Journal cover Journal topic
SOIL An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.343 IF 3.343
  • IF 5-year value: 4.963 IF 5-year
    4.963
  • CiteScore value: 9.6 CiteScore
    9.6
  • SNIP value: 1.637 SNIP 1.637
  • IPP value: 4.28 IPP 4.28
  • SJR value: 1.403 SJR 1.403
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 25 Scimago H
    index 25
Volume 1, issue 1
SOIL, 1, 411–425, 2015
https://doi.org/10.5194/soil-1-411-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
SOIL, 1, 411–425, 2015
https://doi.org/10.5194/soil-1-411-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Original research article 09 Jun 2015

Original research article | 09 Jun 2015

Predicting soil water repellency using hydrophobic organic compounds and their vegetation origin

J. Mao2,1, K. G. J. Nierop2, M. Rietkerk1, and S. C. Dekker1 J. Mao et al.
  • 1Copernicus Institute of Sustainable Development – Environmental Sciences, Faculty of Geosciences, Utrecht University, Heidelberglaan 2, P.O. Box 80115, 3508 TC Utrecht, the Netherlands
  • 2Department of Earth Sciences – Organic Geochemistry, Faculty of Geosciences, Utrecht University, Heidelberglaan 2, P.O. Box 80115, 3508 TC Utrecht, the Netherlands

Abstract. It is widely accepted that soil water repellency (SWR) is mainly caused by plant-derived hydrophobic organic compounds in soils; such hydrophobic compounds are defined as SWR markers. However, the detailed influence of SWR markers on SWR is yet unclear and the knowledge of their original sources is still limited. The aims of this study are to select important SWR markers to predict SWR based on their correlation with SWR and to determine their origin. In our study, sandy soils with different SWR were collected, along with their covering vegetation, i.e. plant leaves/needles and roots. A sequential extraction procedure was applied to the soils to obtain three organic fractions: dichloromethane (DCM)/MeOH soluble fraction (D), DCM/MeOH insoluble fraction of isopropanol/ammonia solution (IPA/NH3) extract (AI) and DCM/MeOH soluble fraction of IPA/NH3 extract (AS), which were subdivided into 10 dominant SWR marker groups: D fatty acid, D alcohol, D alkane, AI fatty acid, AI alcohol, AI ω-hydroxy fatty acid, AI α,ω-dicarboxylic acid, AS fatty acid, AS alcohol and AS ω-hydroxy fatty acid. Waxes and biopolyesters of the vegetation were also sequentially extracted from plants. The soils with higher SWR have significantly higher relative concentrations of AS alcohols. A number of indications suggest that AS alcohols are mainly derived from roots and most likely produced by microbial hydrolysis of biopolyesters (mainly suberins). In addition, the strong correlation between the biomarkers of plant tissues and SWR markers in soils suggests that it is more accurate to predict SWR of topsoils using ester-bound alcohols from roots, and to predict SWR of subsoils using root-derived ω-hydroxy fatty acids and α,ω-dicarboxylic acids. Considering the sandy soils studied here, the relationships we obtained need to be tested for other types of soils. Our analysis indicates that plant roots have a primary role influencing SWR relative to plant leaves.

Publications Copernicus
Download
Short summary
In this study we show how soil water repellency (SWR) is linked to the quantity and quality of SWR markers in soils mainly derived from vegetation. To predict the SWR of topsoils, we find the strongest relationship with ester-bound alcohols, and for subsoils with root-derived ω-hydroxy fatty acids and α,ω-dicarboxylic acids. From this we conclude that, overall, roots influence SWR more strongly than leaves and subsequently SWR markers derived from roots predict SWR better.
In this study we show how soil water repellency (SWR) is linked to the quantity and quality of...
Citation