Articles | Volume 12, issue 1
https://doi.org/10.5194/soil-12-37-2026
© Author(s) 2026. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/soil-12-37-2026
© Author(s) 2026. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
An in-situ methodology to separate the contribution of soil water content and salinity to EMI-based soil electrical conductivity
Department of Agricultural, Food and Forest Sciences, University of Palermo, Palermo, 90128, Italy
Institute for Mediterranean Agricultural and Forestry Systems, National Research Council of Italy, Portici, 80055, Italy
Antonio Coppola
Department of Chemical and Geological Sciences, University of Cagliari, Monserrato, 09042, Italy
Roberto De Mascellis
Institute for Mediterranean Agricultural and Forestry Systems, National Research Council of Italy, Portici, 80055, Italy
Mohammad Farzamian
Instituto Nacional de Investigação Agrária e Veterinária, Oeiras 2780-157, Portugal
Angelo Basile
Institute for Mediterranean Agricultural and Forestry Systems, National Research Council of Italy, Portici, 80055, Italy
Related authors
Mohammad Farzamian, Dario Autovino, Angelo Basile, Roberto De Mascellis, Giovanna Dragonetti, Fernando Monteiro Santos, Andrew Binley, and Antonio Coppola
Hydrol. Earth Syst. Sci., 25, 1509–1527, https://doi.org/10.5194/hess-25-1509-2021, https://doi.org/10.5194/hess-25-1509-2021, 2021
Short summary
Short summary
Soil salinity is a serious threat in numerous arid and semi-arid areas of the world. Given this threat, efficient field assessment methods are needed to monitor the dynamics of soil salinity in salt-affected lands efficiently. We demonstrate that rapid and non-invasive geophysical measurements modelled by advanced numerical analysis of the signals and coupled with hydrological modelling can provide valuable information to assess the spatio-temporal variability in soil salinity over large areas.
Binyam Alemu Yosef, Angelo Basile, Antonio Coppola, Fabrizio Ungaro, and Marialaura Bancheri
EGUsphere, https://doi.org/10.5194/egusphere-2025-1927, https://doi.org/10.5194/egusphere-2025-1927, 2025
Short summary
Short summary
This study investigates the intricate relationship between soil properties and water-related processes, with a focus on their collective impact on ecosystem service provision. Key soil characteristics were analyzed for their role in regulating the overall hydrological balance, in three diverse regions. The study highlights the value of using these properties in predictive models for water management practices to optimize crop performance and soil conservation in different agricultural settings.
Mohammad Farzamian, Teddi Herring, Gonçalo Vieira, Miguel Angel de Pablo, Borhan Yaghoobi Tabar, and Christian Hauck
The Cryosphere, 18, 4197–4213, https://doi.org/10.5194/tc-18-4197-2024, https://doi.org/10.5194/tc-18-4197-2024, 2024
Short summary
Short summary
An automated electrical resistivity tomography (A-ERT) system was developed and deployed in Antarctica to monitor permafrost and active-layer dynamics. The A-ERT, coupled with an efficient processing workflow, demonstrated its capability to monitor real-time thaw depth progression, detect seasonal and surficial freezing–thawing events, and assess permafrost stability. Our study showcased the potential of A-ERT to contribute to global permafrost monitoring networks.
Giovanna Dragonetti, Mohammad Farzamian, Angelo Basile, Fernando Monteiro Santos, and Antonio Coppola
Hydrol. Earth Syst. Sci., 26, 5119–5136, https://doi.org/10.5194/hess-26-5119-2022, https://doi.org/10.5194/hess-26-5119-2022, 2022
Short summary
Short summary
Soil hydraulic and hydrodispersive properties are necessary for modeling water and solute fluxes in agricultural and environmental systems. Despite the major efforts in developing methods (e.g., lab-based, pedotransfer functions), their characterization at applicative scales remains an imperative requirement. Thus, this paper proposes a noninvasive in situ method integrating electromagnetic induction and hydrological modeling to estimate soil hydraulic and transport properties at the plot scale.
Mohammad Farzamian, Dario Autovino, Angelo Basile, Roberto De Mascellis, Giovanna Dragonetti, Fernando Monteiro Santos, Andrew Binley, and Antonio Coppola
Hydrol. Earth Syst. Sci., 25, 1509–1527, https://doi.org/10.5194/hess-25-1509-2021, https://doi.org/10.5194/hess-25-1509-2021, 2021
Short summary
Short summary
Soil salinity is a serious threat in numerous arid and semi-arid areas of the world. Given this threat, efficient field assessment methods are needed to monitor the dynamics of soil salinity in salt-affected lands efficiently. We demonstrate that rapid and non-invasive geophysical measurements modelled by advanced numerical analysis of the signals and coupled with hydrological modelling can provide valuable information to assess the spatio-temporal variability in soil salinity over large areas.
Cited articles
Altdorff, D., Galagedara, L., Nadeem, M., Cheema, M., and Unc, A.: Effect of agronomic treatments on the accuracy of soil moisture mapping by electromagnetic induction, Catena (Amst), 164, 96–106, https://doi.org/10.1016/j.catena.2017.12.036, 2018.
Alves, A. C., de Souza, E. R., de Melo, H. F., Oliveira Pinto, J. G., de Andrade Rego Junior, F. E., de Souza Júnior, V. S., Adriano Marques, F., do Santos, M. A., Schaffer, B., and Raj Gheyi, H.: Comparison of solution extraction methods for estimating electrical conductivity in soils with contrasting mineralogical assemblages and textures, Catena (Amst), 218, 1–9, https://doi.org/10.1016/j.catena.2022.106581, 2022.
Badewa, E., Unc, A., Cheema, M., Kavanagh, V., and Galagedara, L.: Soil moisture mapping using multi-frequency and multi-coil electromagnetic induction sensors on managed podzols, Agronomy, 8, https://doi.org/10.3390/agronomy8100224, 2018.
Bartoli, F., Regalado, C. M., Basile, A., Buurman, P., and Coppola, A.: Physical properties in European volcanic soils: a synthesis and recent developments, in: Soils of Volcanic Regions in Europe, edited by: Arnalds, Ó., Óskarsson, H., Bartoli, F., Buurman, P., Stoops, G., and García-Rodeja, E., Springer, Berlin, Heidelberg, 515–537, https://doi.org/10.1007/978-3-540-48711-1_36, 2007.
Bonfante, A., Monaco, E., Manna, P., De Mascellis, R., Basile, A., Buonanno, M., Cantilena, G., Esposito, A., Tedeschi, A., De Michele, C., Belfiore, O., Catapano, I., Ludeno, G., Salinas, K., and Brook, A.: LCIS DSS—An irrigation supporting system for water use efficiency improvement in precision agriculture: A maize case study, Agric Syst, 176, 1–14, https://doi.org/10.1016/j.agsy.2019.102646, 2019.
Bouksila, F., Persson, M., Berndtsson, R., and Bahri, A.: Soil water content and salinity determination using different dielectric methods in saline gypsiferous soil, Hydrological Sciences Journal, 53, 253–265, https://doi.org/10.1623/hysj.53.1.253, 2008.
Brevik, E. C., Fenton, T. E., and Lazari, A.: Soil electrical conductivity as a function of soil water content and implications for soil mapping, Precis. Agric., 7, 393–404, https://doi.org/10.1007/s11119-006-9021-x, 2006.
Brouwer, C., Goffeau, A., and Heibloem, M.: Irrigation Water Management: Training Manual No. 1-Introduction to Irrigation, FAO Land and Water Development Division, Rome, Italy, https://www.fao.org/4/r4082e/r4082e00.htm (last access: 10 January 2026), 1985.
Calamita, G., Perrone, A., Brocca, L., Onorati, B., and Manfreda, S.: Field test of a multi-frequency electromagnetic induction sensor for soil moisture monitoring in southern Italy test sites, J. Hydrol. (Amst), 529, 316–329, https://doi.org/10.1016/j.jhydrol.2015.07.023, 2015.
Campbell, R. B., Bower, C. A., and Richards, L. A.: Change of Electrical Conductivity With Temperature and the Relation of Osmotic Pressure to Electrical Conductivity and Ion Concentration for Soil Extracts 1, Soil Science Society of America Journal, 66, 66–69, https://doi.org/10.2136/sssaj1949.036159950013000C0010x, 1949.
Comegna, A., Coppola, A., Dragonetti, G., Severino, G., and Sommella, A.: Interpreting TDR Signal Propagation through Soils with Distinct Layers of Nonaqueous-Phase Liquid and Water Content, Vadose Zone Journal, 16, vzj2017.07.0141, https://doi.org/10.2136/vzj2017.07.0141, 2017.
Coppola, A., Chaali, N., Dragonetti, G., Lamaddalena, N., and Comegna, A.: Root uptake under non-uniform root-zone salinity, Ecohydrology, 8, 1363–1379, https://doi.org/10.1002/eco.1594, 2015.
Coppola, A., Smettem, K., Ajeel, A., Saeed, A., Dragonetti, G., Comegna, A., Lamaddalena, N., and Vacca, A.: Calibration of an electromagnetic induction sensor with time-domain reflectometry data to monitor rootzone electrical conductivity under saline water irrigation, Eur. J. Soil Sci., 67, 737–748, https://doi.org/10.1111/ejss.12390, 2016.
Corwin, D. L. and Lesch, S. M.: Apparent soil electrical conductivity measurements in agriculture, Comput. Electron. Agric., 46, 11–43, https://doi.org/10.1016/j.compag.2004.10.005, 2005.
Corwin, D. L., Scudiero, E., and Zaccaria, D.: Modified ECa–ECe protocols for mapping soil salinity under micro-irrigation, Agric. Water Manag., 269, 1–12, https://doi.org/10.1016/j.agwat.2022.107640, 2022.
Dalton, F. N., Herkelrath, W. N., Rawlins, D. S., and Rhoades, J. D.: Time-Domain Reflectometry: Simultaneous Measurement of Soil Water Content and Electrical Conductivity with a Single Probe, Science, New Series, 224, 989–990, 1984.
deGroot-Hedlin, C. and Constable, S.: Occam's inversion to generate smooth, two-dimensional models from magnetotelluric data, Geophysics, 55, 1613–1624, https://doi.org/10.1190/1.1442813, 1990.
de Oliveira, A. B., Mendes Alencar, N. L., and Gomes-Filho, E.: Comparison Between the Water and Salt Stress Effects on Plant Growth and Development, in: Responses of Organisms to Water Stress, InTech, https://doi.org/10.5772/54223, 2013.
Doolittle, J. A. and Brevik, E. C.: The use of electromagnetic induction techniques in soils studies, Geoderma, 223–225, 33–45, https://doi.org/10.1016/j.geoderma.2014.01.027, 2014.
Dragonetti, G., Comegna, A., Ajeel, A., Deidda, G. P., Lamaddalena, N., Rodriguez, G., Vignoli, G., and Coppola, A.: Calibrating electromagnetic induction conductivities with time-domain reflectometry measurements, Hydrol. Earth Syst. Sci., 22, 1509–1523, https://doi.org/10.5194/hess-22-1509-2018, 2018.
Dragonetti, G., Farzamian, M., Basile, A., Monteiro Santos, F., and Coppola, A.: In situ estimation of soil hydraulic and hydrodispersive properties by inversion of electromagnetic induction measurements and soil hydrological modeling, Hydrol. Earth Syst. Sci., 26, 5119–5136, https://doi.org/10.5194/hess-26-5119-2022, 2022.
Farzamian, M., Paz, M. C., Paz, A. M., Castanheira, N. L., Gonçalves, M. C., Monteiro Santos, F. A., and Triantafilis, J.: Mapping soil salinity using electromagnetic conductivity imaging – A comparison of regional and location-specific calibrations, Land Degrad. Dev., 30, 1393–1406, https://doi.org/10.1002/ldr.3317, 2019.
Farzamian, M., Autovino, D., Basile, A., De Mascellis, R., Dragonetti, G., Monteiro Santos, F., Binley, A., and Coppola, A.: Assessing the dynamics of soil salinity with time-lapse inversion of electromagnetic data guided by hydrological modelling, Hydrol. Earth Syst. Sci., 25, 1509–1527, https://doi.org/10.5194/hess-25-1509-2021, 2021.
Ferré, P. A., Rudolph, D. L., and Kachanoski, R. G.: Spatial Averaging of Water Content by Time Domain Reflectometry: Implications for Twin Rod Probes with and without Dielectric Coatings, Water Resour. Res., 32, 271–279, https://doi.org/10.1029/95WR02576, 1996.
Ghazouani, H., M'Hamdi, B. D., Autovino, D., Bel Haj, A. M., Rallo, G., Provenzano, G., and Boujelben, A.: Optimizing subsurface dripline installation depth with Hydrus 2D/3D to improve irrigation water use efficiency in the central Tunisia, International Journal of Metrology and Quality Engineering, 6, 1–8, https://doi.org/10.1051/ijmqe/2015024, 2015.
Gómez Flores, J. L., Ramos Rodríguez, M., González Jiménez, A., Farzamian, M., Herencia Galán, J. F., Salvatierra Bellido, B., Cermeño Sacristan, P., and Vanderlinden, K.: Depth-Specific Soil Electrical Conductivity and NDVI Elucidate Salinity Effects on Crop Development in Reclaimed Marsh Soils, Remote Sens. (Basel), 14, 1–20, https://doi.org/10.3390/rs14143389, 2022.
Hilhorst, M. A.: A Pore Water Conductivity Sensor, Soil Science Society of America Journal, 64, 1922–1925, https://doi.org/10.2136/sssaj2000.6461922x, 2000.
Huang, J., Scudiero, E., Bagtang, M., Corwin, D. L., and Triantafilis, J.: Monitoring scale-specific and temporal variation in electromagnetic conductivity images, Irrig. Sci., 34, 187–200, https://doi.org/10.1007/s00271-016-0496-6, 2016.
IUSS Working Group WRB: World Reference Base for Soil Resources 2014, Update 2015. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, World Soil Resources Reports No. 106, FAO, Rome, https://doi.org/10.1017/S0014479706394902, 2015.
Kara, T. and Willardson, L. S.: Leaching Requirements to Prevent Soil Salinization, Journal of Applied Sciences, 6, 1481–1489, https://doi.org/10.3923/jas.2006.1481.1489, 2006.
Kaufman, A. and Keller, G. V.: Frequency and Transient Sounding Methods in Geochemistry and Geophysics, Elsevier, Amsterdam, 686 pp., ISBN 978-0444420329, 1983.
Lavoué, F., Van Der Kruk, J., Rings, J., André, F., Moghadas, D., Huisman, J. A., Lambot, S., Weihermuller, L., Vanderborght, J., and Vereecken H.: Electromagnetic induction calibration using apparent electrical conductivity modelling based on electrical resistivity tomography, Near Surface Geophysics, 8, 553–561, https://doi.org/10.3997/1873-0604.2010037, 2010.
Malicki, M. A. and Walczak, R. T.: Evaluating soil salinity status from bulk electrical conductivity and permittivity, Eur. J. Soil Sci., 50, 505–514, https://doi.org/10.1046/j.1365-2389.1999.00245.x, 1999.
McNeill, J. D.: Electromagnetic Terrain Conductivity Measurement at Low Induction Numbers, Ontario, Canada, 1–15, Geonics Limited, https://geonics.com/pdfs/technicalnotes/tn6.pdf (last access: 10 January 2026), 1980.
Mester, A., van der Kruk, J., Zimmermann, E., and Vereecken, H.: Quantitative Two-Layer Conductivity Inversion of Multi-Configuration Electromagnetic Induction Measurements, Vadose Zone Journal, 10, 1319–1330, https://doi.org/10.2136/vzj2011.0035, 2011.
Monteiro Santos, F. A.: 1-D laterally constrained inversion of EM34 profiling data, J. Appl. Geophy., 56, 123–134, https://doi.org/10.1016/j.jappgeo.2004.04.005, 2004.
Mualem, Y. and Friedman, S. P.: Theoretical Prediction of Electrical Conductivity in Saturated and Unsaturated Soil, Water Resour. Res., 27, 2771–2777, https://doi.org/10.1029/91WR01095, 1991.
Muñoz-Carpena, R., Regalado, C. M., Ritter, A., Alvarez-Benedí, J., and Socorro, A. R.: TDR estimation of electrical conductivity and saline solute concentration in a volcanic soil, Geoderma, 124, 399–413, https://doi.org/10.1016/j.geoderma.2004.06.002, 2005.
Nadler, A.: Estimating the Soil Water Dependence of the Electrical Conductivity Soil Solution/Electrical Conductivity Bulk Soil Ratio, Soil Science Society of America Journal, 46, 722–726, https://doi.org/10.2136/sssaj1982.03615995004600040011x, 1982.
Nadler, A.: Methodologies and the practical aspects of the bulk soil EC (σa)-soil solution EC (σw) relations, Advances in Agronomy, 88, https://doi.org/10.1016/S0065-2113(05)88007-1, 2005.
Nadler, A., Frenkel, H., and Mantell, A.: Applicability of the Four-Probe Technique under Extremely Variable Water Contents and Salinity Distribution1, Soil Science Society of America Journal, 48, 1258–1261, https://doi.org/10.2136/sssaj1984.03615995004800060011x, 1984.
Noborio, K.: Measurement of soil water content and electrical conductivity by time domain reflectometry: a review, Comput. Electron. Agric., 31, 213–237, https://doi.org/10.1016/S0168-1699(00)00184-8, 2001.
Paz, M. C., Farzamian, M., Paz, A. M., Castanheira, N. L., Gonçalves, M. C., and Monteiro Santos, F.: Assessing soil salinity dynamics using time-lapse electromagnetic conductivity imaging, SOIL, 6, 499–511, https://doi.org/10.5194/soil-6-499-2020, 2020.
Rasool, S., Hameed, A., Azooz, M. M., Muneeb-U-Rehman, Siddiqi, T. O., and Ahmad, P.: Salt stress: Causes, types and responses of plants, in: Ecophysiology and Responses of Plants under Salt Stress, edited by: Ahmad, P., Azooz, M. M., and Prasad, M. N. V., Springer New York, New York, 1–24, https://doi.org/10.1007/978-1-4614-4747-4_1, 2013.
Regalado, C. M., Muñz Carpena, R., Socorro, A. R., and Hernández Moreno, J. M.: Time domain reflectometry models as a tool to understand the dielectric response of volcanic soils, Geoderma, 117, 313–330, https://doi.org/10.1016/S0016-7061(03)00131-9, 2003.
Rhoades, J. D. and Van Schilfgaarde, J.: An Electrical Conductivity Probe for Determining Soil Salinity, Soil Science Society of America Journal, 40, 647–651, https://doi.org/10.2136/sssaj1976.03615995004000050016x, 1976.
Rhoades, J. D., Raats, P. A. C., and Prather, R. J.: Effects of Liquid-phase Electrical Conductivity, Water Content, and Surface Conductivity on Bulk Soil Electrical Conductivity 1, Soil Science Society of America Journal, 40, 651–655, https://doi.org/10.2136/sssaj1976.03615995004000050017x, 1976.
Rhoades, J. D., Manteghi, N. A., Shouse, P. J., and Alves, W. J.: Soil Electrical Conductivity and Soil Salinity: New Formulations and Calibrations, Soil Science Society of America Journal, 53, 433–439, https://doi.org/10.2136/sssaj1989.03615995005300020020x, 1989.
Rhoades, J. D., Chanduvi, F., and Lesh, S.: Soil Salinity Assessment-Methods and Interpretation of Electrical Conductivity Measurements. FAO Irrigation and Drainage paper No. 57, FAO, Rome, ISBN 92-5-104281-0, 1999.
Robinet, J., von Hebel, C., Govers, G., van der Kruk, J., Minella, J. P. G., Schlesner, A., Ameijeiras-Mariño, Y., and Vanderborght, J.: Spatial variability of soil water content and soil electrical conductivity across scales derived from Electromagnetic Induction and Time Domain Reflectometry, Geoderma, 314, 160–174, https://doi.org/10.1016/j.geoderma.2017.10.045, 2018.
Robinson, D. A., Jones, S. B., Wraith, J. M., Or, D., and Friedman, S. P.: A Review of Advances in Dielectric and Electrical Conductivity Measurement in Soils Using Time Domain Reflectometry, Vadose Zone Journal, 2, 444–475, https://doi.org/10.2136/vzj2003.4440, 2003.
Saeed, A., Comegna, A., Dragonetti, G., Lamaddalena, N., Sommella, A., and Coppola, A.: Soil electrical conductivity estimated by time domain reflectometry and electromagnetic induction sensors: Accounting for the different sensor observation volumes, Journal of Agricultural Engineering, 48, 223–234, https://doi.org/10.4081/jae.2017.716, 2017.
Sasaki, Y.: Full 3-D inversion of electromagnetic data on PC, J. Appl. Geophy., 46, 45–54, https://doi.org/10.1016/S0926-9851(00)00038-0, 2001.
Selim, T., Bouksila, F., Berndtsson, R., and Persson, M.: Soil Water and Salinity Distribution under Different Treatments of Drip Irrigation, Soil Science Society of America Journal, 77, 1144–1156, https://doi.org/10.2136/sssaj2012.0304, 2013.
Serrano, J. M., Shahidian, S., and da Silva, J. R. M.: Apparent electrical conductivity in dry versus wet soil conditions in a shallow soil, Precis. Agric., 14, 99–114, https://doi.org/10.1007/s11119-012-9281-6, 2013.
Shanahan, P. W., Binley, A., Whalley, W. R., and Watts, C. W.: The Use of Electromagnetic Induction to Monitor Changes in Soil Moisture Profiles beneath Different Wheat Genotypes, Soil Science Society of America Journal, 79, 459–466, https://doi.org/10.2136/sssaj2014.09.0360, 2015.
Sudduth, K. A., Kitchen, N. R., Wiebold, W. J., Batchelor, W. D., Bollero, G. A., Bullock, D. G., Clay, D. E., Palm, H. L., Pierce, F. J., Schuler, R. T., and Thelen, K. D.: Relating apparent electrical conductivity to soil properties across the north-central USA, Comput. Electron. Agric., 46, 263–283, https://doi.org/10.1016/j.compag.2004.11.010, 2005.
Tlig, W., El Mokh, F., Autovino, D., Iovino, M., and Nagaz, K.: Carrot productivity and its physiological response to irrigation methods and regimes in arid regions, Water Supply, 23, 5093–5105, https://doi.org/10.2166/ws.2023.304, 2023.
Topp, G. C., Davis, J. L., and Annan, A. P.: Electromagnetic Determination of Soil Water Content: Measurements in Coaxial Transmission Lines, Water Resour. Res., 16, 574–582, https://doi.org/10.1029/WR016i003p00574, 1980.
Triantafilis, J., Terhune IV, C. H., and Monteiro Santos, F. A.: 2013. An inversion approach to generate electromagnetic conductivity images from signal data, Environmental Modelling & Software, 43, 88–95, https://doi.org/10.1016/j.envsoft.2013.01.012, 2013.
Western, A. W. and Blöschl, G.: On the spatial scaling of soil moisture, J. Hydrol. (Amst), 217, 203–224, https://doi.org/10.1016/S0022-1694(98)00232-7, 1999.
Short summary
In this article, we developed a method to better understand how soil water moisture and salt content affect electrical signals measured from the surface by electromagnetic induction technique. This helps farmers manage irrigation, especially in areas using salty water. By combining field and lab data, we could tell how much each factor—water or salt—affected the signal. This technique offers a faster, easier way to track soil health and could improve how we use water in farming.
In this article, we developed a method to better understand how soil water moisture and salt...
Special issue