Articles | Volume 6, issue 2
https://doi.org/10.5194/soil-6-453-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/soil-6-453-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Targeting the soil quality and soil health concepts when aiming for the United Nations Sustainable Development Goals and the EU Green Deal
Antonello Bonfante
CORRESPONDING AUTHOR
Institute for Mediterranean Agricultural and Forestry Systems, National Research Council, 80055 Portici, Naples, Italy
Angelo Basile
Institute for Mediterranean Agricultural and Forestry Systems, National Research Council, 80055 Portici, Naples, Italy
Johan Bouma
Soil Science, Wageningen University, 6708 Wageningen, the Netherlands
retired
Related authors
No articles found.
Dario Autovino, Antonio Coppola, Roberto De Mascellis, Mohammad Farzamian, and Angelo Basile
EGUsphere, https://doi.org/10.5194/egusphere-2025-2696, https://doi.org/10.5194/egusphere-2025-2696, 2025
This preprint is open for discussion and under review for SOIL (SOIL).
Short summary
Short summary
In this article, we developed a method to better understand how soil water moisture and salt content affect electrical signals measured from the surface by electromagnetic induction technique. This helps farmers manage irrigation, especially in areas using salty water. By combining field and lab data, we could tell how much each factor—water or salt—affected the signal. This technique offers a faster, easier way to track soil health and could improve how we use water in farming.
Binyam Alemu Yosef, Angelo Basile, Antonio Coppola, Fabrizio Ungaro, and Marialaura Bancheri
EGUsphere, https://doi.org/10.5194/egusphere-2025-1927, https://doi.org/10.5194/egusphere-2025-1927, 2025
This preprint is open for discussion and under review for SOIL (SOIL).
Short summary
Short summary
This study investigates the intricate relationship between soil properties and water-related processes, with a focus on their collective impact on ecosystem service provision. Key soil characteristics were analyzed for their role in regulating the overall hydrological balance, in three diverse regions. The study highlights the value of using these properties in predictive models for water management practices to optimize crop performance and soil conservation in different agricultural settings.
Yang Hu, Adam Cross, Zefang Shen, Johan Bouma, and Raphael A. Viscarra Rossel
EGUsphere, https://doi.org/10.5194/egusphere-2024-3939, https://doi.org/10.5194/egusphere-2024-3939, 2025
Short summary
Short summary
We reviewed the literature on soil health definition, indicators and assessment frameworks, highlighting sensing technologies' significant potential to improve current time-consuming and costly assessment methods. We proposed a soil health assessment framework from an ecological perspective free from human bias, that leverages proximal sensing, remote sensing, machine learning, and sensor data fusion to enable objective, rapid, cost-effective, scalable, and integrative assessments.
Johan Bouma
SOIL, 8, 751–759, https://doi.org/10.5194/soil-8-751-2022, https://doi.org/10.5194/soil-8-751-2022, 2022
Short summary
Short summary
In the new
Soil Deal for Europe, land users, mostly farmers, and scientists are required to work jointly in
living labsto develop sustainable land use systems. We propose that threshold values for different ecosystem services in line with the UN Sustainable Development Goals (SDGs) and the EU Green Deal (GD) have to be met to define
lighthousesthat demonstrate successful sustainable land use systems, functioning as inspiring examples. A case study illustrates the important role of soils.
Giovanna Dragonetti, Mohammad Farzamian, Angelo Basile, Fernando Monteiro Santos, and Antonio Coppola
Hydrol. Earth Syst. Sci., 26, 5119–5136, https://doi.org/10.5194/hess-26-5119-2022, https://doi.org/10.5194/hess-26-5119-2022, 2022
Short summary
Short summary
Soil hydraulic and hydrodispersive properties are necessary for modeling water and solute fluxes in agricultural and environmental systems. Despite the major efforts in developing methods (e.g., lab-based, pedotransfer functions), their characterization at applicative scales remains an imperative requirement. Thus, this paper proposes a noninvasive in situ method integrating electromagnetic induction and hydrological modeling to estimate soil hydraulic and transport properties at the plot scale.
Mohammad Farzamian, Dario Autovino, Angelo Basile, Roberto De Mascellis, Giovanna Dragonetti, Fernando Monteiro Santos, Andrew Binley, and Antonio Coppola
Hydrol. Earth Syst. Sci., 25, 1509–1527, https://doi.org/10.5194/hess-25-1509-2021, https://doi.org/10.5194/hess-25-1509-2021, 2021
Short summary
Short summary
Soil salinity is a serious threat in numerous arid and semi-arid areas of the world. Given this threat, efficient field assessment methods are needed to monitor the dynamics of soil salinity in salt-affected lands efficiently. We demonstrate that rapid and non-invasive geophysical measurements modelled by advanced numerical analysis of the signals and coupled with hydrological modelling can provide valuable information to assess the spatio-temporal variability in soil salinity over large areas.
Cited articles
Arya, L. M.: Wind and hot-air methods, in: Physical Methods,
Soil Science Society of America, Inc., 916–926, 2002.
Basile, A., Coppola, A., De Mascellis, R., and Randazzo, L.: Scaling approach
to deduce field unsaturated hydraulic properties and behavior from
laboratory measurements on small cores, Vadose Zo. J., 5, 1005–1016,
https://doi.org/10.2136/vzj2005.0128, 2006.
Basile, A., Buttafuoco, G., Mele, G., and Tedeschi, A.: Complementary techniques
to assess physical properties of a fine soil irrigated with saline water,
Environ. Earth Sci., 66, 1797–1807, https://doi.org/10.1007/s12665-011-1404-2, 2012.
Baveye, P. C.: Bypass and hyperbole in soil research: Worrisome practices
critically reviewed through examples, Eur. J. Soil Sci., 1–20,
https://doi.org/10.1111/ejss.12941, 2020.
Bonfante, A. and Bouma, J.: The role of soil series in quantitative land
evaluation when expressing effects of climate change and crop breeding on
future land use, Geoderma, 259, 187–195, 2015.
Bonfante, A., Terribile, F., and Bouma, J.: Refining physical aspects of soil quality and soil health when exploring the effects of soil degradation and climate change on biomass production: an Italian case study, SOIL, 5, 1–14, https://doi.org/10.5194/soil-5-1-2019, 2019.
Bonfante, A., Basile, A., and Bouma, J.: Exploring the effect of varying soil
organic matter contents on current and future moisture supply capacities of
six Italian soils, Geoderma, 361, 114079,
https://doi.org/10.1016/j.geoderma.2019.114079, 2020.
Bonfante, A.: Reference Climate (1971–2005) and RCP8.5 scenario (2010–2100) of Destra sele for SWAP simulation, available at: https://doi.org/10.5281/zenodo.4043286, last access: 25 September 2020.
Bouma, J.: Using Soil Survey Data for Quantitative Land Evaluation,
Springer, New York, NY, 177–213, 1989.
Bouma, J.: Soil science contributions towards sustainable development goals
and their implementation: linking soil functions with ecosystem services, J.
Plant Nutr. Soil Sci., 177, 111–120, 2014.
Bouma, J.: Comment on: B. Minasny and A. B. Mc Bratney. 2018, Limited
effect of organic matter on soil available water capacity, Eur. J. Soil
Sci., 69, 154–154, https://doi.org/10.1111/ejss.12509, 2018.
Bouma, J.: Contributing pedological expertise towards achieving the United
Nations Sustainable Development Goals, Geoderma, 375, 114508,
https://doi.org/10.1016/j.geoderma.2020.114508, 2020.
Bucchignani, E., Montesarchio, M., Zollo, A. L., and Mercogliano, P.:
High-resolution climate simulations with COSMO-CLM over Italy: performance
evaluation and climate projections for the 21st century, Int. J. Climatol.,
36, 735–756, 2015.
Bünemann, E. K., Bongiorno, G., Bai, Z., Creamer, R. E., De Deyn, G., de
Goede, R., Fleskens, L., Geissen, V., Kuyper, T. W., Mäder, P.,
Pulleman, M., Sukkel, W., van Groenigen, J. W., and Brussaard, L.: Soil
quality – A critical review, Soil Biol. Biochem., 120, 105–125,
https://doi.org/10.1016/j.soilbio.2018.01.030, 2018.
Droogers, P. and Bouma, J.: Soil survey input in exploratory modeling of
sustainable soil management practices, Soil Sci. Soc. Am. J., 61,
1704–1710, 1997.
Duda, B. M., Weindorf, D. C., Chakraborty, S., Li, B., Man, T., Paulette, L., and Deb, S.: Soil characterization across catenas via advanced proximal sensors, Geoderma, 298, 78–91, https://doi.org/10.1016/j.geoderma.2017.03.017, 2017.
European Commission (EC): Communication from the Commission to the Council,
the European Parliament, the European Economic and Social Committee and the
Committee of the Regions, Thematic Strategy for Soil Protection, COM 231
Final, Brussels, Belgium, 12 pp., 2006.
Feddes, R. A., Kowalik, P. J., and Zaradny, H.: Simulation of field
water use and crop yield, Centre for Agricultural Publishing and
Documentation, 189 pp., 1978.
Hack-ten Broeke, M. J. D., Mulder, H. M., Bartholomeus, R. P., van Dam, J. C., Holshof, G., Hoving, I. E., Walvoort, D. J. J., Heinen, M., Kroes, J. G., van Bakel, P. J. T., Supit, I., de Wit, A. J. W., and Ruijtenberg, R.: Quantitative land evaluation implemented in Dutch water management, Geoderma, 338, 536–545, https://doi.org/10.1016/j.geoderma.2018.11.002, 2019.
Hargreaves, G. H. and Samani, Z. A.: Reference crop evapotranspiration from
temperature, Appl. Eng. Agric., 1, 96–99, 1985.
Holzworth, D., Huth, N. I., Fainges, J., Brown, H., Zurcher, E., Cichota,
R., Verrall, S., Herrmann, N. I., Zheng, B., and Snow, V.: APSIM Next
Generation: Overcoming challenges in modernising a farming systems model,
Environ. Model. Softw., 103, 43–51, https://doi.org/10.1016/j.envsoft.2018.02.002,
2018.
IPCC: Climate Change 2014, – Impacts, Adaptation and Vulnerability: Regional
Aspects, edited by: Field, Christopher B., Cambridge University Press, 1783 pp., 2014.
Keesstra, S. D., Bouma, J., Wallinga, J., Tittonell, P., Smith, P., Cerdà, A., Montanarella, L., Quinton, J. N., Pachepsky, Y., van der Putten, W. H., Bardgett, R. D., Moolenaar, S., Mol, G., Jansen, B., and Fresco, L. O.: The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals, SOIL, 2, 111–128, https://doi.org/10.5194/soil-2-111-2016, 2016.
Kroes, J. G., Van Dam, J. C., Bartholomeus, R. P., Groenendijk, P., Heinen,
M., Hendriks, R. F. A., Mulder, H. M., Supit, I., and Van Walsum, P. E. V:
Theory description and user manual SWAP version 4,
available at: http://www.swap.alterra.nl, Wageningen [online], available from: http://www.wur.eu/environmental-research (last access: 24 July 2019), 2017.
Ma, L., Ahuja, L. R., Nolan, B. T., Malone, R. W., Trout, T. J., and Qi, Z.: Root zone water Quality Model (RZWQM2): model use, calibration and validation, Trans. ASABE., 55,
1424–1446, https://doi.org/10.13031/2013.42252, 2012.
Meinshausen, M., Smith, S. J., Calvin, K., Daniel, J. S., Kainuma, M. L. T., Lamarque, J., Matsumoto, K., Montzka, S. A., Raper, S. C. B., Riahi, K., Thomson, A., Velders, G. J. M. and van Vuuren, D. P. P.: The RCP greenhouse gas concentrations and their extensions from 1765 to 2300, Clim. Change, 109, 213–241, doi:10.1007/s10584-011-0156-z, 2011.
Moebius-Clune, B. N., Moebius-Clune, D. J., Gugino, B. K., Idowu, O. J.,
Schindelbeck, R. R., Ristow, A. J., van Es, H. M., Thies, J. E., Shayler, H. A., McBride, M. B., Kurtz, K. S. M., Wolfe, D. W., and Abawi, G. S.: Comprehensive assessment of
soil health: The Cornell Framework Manual, Edition 3.1, Cornell Univ.,
Ithaca, NY, 2016.
Orgiazzi, A., Ballabio, C., Panagos, P., Jones, A., and Fernández-Ugalde,
O.: LUCAS Soil, the largest expandable soil dataset for Europe: a review,
Eur. J. Soil Sci., 69, 140–153,
2018.
Norris, C. E., MacBean, G., Cappellazi, S. B., Cope, M., Greub, K. L. H., Liptzin, D., Rieke, E. L., Tracy, P. W., Morgan, C. L. S., and Honeycutt, C. W.: Introducing the
North American project to evaluate soil health measurements, Agronomy
Journal, 112, 3195–3215, https://doi.org/10.1002/agj2.20234, 2020.
Pulleman, M. M., Bouma, J., Van Essen, E. A., and Meijles, E. W.: Soil
organic matter content as a function of different land use history, Soil
Sci. Soc. Am. J., 64, 689–693, 2000.
Priori, S., Fantappiè, M., Bianconi, N., Ferrigno, G., Pellegrini, S.,
and Costantini, E. A. C.: Field-Scale Mapping of Soil Carbon Stock with
Limited Sampling by Coupling Gamma-Ray and Vis-NIR Spectroscopy, Soil Sci.
Soc. Am. J., 80, 954–964, https://doi.org/10.2136/sssaj2016.01.0018, 2016.
Priori, S., Barbetti, R., Meini, L., Morelli, A., Zampolli, A., and D'Avino,
L.: Towards Economic Land Evaluation at the Farm Scale Based on Soil
Physical-Hydrological Features and Ecosystem Services, Water, 11, 1527,
https://doi.org/10.3390/w11081527, 2019.
Reynolds, M., Kropff, M., Crossa, J., Koo, J., Kruseman, G., Molero Milan,
A., Rutkoski, J., Schulthess, U., Balwinder-Singh, S. K., Tonnang, H.,
Vadez, V., Reynolds, M., Kropff, M., Crossa, J., Koo, J., Kruseman, G.,
Molero Milan, A., Rutkoski, J., Schulthess, U., Balwinder-Singh, Sonder, K.,
Tonnang, H., and Vadez, V.: Role of Modelling in International Crop Research:
Overview and Some Case Studies, Agronomy, 8, 291,
https://doi.org/10.3390/agronomy8120291, 2018.
Reynolds, W. D., Elrick, D. E., Youngs, E. G., Booltink, H. W. G., Bouma, J.,
and Dane, J. H.: Saturated and field-saturated water flow parameters. 2.
Laboratory methods, available at:
http://agris.fao.org/agris-search/search.do?recordID=NL2003682903,
(last acccess: 28 January 2019), 2002.
Ritchie, J. T.: Model for predicting evaporation from a row crop with
incomplete cover, Water Resour. Res., 8, 1204–1213, 1972.
Rockel, B., Will, A., and Hense, A.: The regional climate model COSMO-CLM
(CCLM), Meteorol. Z., 17, 347–348, 2008.
Rossiter, D. G. and Bouma, J.: A new look at soil phenoforms–Definition,
identification, mapping, Geoderma, 314, 113–121, 2018.
Sonneveld, M. P. W., Bouma, J., and Veldkamp, A.: Refining soil survey
information for a Dutch soil series using land use history, Soil Use Manag.,
18, 157–163, https://doi.org/10.1111/j.1475-2743.2002.tb00235.x, 2002.
Steduto, P., Hsiao, T. C., Fereres, E., and Raes, D.: Crop yield response to
water, FAO Roma, 500 pp., 2012.
USDA: National Resources Conservation Services (NRCS) of the US Dept. Agric. Soil Health, available at: https://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/ (last access: 25 September 202), 2019.
van Ittersum, M. K., Cassman, K. G., Grassini, P., Wolf, J., Tittonell, P.,
and Hochman, Z.: Yield gap analysis with local to global relevance a review,
F. Crop. Res., 143, 4–17, 2013.
Van Genuchten, M. T.: A closed-form equation for predicting the hydraulic
conductivity of unsaturated soils, Soil Sci. Soc. Am. J., 44, 892–898,
1980.
Van Looy K., Bouma J., Herbst M., Koestel J., Minasny B., Mishra U., Montzka
C., Nemes A., Pachepsky, Y., Padarian J., Schaap, M., Tóth, B., Verhoef, A., Vanderborght, J., van
der Ploeg, M., Weihermüller, L., Zacharias, S., Zhang, Y., and Vereecken, H.: Pedotransfer functions in Earth
system science: challenges and perspectives., Rev. Geophys., 55, 1199–1256,
https://doi.org/10.1002/2017RG000581, 2017.
White, J. W., Hunt, L. A., Boote, K. J., Jones, J. W., Koo, J., Kim, S.,
Porter, C. H., Wilkens, P. W., and Hoogenboom, G.: Integrated description of
agricultural field experiments and production: The ICASA Version 2.0 data
standards, Comput. Electron. Agric., 96, 1–12,
https://doi.org/10.1016/j.compag.2013.04.003, 2013.
Zollo, A. L., Turco, M., and Mercogliano, P.: Assessment of hybrid
downscaling techniques for precipitation over the Po river basin, in:
Engineering Geology for Society and Territory-Volume 1,
Springer, 193–197, 2015.
Short summary
Soil health is an important term in the international policy arena when considering soil contributions to sustainable development. We propose a measurement method, lacking so far, and explore differences within the term soil quality. The latter describes the inherent properties of soils, while soil health focuses on actual health. The procedure is illustrated for three Italian soil types, also showing the effects of climate change, demonstrating that each soil is significantly different.
Soil health is an important term in the international policy arena when considering soil...