Articles | Volume 11, issue 1
https://doi.org/10.5194/soil-11-67-2025
https://doi.org/10.5194/soil-11-67-2025
Original research article
 | 
24 Jan 2025
Original research article |  | 24 Jan 2025

Closing the phenotyping gap with non-invasive belowground field phenotyping

Guillaume Blanchy, Waldo Deroo, Tom De Swaef, Peter Lootens, Paul Quataert, Isabel Roldán-Ruíz, Roelof Versteeg, and Sarah Garré

Related authors

Potential of natural language processing for metadata extraction from environmental scientific publications
Guillaume Blanchy, Lukas Albrecht, John Koestel, and Sarah Garré
SOIL, 9, 155–168, https://doi.org/10.5194/soil-9-155-2023,https://doi.org/10.5194/soil-9-155-2023, 2023
Short summary

Related subject area

Soil sensing
Uncovering soil compaction: performance of electrical and electromagnetic geophysical methods
Alberto Carrera, Luca Peruzzo, Matteo Longo, Giorgio Cassiani, and Francesco Morari
SOIL, 10, 843–857, https://doi.org/10.5194/soil-10-843-2024,https://doi.org/10.5194/soil-10-843-2024, 2024
Short summary
Assessing soil fertilization effects using time-lapse electromagnetic induction
Manuela S. Kaufmann, Anja Klotzsche, Jan van der Kruk, Anke Langen, Harry Vereecken, and Lutz Weihermüller
EGUsphere, https://doi.org/10.5194/egusphere-2024-2889,https://doi.org/10.5194/egusphere-2024-2889, 2024
Short summary
The effect of soil moisture content and soil texture on fast in situ pH measurements with two types of robust ion-selective electrodes
Sebastian Vogel, Katja Emmerich, Ingmar Schröter, Eric Bönecke, Wolfgang Schwanghart, Jörg Rühlmann, Eckart Kramer, and Robin Gebbers
SOIL, 10, 321–333, https://doi.org/10.5194/soil-10-321-2024,https://doi.org/10.5194/soil-10-321-2024, 2024
Short summary
Best performances of visible–near-infrared models in soils with little carbonate – a field study in Switzerland
Simon Oberholzer, Laura Summerauer, Markus Steffens, and Chinwe Ifejika Speranza
SOIL, 10, 231–249, https://doi.org/10.5194/soil-10-231-2024,https://doi.org/10.5194/soil-10-231-2024, 2024
Short summary
Delineating the distribution of mineral and peat soils at the landscape scale in northern boreal regions
Anneli M. Ågren, Eliza Maher Hasselquist, Johan Stendahl, Mats B. Nilsson, and Siddhartho S. Paul
SOIL, 8, 733–749, https://doi.org/10.5194/soil-8-733-2022,https://doi.org/10.5194/soil-8-733-2022, 2022
Short summary

Cited articles

Abdalla, M., Ahmed, M. A., Cai, G., Wankmüller, F., Schwartz, N., Litig, O., Javaux, M., and Carminati, A.: Stomatal closure during water deficit is controlled by below-ground hydraulics, Ann. Botany, 129, 161–170, https://doi.org/10.1093/aob/mcab141, 2021. a
Amato, M., Bitella, G., Rossi, R., Gómez, J. A., Lovelli, S., and Gomes, J. J. F.: Multi-electrode 3D resistivity imaging of alfalfa root zone, Eur. J. Agro., 31, 213–222, https://doi.org/10.1016/j.eja.2009.08.005, 2009. a
Araus, J. L. and Cairns, J. E.: Field high-throughput phenotyping: the new crop breeding frontier, Trend. Plant Sci., 19, 52–61, https://doi.org/10.1016/j.tplants.2013.09.008, 2014. a
Atkinson, J. A., Pound, M. P., Bennett, M. J., and Wells, D. M.: Uncovering the hidden half of plants using new advances in root phenotyping, Curr. Op. Biotechnol., 55, 1–8, https://doi.org/10.1016/j.copbio.2018.06.002, 2019. a
Binley, A.: 11.08 – Tools and Techniques: Electrical Methods, pp. 233–259, Elsevier, Oxford, https://doi.org/10.1016/B978-0-444-53802-4.00192-5, 2015. a
Download
Short summary
This work implemented automated electrical resistivity tomography (ERT) for belowground field phenotyping alongside conventional field breeding techniques, thereby closing the phenotyping gap. We show that ERT is not only capable of measuring differences between crops but also has sufficient precision to capture the differences between genotypes of the same crop. We automatically derive indicators, which can be translated to static and dynamic plant traits, directly useful for breeders.