambugu, C.: Fodder
trees for improving livestock productivity and smallholder livelihoods in
Africa, Curr. Opin. Env. Sust., 6, 98–103,
https://doi.org/10.1016/j.cosust.2013.11.008, 2014.
Ghana Meteorological Agency: Climate data of Pokuase, General Services, Ghana Meteorological Agency, Legon, Accra, available at: https://www.meteo.gov.gh/gmet/, last access: 3 June 2019.
Gobin, A., Campling, P., Janssen, L., Desmet, N., van Delden, H., Hurkens,
J., Lavelle, P., and Berman, S.: Soil organic matter management across the
EU – best practices, constraints and trade-offs, Final Report for the
European Commission's DG Environment, https://doi.org/10.2779/17252, 2011.
Grace, J., José, J. S., Meir, P., Miranda, H. S., and Montes, R. A.:
Productivity and carbon fluxes of tropical savannas, J. Biogeogr., 33,
387–400, https://doi.org/10.1111/j.1365-2699.2005.01448.x, 2006.
Graham, S. L., Hunt, J. E., Millard, P., McSeveny, T., Tylianakis, J. M.,
and Whitehead, D.: Effects of soil warming and nitrogen addition on soil
respiration in a New Zealand tussock grassland, PLoS One, 9, e91204,
https://doi.org/10.1371/journal.pone.0091204.t001, 2014.
Grieco, E., Chiti, T., and Valentini, R.: Land use change and carbon stocks
dynamics in sub-Saharan Africa – a Case study of Western Africa – Ghana, EGU General Assembly, Vienna, Austria, 22–27 April 2012, 12218, 2012.
Guo, L. B. and Gifford, R. M.: Soil carbon stocks and land-use change: a
meta-analysis, Glob. Change Biol., 8, 345–360,
https://doi.org/10.1046/j.1354-1013.2002.00486.x, 2002.
Halvorson, J. J., Gonzalez, J. M., and Hagerman, A. E.: Repeated
applications of tannins and related phenolic compounds are retained by the
soil and affect cation exchange capacity, Soil Biol. Biochem., 43,
1139–1147, https://doi.org/10.1016/j.soilbio.2011.01.023, 2011.
Hassen, A., Talore, D. G., Tesfamariam, E. H., Friend, M. A., and Mpanza, T.
D. E.: Potential use of forage-legume intercropping technologies to adapt to
climate change impacts on mixed crop-livestock systems in Africa: a review,
Reg. Environ. Change, 17, 1713–1724,
https://doi.org/10.1007/s10113-017-1131-7, 2017.
Hättenschwiler, S. and Vitousek, P. M.: The role of polyphenols in
terrestrial ecosystem nutrient cycling, Trends Ecol. Evol., 15, 238–242,
https://doi.org/10.1016/S0169-5347(00)01861-9, 2000.
Hurvich, C. M. and Tsai, C.-L.: Model selection for extended quasi-likelihood models in small samples, Biometrics, 51, 1077–1084, 1995.
International Union of Soil Science (IUSS) Working Group: World Reference Base for Soil Resources 2014, International soil classification system for naming soils and creating legends for soil maps, World Soil Resources Reports No. 106, FAO, Rome, ISBN 978-92-5-108369-7, 2015
Jackson, F. S., Barry, T. N., Lascano, C., and Palmer, B.: The extractable
and bound condensed tannin content of leaves from tropical tree, J. Sci.
Food Agr., 71, 103–110,
https://doi.org/10.1002/(SICI)1097-0010(199605)71:1<103::AID-JSFA554>3.0.CO;2-8, 1996.
Jayanegara, A., Sujarnoko, T. U. P., Ridla, M., Kondo, M., and Kreuzer, M.: Silage quality as influenced by concentration and type of tannins present in the material ensiled: A meta-analysis, J. Anim. Physiol. An. N., 103, 456–465, https://doi.org/10.1111/jpn.13050, 2019.
Jayne, T., Kolavalli, S., Debrah, K., Ariga, J., Brunache, P., Kabaghe, C., Nunez-Rodriguez, W., Owusu Baah, K., Bationo, A. A., Jeroen Huising, E., Lambrecht, I., Diao, X., Yeboah, F., Benin, S., and Andam, K.: Towards a sustainable soil fertility strategy in Ghana, Report submitted to the Ministry of Food and Agriculture Government of Ghana, Feed the Future Innovation Lab for 85 Food Security Policy Research Papers 258733, Michigan State University, Department of Agricultural, Food, and Resource Economics,
Feed the Future Innovation Lab for Food Security (FSP), https://doi.org/10.22004/ag.econ.258733, 2015.
Jiang, C., Yu, G., Fang, H., Cao, G., and Li, Y.: Short-term effect of
increasing nitrogen deposition on CO2, CH4 and N2O fluxes in
an alpine meadow on the Qinghai-Tibetan Plateau, China, Atmos.
Environ., 44, 2920–2926, https://doi.org/10.1016/j.atmosenv.2010.03.030,
2010.
Johnston, A. E., Poulton, P. R., and Coleman, K.: Soil organic matter: its
importance in sustainable agriculture and carbon dioxide fluxes, Adv.
Agron., 101, 1–57, https://doi.org/10.1016/S0065-2113(08)00801-8, 2009.
Kagiya, N., Reinsch, T., Taube, F., Salminen, J.-P., Kluß, C., Hasler, M., and Malisch, C. S.: Turnover rates of roots vary considerably across temperate forage species, Soil Biol. Biochem., 139, 107614, https://doi.org/10.1016/j.soilbio.2019.107614, 2019.
Khan, S. A., Mulvaney, R. L., Ellsworth, T. R., and Boast, C. W.: The myth
of nitrogen fertilization for soil carbon sequestration, J. Environ. Qual.,
36, 1821–1832, https://doi.org/10.2134/jeq2007.0099, 2007.
Kleber, M., Eusterhues, K., Keiluweit, M., Mikutta, C., Mikutta, R., and
Nico, P. S.: Mineral-organic associations: formation, properties, and
relevance in soil environments, Adv. Agron., 130, 1–114,
https://doi.org/10.1016/bs.agron.2014.10.005, 2015.
Kraus, T. E. C., Dahlgren, R. A., and Zasoski, R. J.: Tannins in nutrient
dynamics of forest ecosystems – A review, Plant Soil, 256, 41–66, https://doi.org/10.1023/A:1026206511084, 2003.
Lal, R.: Sequestration of atmospheric CO2 into global carbon pool, Energ.
Environ. Sci., 1, 86–100, https://doi.org/10.1039/B809492F, 2008.
Lal, R.: Digging deeper: a holistic perspective of factors affecting soil organic carbon sequestration in agroecosystems, Glob. Change Biol. 24, 3285–3301, https://doi.org/10.1111/gcb.14054, 2018.
Lattanzi F. A.: C3/C4 grasslands and climate change, Grassland Sci. Eur., 15, 3–13, 2010.
Li, J. H., Yang, Y. J., Li, B. W., Li, W. J., Wang, G., and Knops J. M. H.: Effects of nitrogen and phosphorus fertilization on soil carbon fractions in alpine meadows on the Qinghai-Tibetan Plateau, PLoS ONE, 9, e103266, https://doi.org/10.1371/journal.pone.0103266, 2014.
Li, K., Gong, Y., Song, W., He, G., Hu, Y., Tian, C., and Liu, X.: Responses
of CH4, CO2 and N2O fluxes to increasing nitrogen deposition in alpine
grassland of the Tianshan Mountains, Chemosphere, 88, 140–143, https://doi.org/10.1016/j.chemosphere.2012.02.077, 2012.
Loges, R., Bunne, I., Reinsch, T., Malisch, C., Kluß, C., Herrmann, A.,
and Taube, F.: Forage production in rotational systems generates similar
yields compared to maize monocultures but improves soil carbon stocks, Eur.
J. Agron., 97, 11–19, https://doi.org/10.1016/j.eja.2018.04.010, 2018.
Long, S. P.: Environmental responses, in: C4 Plant Biology, edited by: Sage, R. F. and Monson, R. K., Academic Press, San Diego, USA, pp. 215–249, 1999.
Marques, J., Luizao, F., Teixeira, W., Vitel, C., and Marques, E.: Soil
organic carbon, carbon stock and their relationships to physical attributes
under forest soils in central Amazonia, Rev. Arvore, 40, 197–208,
https://doi.org/10.1590/0100-67622016000200002, 2016.
McSherry, M. E. and Ritchie, M. E.: Effects of grazing on grassland soil
carbon: A global review, Glob. Change Biol., 19, 1347–1357,
https://doi.org/10.1111/gcb.12144, 2013.
Miller, A. P. and Arai, Y.: Comparative evaluation of phosphate
spectrophotometric methods in soil test phosphorus extracting solutions,
Soil Sci. Soc. Am. J., 80, 1543–1550,
https://doi.org/10.2136/sssaj2016.08.0256n, 2016.
Milne, E., Aynekulu, E., Bationo, A., Batjes, N. H., Boone, R., Conant, R.
Davies, J., Hanan, N., Hoag, D., Herrick, J. E., Knausenberger, W., Neely,
C., Njoka, J., Ngugi, M., Parton, B., Paustian, K., Reid, R., Said, M.,
Shepherd, K., Swift, D., Thornton, P., Williams, S., Miller, S., and Nkonya,
E.: Grazing lands in Sub-Saharan Africa and their potential role in climate
change mitigation: What we do and don't know, Environ. Dev., 19,
70–74, https://doi.org/10.1016/j.envdev.2016.06.001, 2016.
Mudau, F. N., Soundy, P., and Du Toit, E. S.: Effects of nitrogen,
phosphorus, and potassium nutrition on total polyphenol content of bush tea
(Athrixia phylicoides L.) leaves in shaded nursery environment, HortScience,
42, 334–338, https://doi.org/10.21273/HORTSCI.42.2.334, 2007.
Mueller-Harvey, I., Bee, G., Dohme-Meier, F., Hoste, H., Karonen, M.,
Kölliker, R., Lüscher, A., Niderkorn, V., Pellikaan, W. F.,
Salminen, J.-P., Skøt, L., Smith, L. M. J., Thamsborg, S. M., Totterdell,
P., Wilkinson, I., Williams, A. R., Azuhnwi, B. N., Baert, N., Brinkhaus, A.
G., Copani, G., Desrues, O., Drake, C., Engström, M., Fryganas, C.,
Girard, M., Huyen, N. T., Kempf, K., Malisch, C., Mora-Ortiz, M., Quijada,
J., Ramsay, A., Ropiak, H. M., and Waghorn, G. C.: Benefits of condensed
tannins in forage legumes fed to ruminants: Importance of structure,
concentration, and diet composition, Crop Sci., 59, 861–885,
https://doi.org/10.2135/cropsci2017.06.0369, 2019.
Min, K., Freeman, C., Kang, H., and Choi, S. U.: The regulation by phenolic compounds of soil organic matter dynamics under a changing environment, Biomed. Res. Int., 2015, 825098, https://doi.org/10.1155/2015/825098, 2015.
Minasny, B., Malone, B. P., McBratney, A. B., Angers, D. A., Arrouays, D., Chambers, A., Chaplot, V., Chen, Z.-S., Cheng, K., Das, B. S., Field, D. J., Gimona, A., Hedley, C. B., Hong, S. Y., Mandal, B., Marchant, B. P., Martin, M., McConkey, B. G., Mulder, V. L., O'Rourke, S., Richer-de-Forges, A. C., Odeh, I., Padarian, J., Paustian, K., Pan, G., Poggio., L., Savin, I., Stolbovoy, V., Stockmann, U., Sulaeman, Y., Tsui, C.-C., Vågen, T.-G., van Wesemael, B., and Winowiecki, L.: Soil carbon 4 per mille, Geoderma, 292, 59–86, https://doi.org/10.1016/j.geoderma.2017.01.002, 2017.
Mupangwa, J. F., Acamovic, T., Topps, J. H., Ngongoni, N. T., and
Hamudikuwanda, H.: Content of soluble and bound condensed tannins of three
tropical herbaceous forage legumes, Anim. Feed Sci. Tech., 83, 139–144,
https://doi.org/10.1016/S0377-8401(99)00117-0, 2000.
Nabais, C., Labuto, G., Gonçalves, S., Buscardo, E., Semensatto, D.,
Nogueira, A. R., and Freitas, H.: Effect of root age on the allocation of
metals, amino acids and sugars in different cell fractions of the perennial
grass Paspalum notatum (Bahiagrass), Plant Physiol. Bioch., 49, 1442–1447,
https://doi.org/10.1016/j.plaphy.2011.09.010, 2011.
Nutman, P. S. (Ed.): IBP field experiments on nitrogen fixation by nodulated
legumes, in: Symbiotic nitrogen fixation by plants, Cambridge
Univ. Press, London, 211–238, 1976.
Nyameasem, J. K., Reinsch, T., Taube, F., Domozoro, C. Y. F., Ahenkora-Marfo, E., Emadodin, I., and Malisch, C. S.: Nitrogen availability determines the long-term impact of land-use change on soil carbon stocks in Ghana, Figshare, https://doi.org/10.6084/m9.figshare.12016158.v1, last access: 2 November 2020.
Olson, K. R.: Soil organic carbon sequestration, storage, retention and loss
in US croplands: Issues paper for protocol development, Geoderma, 195–206,
https://doi.org/10.1016/j.geoderma.2012.12.004, 2013.
Pei, S. F., Fu, H., and Wan, C. G.: Changes in soil properties and
vegetation following exclosure and grazing in degraded Alxa desert steppe of
Inner Mongolia, China, Agr. Ecosyst. Environ., 124, 33–39,
https://doi.org/10.1016/j.agee.2007.08.008, 2008.
Pereira, T. P., Modesto, E. C., Nepomuceno, D. de D., de Oliveira, O. F., de
Freitas, R. S. X., Muir, J. P., Dubeux Jr., J. C. B., and de Carvalho Almeida, J. C.: Characterization and biological activity of condensed tannins from
tropical forage legumes, Pesqui. Agropecu. Bras., 53, 1070–1077,
https://doi.org/10.1590/S0100-204X2018000900011, 2018.
Post, W., Emanuel, W. R., Zinke, P. J., and Stangenberger, A. G.: Soil
carbon pools and world life zones, Nature, 298, 156–159,
https://doi.org/10.1038/298156a0, 1982.
Post, W., Izaurralde, R., West, T., Liebig, M., and King, A.: Management
opportunities for enhancing terrestrial carbon dioxide sinks, Front Ecol.
Environ., 10, 554–561, https://doi.org/10.1890/120065, 2012.
Quesada, C. A., Paz, C., Oblitas Mendoza, E., Phillips, O. L., Saiz, G., and Lloyd, J.: Variations in soil chemical and physical properties explain basin-wide Amazon forest soil carbon concentrations, SOIL, 6, 53–88, https://doi.org/10.5194/soil-6-53-2020, 2020.
R Core Team: R: a language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/ (last access: 2 November 2020), 2019.
Reeder, J. D. and Schuman, G. E.: Influence of livestock grazing on C
sequestration in semi-arid mixed-grass and short-grass rangelands, Environ.
Pollut., 116, 457–463, https://doi.org/10.1016/s0269-7491(01)00223-8, 2002.
Reinsch, T., Loges, R., Kluß, C., and Taube, F.: Effect of grassland
ploughing and reseeding on CO2 emissions and soil carbon stocks, Agr.
Ecosyst. Environ., 265, 374–383,
https://doi.org/10.1016/j.agee.2018.06.020, 2018.
Ridley, A. M., Slattery, W. J., Helyar, K. R., and Cowling, A.: Acidification
under grazed annual and perennial grass based pastures. Australian Journal
of Experimental Agriculture, 30, 539–544,
https://doi.org/10.1071/EA9900539, 1990.
Rosales, R. B.: Condensed tannins in tropical forage legumes: their
characterization and study of their nutritional impact from the standpoint
of structure-activity relationships, PhD Thesis, The University of Reading,
1999.
Sage, R. F. and Pearcy, R. W.: The nitrogen use efficiency of C3 and C4 plants, II. Leaf nitrogen effects on the gas exchange characteristics of Chenopodium album (L.) and Amaranthus retroflexus (L.), Plant Physiol., 84, 959–963, https://doi.org/10.1104/pp.84.3.959, 1987.
Saiz, G. and Albrecht, A.: Methods for smallholder quantification of soil
carbon stocks and stock changes, in: Methods for measuring
greenhouse gas balances and evaluating mitigation options in smallholder
agriculture, edited by: Rosenstock, T., Rufino, M.,
Butterbach-Bahl, K., Wollenberg, L., and Richards, M., Springer, Cham, https://doi.org/10.1007/978-3-319-29794-1, 2016.
Saiz, G., Bird, M. I., Domingues, T., Schrodt, F., Schwarz, M., Feldpausch,
T. R., Veenendaal, E., Djagbletey, G., Hien, F., Compaore, H., Diallo, A.,
and Lloyd, J.: Variation in soil carbon stocks and their determinants across
a precipitation gradient in West Africa, Glob. Change Biol., 18,
1670–1683, https://doi.org/10.1111/j.1365-2486.2012.02657.x, 2012.
Schmeer, M., Loges, R., Dittert, K., Senbayram, M., Horn, R., and Taube, F.:
Legume-based forage production systems reduce nitrous oxide emissions, Soil
Till. Res., 143, 17–25, https://doi.org/10.1016/j.still.2014.05.001, 2014.
Schönbach, P., Wan, H., Gierus, M., Bai, Y., Müller, K., Lin, L.,
Susenbeth, A., and Taube, F.: Grassland responses to grazing: effects of
grazing intensity and management system in an Inner Mongolian steppe
ecosystem, Plant Soil, 340, 103–115, https://doi.org/10.1007/s11104-010-0366-6, 2011.
Semmartin, M., Di Bella, C., and de Salamone, I. G.: Grazing-induced changes
in plant species composition affect plant and soil properties of grassland
mesocosms, Plant Soil, 328, 471–481, https://doi.org/10.1007/s11104-009-0126-7, 2010.
Shanmugam, S., Dalal, R., Joosten, H., Raison, R., and Joo, G.: SOC stock
changes and greenhouse gas emissions following tropical land use conversions
to plantation crops on mineral soils, with a special focus on oil palm and
rubber plantations, Agriculture, 8, 133,
https://doi.org/10.3390/agriculture8090133, 2018.
Shrestha, G. and Stahl, P. D.: Carbon accumulation and storage in semi-arid
sagebrush steppe: effects of long-term grazing exclusion, Agr. Ecosyst.
Environ., 125, 173–181, https://doi.org/10.1016/j.agee.2007.12.007, 2008.
Six, J., Feller, C., Denef, K., Ogle, S., de Moraes Sa, J. C., and Albrecht, A.:
Soil organic matter, biota and aggregation in temperate and tropical soils –
Effects of no-tillage, Agronomie, 22, 755–775, https://doi.org/10.1051/agro:2002043, 2002.
Song, Z., Liu, C., Müller, K., Yang, X., Wu, Y., and Wang, H.: Silicon
regulation of soil organic carbon stabilization and its potential to
mitigate climate change, Earth-Sci. Rev., 185, 463–475,
https://doi.org/10.1016/j.earscirev.2018.06.020, 2018.
Sottie, E., Marfo-Ahenkora, E., Domozoro, C., Wallace, P., and Iwaasa, A.:
Nutritive value and condensed tannin concentration of some tropical legumes, in: Proceedings of the 10th international rangeland congress, edited by: Iwaasa, A., Lardner, H. A., Schellenberg, M., Willms, W., and Larson, K., Saskatoon, 16–22 July 2016, available at: http://2016canada.rangelandcongress.org (last access: 2 November 2020), 2016.
Stahl, C., Fontaine, S., Klumpp, K., Picon-Cochard, C., Grise, M. M.,
Dezécache, C., Ponchant, L., Freycon, V., Blanc, L., Bonal, D., Burban,
B., Soussana, J.-F., and Blanfort, V.: Continuous soil carbon storage of old
permanent pastures in Amazonia, Glob. Change Biol., 23, 3382–3392,
https://doi.org/10.1111/gcb.13573, 2016.
Sterling, S. and Ducharne, A.: Comprehensive dataset of global land-cover
change for land surface model applications, Global Biogeochem. Cy.,
22, GB3017, https://doi.org/10.1029/2007gb002959, 2008.
Stringer, L. C., Dougill, A. J., Thomas, A. D., Spracklen, D. V.,
Chesterman, S., Speranza, C. I., Rueff, H., Riddell, M., Williams, M.,
Beedy, T., Abson, D. J., Klintenberg, P., Syampungani, S., Powell, P.,
Palmer, A. R., Seely, M. K., Mkwambisi, D. D., Falcao, M., Sitoe, A., Ross,
S., and Kopolo, G.: Challenges and opportunities in linking carbon
sequestration, livelihoods and ecosystem service provision in drylands,
Environ. Sci. Policy, 19–20, 121–135,
https://doi.org/10.1016/j.envsci.2012.02.004, 2012.
Tamura, M. and Tharayil, N.: Plant litter chemistry and microbial priming
regulate the accrual, composition and stability of soil carbon in invaded
ecosystems, New Phytol., 203, 110–124,
https://doi.org/10.1111/nph.12795, 2014.
Tan, Z., Tieszen, L. L., Tachie-Obeng, E., Liu, S., and Dieye, A. M.: Historical and simulated ecosystem carbon dynamics in Ghana: land use, management, and climate, Biogeosciences, 6, 45–58, https://doi.org/10.5194/bg-6-45-2009, 2009.
Taube, F., Gierus, M., Hermann, A., Loges, R., and Schönbach, P.:
Grassland and globalization – challenges for north-west European grass and
forage research, Grass Forage Sci., 69, 2–16,
https://doi.org/10.1111/gfs.12043, 2014.
Taylor, S. H., Hulme, S. P., Rees, M., Ripley, B. S., Woodward, F. I., and
Osborne, C. P.: Ecophysiological traits in C3 and C4 grasses: a
phylogenetically controlled screening experiment, New Phytol., 185,
780–791, https://doi.org/10.1111/j.1469-8137.2009.03102.x, 2010.
Terrill, T. H., Rowan, T. H., Douglas, G. B., and Barry, T. N.:
Determination of extractable and bound condensed tannin concentrations in
forage plants, protein concentrate meals and cereal grains, J. Sci. Food
Agr., 58, 321–329, https://doi.org/10.1002/jsfa.2740580306, 1992.
Timpong-Jones, E. C., Mutanga, O., Adogbla-Bessa, T., Attua, E. M., and
Adiku, S. G. K.: Herbage yield and grazing capacity estimation in a tropical
coastal Savannah rangeland using spatial statistics, West Afr. J. Appl.
Ecol., 21, 37–45, 2013.
Waldrop, M. P., Zak, D. R., Sinsabaugh, R. L., Gallo, M., and Lauber, C.:
Nitrogen deposition modifies soil carbon storage through changes in
microbial enzymatic activity, Ecol. Appl., 14, 1172–1177,
https://doi.org/10.1890/03-5120, 2004.
Wambugu, C., Place, F., and Franzel, S.: Research, development and scaling
up the adoption of fodder shrub innovations in East Africa, Int. J. Agr.
Sustain., 9, 100–109, https://doi.org/10.3763/ijas.2010.0562, 2011.
Wang, H., Yang, Y., Zhang, X., and Tian, G.: carbon footprint analysis for
mechanization of maize production based on life cycle assessment: a case
study in Jilin Province, China, Sustainability, 7, 15772–15784,
https://doi.org/10.3390/su71115772, 2015.
Wiesmeier, M., Spörlein, P., Geuß, U., Hangen, E., Haug, S.,
Reischl, A., Schilling, B., von Lützow, M., and Kögel-Knabner, I.:
Soil organic carbon stocks in southeast Germany (Bavaria) as affected by
land use, soil type and sampling depth, Glob. Change Biol., 18,
2233–2245, https://doi.org/10.1111/j.1365-2486.2012.02699.x, 2012.
Xu, Z., Li, Z., Liu, H., Zhang, X., Hao, Q., Cui, Y., Yang, S., Liu, M.,
Wang, H., Gielen, G., and Song, Z.: Soil organic carbon in particle-size
fractions under three grassland types in Inner Mongolia, China. J. Soil
Sediment, 18, 1896–1905, https://doi.org/10.1007/s11368-018-1951-1,
2018.
Yan, G., Xing, Y., Xu, L., Wang, J., Meng, W., Wang, Q., Yu, J., Zhang, Z.,
Wang, Z., Jiang, S., Liu, B., and Han, S.: Nitrogen deposition may enhance
soil carbon storage via change of soil respiration dynamic during a spring
freeze-thaw cycle period, Sci. Rep., 6, 1–9,
https://doi.org/10.1038/srep29134, 2016.
Yang, Y., Tilman, D., Furey, G., and Lehman. C.: Soil carbon sequestration
accelerated by restoration of grassland biodiversity, Nat. Commun., 10,
1–7, https://doi.org/10.1038/s41467-019-08636-w, 2019.
Zar, J. H.: Biostatistical Analysis, 5th Edn., Prentice-Hall/Pearson,
Upper Saddle River, xiii, 944 pp., 2010.
Zhao, K., Zhang, W., Zhou, L., Liu, X., Xu, J., and Huang, P.: Modeling
transfer of heavy metals in soil-rice system and their risk assessment in
paddy fields, Environ. Earth Sci., 59, 519–527, https://doi.org/10.1007/s12665-009-0049-x, 2009.
Short summary
Long-term studies on the impact of land use change and crop selection on soil organic carbon (SOC) stocks in sub-Saharan Africa are scarce. Accordingly, this study analysed the impact of converting natural grasslands to a range of low-input production systems in a tropical savannah on SOC stocks. Apart from the cultivation of legume tree and/or shrub species, all land management techniques were detrimental. Grazed grasslands in particular had almost 50 % less SOC than natural grasslands.
Long-term studies on the impact of land use change and crop selection on soil organic carbon...