Articles | Volume 2, issue 3
https://doi.org/10.5194/soil-2-459-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/soil-2-459-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Soil bacterial community and functional shifts in response to altered snowpack in moist acidic tundra of northern Alaska
Biological Sciences Department, Ecology and Evolution, University of Illinois at Chicago, Chicago, IL, USA
Rachel S. Poretsky
Biological Sciences Department, Ecology and Evolution, University of Illinois at Chicago, Chicago, IL, USA
Jeffrey M. Welker
Department of Biological Sciences, University of Alaska, Anchorage, AK, USA
Miquel A. Gonzalez-Meler
Biological Sciences Department, Ecology and Evolution, University of Illinois at Chicago, Chicago, IL, USA
Related subject area
Soil systems
Evolutionary pathways in soil-landscape evolution models
Effects of environmental factors on the influence of tillage conversion on saturated soil hydraulic conductivity obtained with different methodologies: a global meta-analysis
Assessing soil and land health across two landscapes in eastern Rwanda to inform restoration activities
Nonlinear turnover rates of soil carbon following cultivation of native grasslands and subsequent afforestation of croplands
The effect of soil properties on zinc lability and solubility in soils of Ethiopia – an isotopic dilution study
Comparison of regolith physical and chemical characteristics with geophysical data along a climate and ecological gradient, Chilean Coastal Cordillera (26 to 38° S)
Obtaining more benefits from crop residues as soil amendments by application as chemically heterogeneous mixtures
Modeling soil and landscape evolution – the effect of rainfall and land-use change on soil and landscape patterns
Soil environment grouping system based on spectral, climate, and terrain data: a quantitative branch of soil series
Spatially resolved soil solution chemistry in a central European atmospherically polluted high-elevation catchment
On-farm study reveals positive relationship between gas transport capacity and organic carbon content in arable soil
Potential for agricultural production on disturbed soils mined for apatite using legumes and beneficial microbe
Zero net livelihood degradation – the quest for a multidimensional protocol to combat desertification
Soil microbial communities following bush removal in a Namibian savanna
Effects of land use changes on the dynamics of selected soil properties in northeast Wellega, Ethiopia
Soil biochemical properties in brown and gray mine soils with and without hydroseeding
Quantifying soil and critical zone variability in a forested catchment through digital soil mapping
W. Marijn van der Meij
SOIL, 8, 381–389, https://doi.org/10.5194/soil-8-381-2022, https://doi.org/10.5194/soil-8-381-2022, 2022
Short summary
Short summary
The development of soils and landscapes can be complex due to changes in climate and land use. Computer models are required to simulate this complex development. This research presents a new method to analyze and visualize the results of these models. This is done with the use of evolutionary pathways (EPs), which describe how soil properties change in space and through time. I illustrate the EPs with examples from the field and give recommendations for further use of EPs in soil model studies.
Kaihua Liao, Juan Feng, Xiaoming Lai, and Qing Zhu
SOIL, 8, 309–317, https://doi.org/10.5194/soil-8-309-2022, https://doi.org/10.5194/soil-8-309-2022, 2022
Short summary
Short summary
The influence of the conversion from conventional tillage (CT) to conservation tillage (CS; including no tillage, NT, and reduced tillage, RT) on the saturated hydraulic conductivity (Ksat) of soils is not well understood and still debated. This study has demonstrated that quantifying the effects of tillage conversion on soil Ksat needed to consider experimental conditions, especially the measurement technique and conversion period.
Leigh Ann Winowiecki, Aida Bargués-Tobella, Athanase Mukuralinda, Providence Mujawamariya, Elisée Bahati Ntawuhiganayo, Alex Billy Mugayi, Susan Chomba, and Tor-Gunnar Vågen
SOIL, 7, 767–783, https://doi.org/10.5194/soil-7-767-2021, https://doi.org/10.5194/soil-7-767-2021, 2021
Short summary
Short summary
Achieving global restoration targets requires scaling of context-specific restoration options on the ground. We implemented the Land Degradation Surveillance Framework in Rwanda to assess indicators of soil and land health, including soil organic carbon (SOC), erosion prevalence, infiltration capacity, and tree biodiversity. Maps of soil erosion and SOC were produced at 30 m resolution with high accuracy. These data provide a rigorous biophysical baseline for tracking changes over time.
Guillermo Hernandez-Ramirez, Thomas J. Sauer, Yury G. Chendev, and Alexander N. Gennadiev
SOIL, 7, 415–431, https://doi.org/10.5194/soil-7-415-2021, https://doi.org/10.5194/soil-7-415-2021, 2021
Short summary
Short summary
We evaluated how sequestration of soil carbon changes over the long term after converting native grasslands into croplands and also from annual cropping into trees. Soil carbon was reduced by cropping but increased with tree planting. This decrease in carbon storage with annual cropping happened over centuries, while trees increase soil carbon over just a few decades. Growing trees in long-term croplands emerged as a climate-change-mitigating action, effective even within a person’s lifetime.
Abdul-Wahab Mossa, Dawd Gashu, Martin R. Broadley, Sarah J. Dunham, Steve P. McGrath, Elizabeth H. Bailey, and Scott D. Young
SOIL, 7, 255–268, https://doi.org/10.5194/soil-7-255-2021, https://doi.org/10.5194/soil-7-255-2021, 2021
Short summary
Short summary
Zinc deficiency is a widespread nutritional problem in human populations, especially in sub-Saharan Africa (SSA). Crop Zn depends in part on soil Zn. The Zn status of soils from the Amahara region, Ethiopia, was quantified by measuring pseudo-total, available, soluble and isotopically exchangeable Zn, and soil geochemical properties were assessed. Widespread phyto-available Zn deficiency was observed. The results could be used to improve agronomic interventions to tackle Zn deficiency in SSA.
Mirjam Schaller, Igor Dal Bo, Todd A. Ehlers, Anja Klotzsche, Reinhard Drews, Juan Pablo Fuentes Espoz, and Jan van der Kruk
SOIL, 6, 629–647, https://doi.org/10.5194/soil-6-629-2020, https://doi.org/10.5194/soil-6-629-2020, 2020
Short summary
Short summary
In this study geophysical observations from ground-penetrating radar with pedolith physical and geochemical properties from pedons excavated in four study areas of the climate and ecological gradient in the Chilean Coastal Cordillera are combined. Findings suggest that profiles with ground-penetrating radar along hillslopes can be used to infer lateral thickness variations in pedolith horizons and to some degree physical and chemical variations with depth.
Marijke Struijk, Andrew P. Whitmore, Simon R. Mortimer, and Tom Sizmur
SOIL, 6, 467–481, https://doi.org/10.5194/soil-6-467-2020, https://doi.org/10.5194/soil-6-467-2020, 2020
Short summary
Short summary
Crop residues are widely available on-farm resources containing carbon and nutrients, but, as soil amendments, their decomposition does not always benefit the soil. We applied mixtures of crop residues that are chemically different from each other and found significantly increased soil organic matter and available nitrogen levels. Applying crop residue mixtures has practical implications involving the removal, mixing and reapplication rather than simply returning crop residues to soils in situ.
W. Marijn van der Meij, Arnaud J. A. M. Temme, Jakob Wallinga, and Michael Sommer
SOIL, 6, 337–358, https://doi.org/10.5194/soil-6-337-2020, https://doi.org/10.5194/soil-6-337-2020, 2020
Short summary
Short summary
We developed a model to simulate long-term development of soils and landscapes under varying rainfall and land-use conditions to quantify the temporal variation of soil patterns. In natural landscapes, rainfall amount was the dominant factor influencing soil variation, while for agricultural landscapes, landscape position became the dominant factor due to tillage erosion. Our model shows potential for simulating past and future developments of soils in various landscapes and climates.
Andre Carnieletto Dotto, Jose A. M. Demattê, Raphael A. Viscarra Rossel, and Rodnei Rizzo
SOIL, 6, 163–177, https://doi.org/10.5194/soil-6-163-2020, https://doi.org/10.5194/soil-6-163-2020, 2020
Short summary
Short summary
The objective of this study was to develop a soil grouping system based on spectral, climate, and terrain variables with the aim of developing a quantitative way to classify soils. To derive the new system, we applied the above-mentioned variables using cluster analysis and defined eight groups or "soil environment groupings" (SEGs). The SEG system facilitated the identification of groups with similar characteristics using not only soil but also environmental variables for their distinction.
Daniel A. Petrash, Frantisek Buzek, Martin Novak, Bohuslava Cejkova, Pavel Kram, Tomas Chuman, Jan Curik, Frantisek Veselovsky, Marketa Stepanova, Oldrich Myska, Pavla Holeckova, and Leona Bohdalkova
SOIL, 5, 205–221, https://doi.org/10.5194/soil-5-205-2019, https://doi.org/10.5194/soil-5-205-2019, 2019
Short summary
Short summary
Some 30 years after peak pollution-related soil acidification occurred in central Europe, the forest ecosystem of a small V-shaped mountain valley, UDL, was still out of chemical balance relative to the concurrent loads of anions and cations in precipitation. The spatial variability in soil solution chemistry provided evidence pointing to substrate variability, C and P bioavailability, and landscape as major controls on base metal leaching toward the subsoil level in N-saturated catchments.
Tino Colombi, Florian Walder, Lucie Büchi, Marlies Sommer, Kexing Liu, Johan Six, Marcel G. A. van der Heijden, Raphaël Charles, and Thomas Keller
SOIL, 5, 91–105, https://doi.org/10.5194/soil-5-91-2019, https://doi.org/10.5194/soil-5-91-2019, 2019
Short summary
Short summary
The role of soil aeration in carbon sequestration in arable soils has only been explored little, especially at the farm level. The current study, which was conducted on 30 fields that belong to individual farms, reveals a positive relationship between soil gas transport capability and soil organic carbon content. We therefore conclude that soil aeration needs to be accounted for when developing strategies for carbon sequestration in arable soil.
Rebecca Swift, Liza Parkinson, Thomas Edwards, Regina Carr, Jen McComb, Graham W. O'Hara, Giles E. St. John Hardy, Lambert Bräu, and John Howieson
SOIL Discuss., https://doi.org/10.5194/soil-2016-33, https://doi.org/10.5194/soil-2016-33, 2016
Preprint retracted
Marcos H. Easdale
SOIL, 2, 129–134, https://doi.org/10.5194/soil-2-129-2016, https://doi.org/10.5194/soil-2-129-2016, 2016
Short summary
Short summary
Zero Net Land Degradation (ZNLD) was proposed as a new global protocol to combat desertification. This framework aims at reducing the rate of global land degradation and increasing the rate of restoration of already degraded land. However, there is a narrow focus on land and soil, while an essential human dimension to the sustainability of drylands is lacking and should be more adequately tackled. I propose a complementary perspective based on the sustainable livelihood approach.
Jeffrey S. Buyer, Anne Schmidt-Küntzel, Matti Nghikembua, Jude E. Maul, and Laurie Marker
SOIL, 2, 101–110, https://doi.org/10.5194/soil-2-101-2016, https://doi.org/10.5194/soil-2-101-2016, 2016
Short summary
Short summary
Savannas represent most of the world’s livestock grazing land and are suffering worldwide from bush encroachment and desertification. We studied soil under bush and grass in a bush-encroached savanna in Namibia. With bush removal, there were significant changes in soil chemistry and microbial community structure, but these changes gradually diminished with time. Our results indicate that the ecosystem can substantially recover over a time period of approximately 10 years following bush removal.
Alemayehu Adugna and Assefa Abegaz
SOIL, 2, 63–70, https://doi.org/10.5194/soil-2-63-2016, https://doi.org/10.5194/soil-2-63-2016, 2016
Short summary
Short summary
The purpose of our study was to explore the effects of land use changes on the dynamics of soil properties and their implications for land degradation. The result indicates that cultivated land has a lower organic matter, total nitrogen, cation exchange capacity, pH, and exchangeable Ca2+ and Mg2+ contents than forestland and grazing land.
C. Thomas, A. Sexstone, and J. Skousen
SOIL, 1, 621–629, https://doi.org/10.5194/soil-1-621-2015, https://doi.org/10.5194/soil-1-621-2015, 2015
Short summary
Short summary
Surface coal mining disrupts large areas of land and eliminates valuable hardwood forests. Restoring the land to a sustainable forest ecosystem with suitable soils is the goal of reclamation. Soil microbial activity is an indicator of restoration success. We found hydroseeding with herbaceous forage species and fertilization doubled tree growth and microbial biomass carbon (an indicator of microbial activity) compared to non-hydroseed areas. Hydroseeding is an important component of reclamation.
M. Holleran, M. Levi, and C. Rasmussen
SOIL, 1, 47–64, https://doi.org/10.5194/soil-1-47-2015, https://doi.org/10.5194/soil-1-47-2015, 2015
Cited articles
Anderson-Smith, M.: Remotely-sensed spectral data linked to increasing shrub abundance and greater growing season carbon uptake in Alaskan Arctic tundra UMI 154257, Master's Thesis, available at: http://search.proquest.com/docview/1426631801 (last access: 6 September 2016), 2013.
Anisimov, O., Vaughan, D., Callaghan, T., Furgal, C., Marchant, H., Prowse, T., Vilhjalmsson, H., and Walsh, J.: Polar regions (Arctic and Antarctic), in: Climate Change 2007: Impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the Intergovernmental Panel on Climate Change, edited by: Parry, M. L., Canziani, O. F., Palutikof, J. P., van der Linden, P. J., and Hanson, C. E., Cambridge University Press, Cambridge, 653–685, 2007.
Arft, A., Walker, M., Gurevitch, J., Alatalo, J. M., Bret-Harte, M., Dale, M., Diemer, M., Gugerli, F., Henry, G. H. R., Jones, M. H., Hollister, R. D., Jonsdottir, I. S., Laine, K., Levesque, E., Marion, G. M., Molau, U., Molgaard, P., Nordenhall, U., Raszhivin, V., Robinson, C. H., Starr, G., Stenstrom, A., Stenstrom, M., Totland, O., Turner, P. L., Walker, L. J., Webber, P. J., Welker, J. M., and Wookey, P. A.: Responses of tundra plants to experimental warming: meta-analysis of the international tundra experiment, Ecol. Monogr., 69, 491–511, 1999.
Aronesty, E.: ea-utils: Command-line tools for processing biological sequencing data, https://github.com/ExpressionAnalysis/ea-utils (last access: 6 September 2016), 2011.
Batjes, N.: Total carbon and nitrogen in soils of the world, Eur. J. Soil Sci., 47, 151–163, 1996.
Blanc-Betes, E., Welker, J. M., Sturchio, N. C., Chanton, J. P., and Gonzalez-Meler, M. A.: Winter precipitation and snow accumulation drive the methane sink or source strength of Arctic tussock tundra, Global Change Biol., 22, 2818–2833, https://doi.org/10.1111/gcb.13242, 2016.
Bret-Harte, M. S., Shaver, G. R., Zoerner, J. P., Johnstone, J. F., Wagner, J. L., Chavez, A. S., Gunkelman IV, R. F., Lippert, S. C., and Laundre, J. A.: Developmental plasticity allows Betula nana to dominate tundra subjected to an altered environment, Ecology, 82, 18–32, 2001.
Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., Fierer, N., Gonzalez, A., Goodrich, J. K., Gordon, J. I., Huttley, G. A., Kelley, S. T., Knights, D., Koenig, J. E., Ley, R. E., Lozupone, C. A., McDonald, D., Muegge, B. D., Pirrung, M., Reeder, J., Sevinsky, J. R., Turnbaugh, P. J., Walters, W. A., Widmann, J., Yatsunenko, T., Zaneveld, J., and Knight, R.: QIIME allows analysis of high-throughput community sequencing data, Nat. Meth., 7, 335–336, https://doi.org/10.1038/nmeth.f.303, 2010.
Caporaso, J. G., Lauber, C. L., Walters, W. A., Berg-Lyons, D., Huntley, J., Fierer, N., Owens, S. M., Betley, J., Fraser, L., Bauer, M., Gormley, N., Gilbert, J. A., Smith, G., and Knight, R.: Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms, ISME J., 6, 1621–1624, https://doi.org/10.1038/ismej.2012.8, 2012.
Chapin III, F. S., Shaver, G. R., Giblin, A. E., Nadelhoffer, K. J., and Laundre, J. A.: Responses of Arctic tundra to experimental and observed changes in climate, Ecology, 76, 694–711, https://doi.org/10.2307/1939337, 1995.
Conant, R. T., Ryan, M. G., Ågren, G. I., Birge, H. E., Davidson, E. A., Eliasson, P. E., Evans, S. E., Frey, S. D., Giardina, C. P., Hopkins, F. M., Hyvönen, R., Kirschbaum, M. U. F., Lavallee, J. M., Leifeld, J., Parton, W. J., Steinweg, J. M., Wallenstein, M. D., Wetterstedt, J. Å. M., and Bradford, M. A.: Temperature and soil organic matter decomposition rates – synthesis of current knowledge and a way forward, Global Change Biol., 17, 3392–3404, https://doi.org/10.1111/j.1365-2486.2011.02496.x, 2011.
Costello, E. K. and Schmidt, S. K.: Microbial diversity in alpine tundra wet meadow soil: novel Chloroflexi from a cold, water-saturated environment, Environ. Microbiol., 8, 1471–1486, https://doi.org/10.1111/j.1462-2920.2006.01041.x, 2006.
Czimczik, C. I. and Welker, J. M.: Radiocarbon content of CO2 respired from high Arctic tundra in Northwest Greenland, Arct. Antarct. Alp. Res., 42, 342–350, https://doi.org/10.1657/1938-4246-42.3.342, 2010.
Davidson, E. A. and Janssens, I. A.: Temperature sensitivity of soil carbon decomposition and feedbacks to climate change, Nature, 440, 165–173, https://doi.org/10.1038/nature04514, 2006.
DeMarco, J., Mack, M., and Bret-Harte, M.: Effects of arctic shrub expansion on biophysical versus biogeochemical drivers of litter decomposition, Ecology, 95, 1861–1875, 2014.
Deslippe, J. R., Hartmann, M., Simard, S. W., and Mohn, W. W.: Long-term warming alters the composition of Arctic soil microbial communities, FEMS Microbiol. Ecol., 82, 303–315, https://doi.org/10.1111/j.1574-6941.2012.01350.x, 2012.
Elmendorf, S. C., Henry, G. H. R., Hollister, R. D., Björk, R. G., Bjorkman, A. D., Callaghan, T. V., Collier, L. S., Cooper, E. J., Cornelissen, J. H. C., Day, T. A., Fosaa, A. M., Gould, W. A., Grétarsdóttir, J., Harte, J., Hermanutz, L., Hik, D. S., Hofgaard, A., Jarrad, F., Jónsdóttir, I. S., Keuper, F., Klanderud, K., Klein, J. A., Koh, S., Kudo, G., Lang, S. I., Loewen, V., May, J. L., Mercado, J., Michelsen, A., Molau, U., Myers-Smith, I. H., Oberbauer, S. F., Pieper, S., Post, E., Rixen, C., Robinson, C. H., Schmidt, N. M., Shaver, G. R., Stenström, A., Tolvanen, A., Totland, Ø., Troxler, T., Wahren, C. H., Webber, P. J., Welker, J. M., and Wookey, P. A.: Global assessment of experimental climate warming on tundra vegetation: Heterogeneity over space and time, Ecol. Lett., 15, 164–175, https://doi.org/10.1111/j.1461-0248.2011.01716.x, 2012a.
Elmendorf, S. C., Henry, G. H. R., Hollister, R. D., Björk, R. G., Boulanger-Lapointe, N., Cooper, E. J., Cornelissen, J. H. C., Day, T. A., Dorrepaal, E., Elumeeva, T. G., Gill, M., Gould, W. A., Harte, J., Hik, D. S., Hofgaard, A., Johnson, D. R., Johnstone, J. F., Jónsdóttir, I. S., Jorgenson, J. C., Klanderud, K., Klein, J. A., Koh, S., Kudo, G., Lara, M., Lévesque, E., Magnússon, B., May, J. L., Mercado-Díaz, J. A., Michelsen, A., Molau, U., Myers-Smith, I. H., Oberbauer, S. F., Onipchenko, V. G., Rixen, C., Martin Schmidt, N., Shaver, G. R., Spasojevic, M. J., Þórhallsdóttir, Þ. E., Tolvanen, A., Troxler, T., Tweedie, C. E., Villareal, S., Wahren, C.-H., Walker, X., Webber, P. J., Welker, J. M., and Wipf, S.: Plot-scale evidence of tundra vegetation change and links to recent summer warming, Nat. Clim. Change, 2, 453–457, https://doi.org/10.1038/nclimate1465, 2012b.
Fahnestock, J. T., Povirk, K. A., and Welker, J. M.: Abiotic and biotic effects of increased litter accumulation in arctic tundra, Ecography, 23, 623–631, https://doi.org/10.1111/j.1600-0587.2000.tb00181.x, 2000.
Fierer, N., Bradford, M. A., and Jackson, R. B.: Toward an ecological classification of soil bacteria, Ecology, 88, 1354–1364, https://doi.org/10.1890/05-1839, 2007.
Frey, S. D., Lee, J., Melillo, J. M., and Six, J.: The temperature response of soil microbial efficiency and its feedback to climate, Nat. Clim. Change, 3, 395–398, https://doi.org/10.1038/nclimate1796, 2013.
German, D. P., Marcelo, K. R. B., Stone, M. M., and Allison, S. D.: The Michaelis–Menten kinetics of soil extracellular enzymes in response to temperature: a cross-latitudinal study, Global Change Biol., 18, 1468–1479, https://doi.org/10.1111/j.1365-2486.2011.02615.x, 2012.
Gilbert, J. A., Jansson, J. K., and Knight, R.: The Earth Microbiome project: successes and aspirations, BMC Biol., 12, 69, https://doi.org/10.1186/s12915-014-0069-1, 2014.
Gonzàlez-Meler, M. A., Ribas-Carbo, M., Giles, L., and Siedow, J. N.: The effect of growth and measurement temperature on the activity of the alternative respiratory pathway, Plant Physiol., 120, 765–772, https://doi.org/10.1104/pp.120.3.765, 1999.
Gonzàlez-Meler, M. A., Giles, L., Thomas, R. B., and Siedow, J. N.: Metabolic regulation of leaf respiration and alternative pathway activity in response to phosphate supply, Plant Cell Environ., 24, 205–215, https://doi.org/10.1046/j.1365-3040.2001.00674.x, 2001.
Goodfellow, M. and Williams, S. T.: Ecology of actinomycetes, Annu. Rev. Microbiol., 37, 189–216, https://doi.org/10.1146/annurev.mi.37.100183.001201, 1983.
Graham, D. E., Wallenstein, M. D., Vishnivetskaya, T. A., Waldrop, M. P., Phelps, T. J., Pfiffner, S. M., Onstott, T. C., Whyte, L. G., Rivkina, E. M., Gilichinsky, D. A., Elias, D. A., Mackelprang, R., VerBerkmoes, N. C., Hettich, R. L., Wagner, D., Wullschleger, S. D., and Jansson, J. K.: Microbes in thawing permafrost: the unknown variable in the climate change equation, ISME J., 6, 709–712, https://doi.org/10.1038/ismej.2011.163, 2012.
Gross, R., Arico, B., and Rappuoli, R.: Families of bacterial signal-transducing proteins, Mol. Microbiol., 3, 1661–1667, https://doi.org/10.1111/j.1365-2958.1989.tb00152.x, 1989.
Hinzman, L. D., Bettez, N. D., Bolton, W. R., Chapin, F. S., Dyurgerov, M. B., Fastie, C. L., Griffith, B., Hollister, R. D., Hope, A., Huntington, H. P., Jensen, A. M., Jia, G. J., Jorgenson, T., Kane, D. L., Klein, D. R., Kofinas, G., Lynch, A. H., Lloyd, A. H., McGuire, A. D., Nelson, F. E., Oechel, W. C., Osterkamp, T. E., Racine, C. H., Romanovsky, V. E., Stone, R. S., Stow, D. A., Sturm, M., Tweedie, C. E., Vourlitis, G. L., Walker, M. D., Walker, D. A., Webber, P. J., Welker, J. M., Winker, K. S., and Yoshikawa, K.: Evidence and implications of recent climate change in Northern Alaska and other Arctic regions, Climatic Change, 72, 251–298, https://doi.org/10.1007/s10584-005-5352-2, 2005.
Hobbie, S. E., Nadelhoffer, K. J., and Högberg, P.: A synthesis: The role of nutrients as constraints on carbon balances in boreal and arctic regions, Plant Soil, 242, 163–170, https://doi.org/10.1023/A:1019670731128, 2002.
Höfle, S., Rethemeyer, J., Mueller, C. W., and John, S.: Organic matter composition and stabilization in a polygonal tundra soil of the Lena Delta, Biogeosciences, 10, 3145–3158, https://doi.org/10.5194/bg-10-3145-2013, 2013.
Hopkins, F. M., Torn, M. S., and Trumbore, S. E.: Warming accelerates decomposition of decades-old carbon in forest soils, P. Natl. Acad. Sci. USA, 109, E1753–E1761, https://doi.org/10.1073/pnas.1120603109, 2012.
Hopkins, F. M., Gonzalez-Meler, M. A., Flower, C. E., Lynch, D. J., Czimczik, C., Tang, J., and Subke, J.-A.: Ecosystem-level controls on root-rhizosphere respiration, New Phytol., 199, 339–351, 2013.
Hugelius, G., Tarnocai, C., Broll, G., Canadell, J. G., Kuhry, P., and Swanson, D. K.: The Northern Circumpolar Soil Carbon Database: spatially distributed datasets of soil coverage and soil carbon storage in the northern permafrost regions, Earth Syst. Sci. Data, 5, 3–13, https://doi.org/10.5194/essd-5-3-2013, 2013.
IPCC: IPCC special report on land use, land-use change, and forestry, edited by: Watson, R. T., Noble, I. R., Bolin, B., Ravindranath, N. H., Verardo, D. J., and Dokken, D. J., Cambridge University Press, Cambridge, 3–24, 2000.
Jonasson, S., Michelsen, A., and Schmidt, I. K.: Coupling of nutrient cycling and carbon dynamics in the Arctic, integration of soil microbial and plant processes, Appl. Soil Ecol., 11, 135–146, https://doi.org/10.1016/S0929-1393(98)00145-0, 1999.
Jones, M. H., Fahnestock, J. T., Walker, D. A., Walker, M. D., and Welker, J. M.: Carbon dioxide fluxes in moist and dry Arctic tundra during the snow-free season?: Responses to increases in summer temperature and winter snow accumulation, Arctic, Antarct. Alp. Res., 30, 373–380, 1998.
Koyama, A., Wallenstein, M. D., Simpson, R. T., and Moore, J. C.: Soil bacterial community composition altered by increased nutrient availability in Arctic tundra soils, Front. Microbiol., 5, 1–16, https://doi.org/10.3389/fmicb.2014.00516, 2014.
Langille, M. G. I., Zaneveld, J., Caporaso, J. G., McDonald, D., Knights, D., Reyes, J. A., Clemente, J. C., Burkepile, D. E., Vega Thurber, R. L., Knight, R., Beiko, R. G., and Huttenhower, C.: Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences, Nat. Biotechnol., 31, 814–821, https://doi.org/10.1038/nbt.2676, 2013.
Lauber, C. L., Hamady, M., Knight, R., and Fierer, N.: Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale, Appl. Environ. Microb., 75, 5111–5120, https://doi.org/10.1128/AEM.00335-09, 2009.
Leffler, A. J. and Welker, J. M.: Long-term increases in snow pack elevate leaf N and photosynthesis in Salix arctica: responses to a snow fence experiment in the High Arctic of NW Greenland, Environ. Res. Lett., 8, 1–10, https://doi.org/10.1088/1748-9326/8/2/025023, 2013.
Liston, G. E. and Hiemstra, C. A.: The Changing Cryosphere: Pan-Arctic Snow Trends (1979–2009), J. Climate, 24, 5691–5712, https://doi.org/10.1175/JCLI-D-11-00081.1, 2011.
Lupascu, M., Welker, J. M., Seibt, U., Maseyk, K., Xu, X., and Czimczik, C. I.: High Arctic wetting reduces permafrost carbon feedbacks to climate warming, Nat. Clim. Change, 4, 51–56, https://doi.org/10.1038/NCLIMATE2058, 2013.
Lupascu, M., Welker, J. M., and Czimczik, C. I.: Rates and radiocarbon content of summer ecosystem respiration to long-term deeper snow in the High Arctic of NW Greenland, J. Geophys. Res.-Biogeo., 119, 1180–1194, https://doi.org/10.1002/2013JG002433, 2014a.
Lupascu, M., Welker, J. M., Seibt, U., Xu, X., Velicogna, I., Lindsey, D. S., and Czimczik, C. I.: The amount and timing of precipitation control the magnitude, seasonality and sources (14C) of ecosystem respiration in a polar semi-desert, northwestern Greenland, Biogeosciences, 11, 4289–4304, https://doi.org/10.5194/bg-11-4289-2014, 2014b.
Lützow, M. and Kögel-Knabner, I.: Temperature sensitivity of soil organic matter decomposition – what do we know?, Biol. Fert. Soils, 46, 1–15, https://doi.org/10.1007/s00374-009-0413-8, 2009.
Mack, M. C., Schuur, E. A. G., Bret-Harte, M. S., Shaver, G. R., and Chapin III, F. S.: Ecosystem carbon storage in arctic tundra reduced by long-term nutrient fertilization, Nature, 431, 440–443, https://doi.org/10.1038/nature02887, 2004.
Mackelprang, R., Waldrop, M. P., DeAngelis, K. M., David, M. M., Chavarria, K. L., Blazewicz, S. J., Rubin, E. M., and Jansson, J. K.: Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw, Nature, 480, 368–371, https://doi.org/10.1038/nature10576, 2011.
Maier, A., Riedlinger, J., Fiedler, H.-P., and Hampp, R.: Actinomycetales bacteria from a spruce stand: characterization and effects on growth of root symbiotic and plant parasitic soil fungi in dual culture, Mycol. Prog., 3, 129–136, 2004.
Martiny, A. C., Treseder, K., and Pusch, G.: Phylogenetic conservatism of functional traits in microorganisms, ISME J., 7, 830–838, https://doi.org/10.1038/ismej.2012.160, 2013.
McMurdie, P. J. and Holmes, S.: phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data, PLoS ONE, 8, e61217, https://doi.org/10.1371/journal.pone.0061217, 2013.
Morgado, L. N., Semenova, T. A., Welker, J. M., Walker, M. D., Smets, E., and Geml, J.: Summer temperature increase has distinct effects on the ectomycorrhizal fungal communities of moist tussock and dry tundra in Arctic Alaska, Global Change Biol., 21, 959–972, https://doi.org/10.1111/gcb.12716, 2015.
Morris, R., Schauer-Gimenez, A., Bhattad, U., Kearney, C., Struble, C. A., Zitomer, D., and Maki, J. S.: Methyl coenzyme M reductase (mcrA) gene abundance correlates with activity measurements of methanogenic H2/CO2-enriched anaerobic biomass, Microb. Biotechnol., 7, 77–84, https://doi.org/10.1111/1751-7915.12094, 2014.
Natali, S. M., Schuur, E. A. G., and Rubin, R. L.: Increased plant productivity in Alaskan tundra as a result of experimental warming of soil and permafrost, J. Ecol., 100, 488–498, https://doi.org/10.1111/j.1365-2745.2011.01925.x, 2012.
Natali, S. M., Schuur, E. A. G., Webb, E. E., Hicks Pries, C. E., and Crummer, K. G.: Permafrost degradation stimulates carbon loss from experimentally warmed tundra, Ecology, 95, 602–608, 2014.
Neufeld, J. D., Driscoll, B. T., Knowles, R., and Archibald, F. S.: Quantifying functional gene populations: comparing gene abundance and corresponding enzymatic activity using denitrification and nitrogen fixation in pulp and paper mill effluent treatment systems, Can. J. Microbiol., 47, 925–934, https://doi.org/10.1139/w01-092, 2001.
Nowinski, N. S., Taneva, L., Trumbore, S. E., and Welker, J. M.: Decomposition of old organic matter as a result of deeper active layers in a snow depth manipulation experiment, Oecologia, 163, 785–792, https://doi.org/10.1007/s00442-009-1556-x, 2010.
O'Brien, S. L., Jastrow, J. D., Grimley, D. A., and Gonzalez-Meler, M. A.: Moisture and vegetation controls on decadal-scale accrual of soil organic carbon and total nitrogen in restored grasslands, Global Change Biol., 16, 2573–2588, https://doi.org/10.1111/j.1365-2486.2009.02114.x, 2010.
Pattison, R. R. and Welker, J. M.: Differential ecophysiological response of deciduous shrubs and a graminoid to long-term experimental snow reductions and additions in moist acidic tundra, Northern Alaska, Oecologia, 174, 339–350, https://doi.org/10.1007/s00442-013-2777-6, 2014.
Pearson, R. G., Phillips, S. J., Loranty, M. M., Beck, P. S. A., Damoulas, T., Knight, S. J., and Goetz, S. J.: Shifts in Arctic vegetation and associated feedbacks under climate change, Nat. Clim. Change, 3, 673–677, https://doi.org/10.1038/nclimate1858, 2013.
Ping, C. L., Bockheim, J. G., Kimble, J. M., Michaelson, G. J., and Walker, D. A.: Characteristics of cryogenic soils along a latitudinal transect in arctic Alaska, J. Geophys. Res., 103, 28917–28928, https://doi.org/10.1029/98JD02024, 1998.
Ping, C. L., Michaelson, G. J., Jorgenson, M. T., Kimble, J. M., Epstein, H., Romanovsky, V. E., and Walker, D. A.: High stocks of soil organic carbon in the North American Arctic region, Nat. Geosci., 1, 615–619, https://doi.org/10.1038/ngeo284, 2008.
Ping, C. L., Jastrow, J. D., Jorgenson, M. T., Michaelson, G. J., and Shur, Y. L.: Permafrost soils and carbon cycling, SOIL, 1, 147–171, https://doi.org/10.5194/soil-1-147-2015, 2015.
Pridham, T. G. and Gottlieb, D.: The utilization of carbon compounds by actinomycetales as an aid for species determination, J. Bacteriol., 56, 107–114, 1948.
Raich, J., Potter, C., and Bhagawati, D.: Interannual variability in global soil respiration, 1980–94, Global Change Biol., 8, 800–812, 2002.
Razavi, B. S., Blagodatskaya, E., Kuzyakov, Y.: Nonlinear temperature sensitivity of enzyme kinetics explains canceling effect – a case study on loamy haplic Luvisol, Front. Microbiol., 6, 1–13, https://doi.org/10.3389/fmicb.2015.01126, 2015.
Ricketts, M. P., Poretsky, R. S., Welker, J. M., and Gonzalez-Meler, M. A.: Soil bacterial community and functional shifts in response to altered snow pack in moist acidic tundra of Northern Alaska, NSF Arctic Data Center, https://doi.org/10.18739/A2DP96, 2016.
Rocca, J. D., Hall, E. K., Lennon, J. T., Evans, S. E., Waldrop, M. P., Cotner, J. B., Nemergut, D. R., Graham, E. B., and Wallenstein, M. D.: Relationships between protein-encoding gene abundance and corresponding process are commonly assumed yet rarely observed, ISME J., 9, 1693–1699, https://doi.org/10.1038/ismej.2014.252, 2014.
Rogers, M. C., Sullivan, P. F., and Welker, J. M.: Exchange to increasing levels of winter snow depth in the high Arctic of Northwest Greenland, Arctic, Antarct. Alp. Res., 43, 95–106, https://doi.org/10.1657/1938-4246-43.1.95, 2011.
Sangwan, P., Chen, X., Hugenholtz, P., and Janssen, P. H.: Chthoniobacter flavus gen. nov., sp. nov., the First Pure-Culture Representative of Subdivision Two, Spartobacteria classis nov., of the Phylum Verrucomicrobia, Appl. Environ. Microbiol., 70, 5875–5881, https://doi.org/10.1128/AEM.70.10.5875-5881.2004, 2004.
Schimel, J. P. and Weintraub, M. N.: The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theoretical model, Soil Biol. Biochem., 35, 549–563, https://doi.org/10.1016/S0038-0717(03)00015-4, 2003.
Schimel, J. P. and Schaeffer, S. M.: Microbial control over carbon cycling in soil, Front. Microbiol., 3, 1–11, https://doi.org/10.3389/fmicb.2012.00348, 2012.
Schimel, J. P., Cleve, K. Van, Cates, R. G., Clausen, T. P., and Reichardt, P. B.: Effects of balsam poplar (Populus balsamifera) tannins and low molecular weight phenolics on microbial activity in taiga floodplain soil: implications for changes in N cycling during succession, Can. J. Bot., 74, 84–90, https://doi.org/10.1139/b96-012, 1996.
Schimel, J. P., Bilbrough, C., and Welker, J. M.: Increased snow depth affects microbial activity and nitrogen mineralization in two Arctic tundra communities, Soil Biol. Biochem., 36, 217–227, https://doi.org/10.1016/j.soilbio.2003.09.008, 2004.
Schuur, E. A. G., Bockheim, J., Canadell, J. G., Euskirchen, E., Field, C. B., Goryachkin, S. V., Hagemann, S., Kuhry, P., Lafleur, P. M., Lee, H., Mazhitova, G., Nelson, F. E., Rinke, A., Romanovsky, V. E., Shiklomanov, N., Tarnocai, C., Venevsky, S., Vogel, J. G., and Zimov, S. A.: Vulnerability of permafrost carbon to climate change: Implications for the global carbon cycle, Bioscience, 58, 701–714, https://doi.org/10.1641/B580807, 2008.
Schuur, E. A. G., Vogel, J. G., Crummer, K. G., Lee, H., Sickman, J. O., and Osterkamp, T. E.: The effect of permafrost thaw on old carbon release and net carbon exchange from tundra, Nature, 459, 556–559, https://doi.org/10.1038/nature08031, 2009.
Semenova, T. A., Morgado, L. N., Welker, J. M., Walker, M. D., Smets, E., and Geml, J.: Long-term experimental warming alters community composition of ascomycetes in Alaskan moist and dry arctic tundra, Mol. Ecol., 24, 424–437, https://doi.org/10.1111/mec.13045, 2015.
Shaver, G. R. and Chapin III, F. S.: Response to fertilization by various plant growth forms in an Alaskan tundra: Nutrient accumulation and growth, Ecology, 61, 662–675, https://doi.org/10.2307/1937432, 1980.
Shaver, G. R. and Chapin III, F. S.: Effect of fertilizer on production and biomass of the tussock tundra, Alaska, U.S.A., Arct. Alp. Res., 18, 261–268, https://doi.org/10.2307/1550883, 1986.
Sinsabaugh, R. L., Lauber, C. L., Weintraub, M. N., Ahmed, B., Allison, S. D., Crenshaw, C., Contosta, A. R., Cusack, D., Frey, S., Gallo, M. E., Gartner, T. B., Hobbie, S. E., Holland, K., Keeler, B. L., Powers, J. S., Stursova, M., Takacs-Vesbach, C., Waldrop, M. P., Wallenstein, M. D., Zak, D. R., and Zeglin, L. H.: Stoichiometry of soil enzyme activity at global scale, Ecol. Lett., 11, 1252–1264, https://doi.org/10.1111/j.1461-0248.2008.01245.x, 2008.
Sistla, S. A., Asao, S., and Schimel, J. P.: Detecting microbial N-limitation in tussock tundra soil: Implications for Arctic soil organic carbon cycling, Soil Biol. Biochem., 55, 78–84, https://doi.org/10.1016/j.soilbio.2012.06.010, 2012.
Sistla, S. A., Moore, J. C., Simpson, R. T., Gough, L., Shaver, G. R., and Schimel, J. P.: Long-term warming restructures Arctic tundra without changing net soil carbon storage, Nature, 497, 615–618, https://doi.org/10.1038/nature12129, 2013.
Soil Survey Division Staff: Soil survey manual, Handbook, Soil Conservation Service, US Department of Agriculture, 18 pp., http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ref/?cid=nrcs142p2_054262 (last access: 6 September 2016), 1993.
Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture, Web Soil Survey, available at: http://websoilsurvey.nrcs.usda.gov/, last access: 17 November 2015.
Sturm, M., Schimel, J., Michaelson, G., Welker, J. M., Oberbauer, S. F., Liston, G. E., Fahnestock, J., and Romanovsky, V. E.: Winter biological processes could help convert Arctic tundra to shrubland, Bioscience, 55, 17–26, https://doi.org/10.1641/0006-3568(2005)055[0017:WBPCHC]2.0.CO;2, 2005.
Sullivan, P. F. and Welker, J. M.: Warming chambers stimulate early season growth of an arctic sedge: Results of a minirhizotron field study, Oecologia, 142, 616–626, https://doi.org/10.1007/s00442-004-1764-3, 2005.
Sullivan, P. F., Sommerkorn, M., Rueth, H. M., Nadelhoffer, K. J., Shaver, G. R., and Welker, J. M.: Climate and species affect fine root production with long-term fertilization in acidic tussock tundra near Toolik Lake, Alaska, Oecologia, 153, 643–652, https://doi.org/10.1007/s00442-007-0753-8, 2007.
Sullivan, P. F., Arens, S. J. T., Chimner, R. A., and Welker, J. M.: Temperature and microtopography interact to control carbon cycling in a high Arctic fen, Ecosystems, 11, 61–76, https://doi.org/10.1007/s10021-007-9107-y, 2008.
Tape, K., Sturm, M., and Racine, C.: The evidence for shrub expansion in Northern Alaska and the Pan-Arctic, Global Change Biol., 12, 686–702, https://doi.org/10.1111/j.1365-2486.2006.01128.x, 2006.
Tape, K. D., Hallinger, M., Welker, J. M., and Ruess, R. W.: Landscape heterogeneity of shrub expansion in Arctic Alaska, Ecosystems, 15, 711–724, https://doi.org/10.1007/s10021-012-9540-4, 2012.
Tarnocai, C., Canadell, J. G., Schuur, E. A. G., Kuhry, P., Mazhitova, G., and Zimov, S.: Soil organic carbon pools in the northern circumpolar permafrost region, Global Biogeochem. Cy., 23, 1–11, https://doi.org/10.1029/2008GB003327, 2009.
Timell, T. E.: Recent progress in the chemistry of wood hemicelluloses, Wood Sci. Technol., 1, 45–70, https://doi.org/10.1007/BF00592255, 1967.
Wahren, C.: Vegetation responses in Alaskan arctic tundra after 8 years of a summer warming and winter snow manipulation experiment, Global Change Biol., 11, 537–552, https://doi.org/10.1111/j.1365-2486.2005.00927.x, 2005.
Waldrop, M. P., Wickland, K. P., White, R., Berhe, A. A., Harden, J. W., and Romanovsky, V. E.: Molecular investigations into a globally important carbon pool: Permafrost-protected carbon in Alaskan soils, Global Change Biol., 16, 2543–2554, https://doi.org/10.1111/j.1365-2486.2009.02141.x, 2010.
Walker, M. and Wahren, C.: Plant community responses to experimental warming across the tundra biome, P. Natl. Acad. Sci. USA, 103, 1342–1346, https://doi.org/10.1073/pnas.0503198103, 2006.
Walker, M., Walker, D., Welker, J., Arft, A., Bardsley, T., Brooks, P., Fahnestock, J. T., Jones, M., Losleben, M., Parsons, A., Seastedt, T., and Turner, P.: Long-term experimental manipulation of winter snow regime and summer temperature in arctic and alpine tundra, Hydrol. Process., 13, 2315–2330, 1999.
Wallenstein, M. D., McMahon, S., and Schimel, J.: Bacterial and fungal community structure in Arctic tundra tussock and shrub soils, FEMS Microbiol. Ecol., 59, 428–435, https://doi.org/10.1111/j.1574-6941.2006.00260.x, 2007.
Welker, J. M., Fahnestock, J. T., and Jones, M. H.: Annual CO2 flux in dry and moist arctic tundra: Field responses to increases in summer temperatures and winter snow depth, Climatic Change, 44, 139–150, https://doi.org/10.1023/a:1005555012742, 2000.
Welker, J. M., Fahnestock, J. T., Sullivan, P. F., and Chimner, R. A.: Leaf mineral nutrition of Arctic plants in response to warming and deeper snow in northern Alaska, Oikos, 109, 167–177, https://doi.org/10.1111/j.0030-1299.2005.13264.x, 2005.
Wood, S. A., Almaraz, M., Bradford, M. A., McGuire, K. L., Naeem, S., Neill, C., Palm, C. A., Tully, K. L., and Zhou, J.: Farm management, not soil microbial diversity, controls nutrient loss from smallholder tropical agriculture, Front. Microbiol., 6, 1–10, https://doi.org/10.3389/fmicb.2015.00090, 2015.
Xia, J., Chen, J., Piao, S., Ciais, P., Luo, Y., and Wan, S.: Terrestrial carbon cycle affected by non-uniform climate warming, Nat. Geosci., 7, 173–180, https://doi.org/10.1038/ngeo2093, 2014.
Zak, D. R. and Kling, G. W.: Microbial community composition and function across an arctic tundra landscape, Ecology, 87, 1659–1670, 2006.
Short summary
Soil microbial communities play a key role in the cycling of carbon (C) in Arctic tundra ecosystems through decomposition of organic matter (OM). Climate change predictions include increased temperature and snow accumulation, resulting in altered plant communities and soil conditions. To determine how soil bacteria may respond, we sequenced soil DNA from a long-term snow depth treatment gradient in Alaska. Results indicate that bacteria produce less OM-degrading enzymes under deeper snowpack.
Soil microbial communities play a key role in the cycling of carbon (C) in Arctic tundra...