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Abstract. Breeding climate-robust crops is one of the needed pathways for adaptation to the changing climate.
To speed up the breeding process, it is important to understand how plants react to extreme weather events such
as drought or waterlogging in their production environment, i.e. under field conditions in real soils. Whereas a
number of techniques exist for aboveground field phenotyping, simultaneous non-invasive belowground pheno-
typing remains difficult. In this paper, we present the first data set of the new HYDRAS (HYdrology, Drones
and RAinout Shelters) open-access field-phenotyping infrastructure, bringing electrical resistivity tomography,
alongside drone imagery and environmental monitoring, to a technological readiness level closer to what breeders
and researchers need. This paper investigates whether electrical resistivity tomography (ERT) provides sufficient
precision and accuracy to distinguish between belowground plant traits of different genotypes of the same crop
species. The proof-of-concept experiment was conducted in 2023, with three distinct soybean genotypes known
for their contrasting reactions to drought stress. We illustrate how this new infrastructure addresses the issues of
depth resolution, automated data processing, and phenotyping indicator extraction. The work shows that elec-
trical resistivity tomography is ready to complement drone-based field-phenotyping techniques to accomplish
whole-plant high-throughput field phenotyping.

1 Introduction

Alongside actions to mitigate climate change, the agricul-
tural sector needs solutions to adapt to the increased occur-
rence of weather extremes such as drought or waterlogging.
In this sense, breeding climate-robust crops is one of the
needed pathways for adaptation to climate change (Snow-
don et al., 2020). In a typical breeding programme, the selec-
tion of a new variety ready for the market takes more than a
decade (Voss-Fels et al., 2019). To speed up this process and
to breed climate-robust crops more efficiently, it is important
to understand how plants respond to extreme weather events
such as drought or waterlogging and to identify which traits
should be targeted in selection programmes. Recent advances

in phenotyping have resulted in powerful tools to screen plant
traits in large collections of plants in different settings and
under various conditions.

While methods for evaluation under controlled conditions
in growth chambers or greenhouses remain important in plant
phenotyping, a weak correlation has often been reported be-
tween responses in a controlled environment and those in
a production environment (Langstroff et al., 2021). Conse-
quently, in-field evaluation, in combination with remote sens-
ing techniques, is increasingly being deployed (Araus and
Cairns, 2014). Nevertheless, few options are currently avail-
able to phenotype belowground in-field conditions in undis-
turbed and living soils. Most techniques for soil–root inves-
tigation in the field are invasive and destructive (Das et al.,
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2015; Trachsel et al., 2010). These techniques cannot moni-
tor a given plant, or plot, throughout its entire growth period.
Installation of minirhizotron tubes with cameras offers a less
invasive approach (Svane et al., 2019) but delivers only local
information on the (partly disturbed) zone surrounding the
tubes (Rajurkar et al., 2022; Vamerali et al., 2011). Geophys-
ical imaging techniques allow for the monitoring of a bigger
soil volume in a minimally invasive way.

Electrical resistivity tomography (ERT) (also denoted as
electrical resistivity imaging (ERI) or direct-current resistiv-
ity (DCR)) is a commonly used geophysical technique to in-
ject a current into a pair of electrodes and to measure the
voltage in another pair, obtaining the electrical resistance of
the bulk soil in the measurement volume. The measurement
volume varies with the distance between the four electrodes.
This procedure is repeated over many combinations of elec-
trodes along a transect or a grid or even using borehole elec-
trodes. This results in a series of apparent electrical resistiv-
ities of different volumes of bulk soil. The data set of mea-
sured resistances is then inverted to reconstruct a plausible
distribution of electrical resistivity in the subsurface below
the transect or grid (i.e. to create an image of the subsur-
face). Since the inversion problem is ill-posed, the obtained
distribution of electrical resistivity should always be consid-
ered to be an estimation with which uncertainty is associ-
ated. The electrical resistivity of bulk soil is determined by
soil variables (e.g. soil moisture, temperature, salinity) and
properties (e.g. clay content, porosity) which may change si-
multaneously. To monitor a variable of interest, such as soil
moisture, other variables or properties are typically measured
with independent methods so that their effect on resistivity
can be predicted and eliminated using calibration relation-
ships. The experimental setup can also keep other variables
of interest constant, or one can neglect their influence if the
effect is much smaller than the one of the variable of inter-
est. Time lapse ERT allows for the removal of the effect of
constant properties of the subsurface since only changes in
electrical resistivity over time can be considered. More in-
formation on the theoretical basis of ERT, inversion, and its
applications can be found in Binley and Slater (2020).

ERT integrates the entire soil volume under a plant, row, or
plot and is sensitive to changes in soil moisture. This makes
the technique suitable to monitor the impact of crop root sys-
tems on soil water depletion, which is related to static or
dynamic root system traits (McGrail et al., 2020; Atkinson
et al., 2019; Ehosioke et al., 2020). The most important ad-
vantage is that ERT does not disturb root system structures,
architecture, and functions within the rhizosphere and bulk
soil environments, and so the rhizosphere can be monitored
as a “holistic phenotype”. This could lead as far as the dis-
covery of new traits to be targeted by breeders and is essen-
tial for researchers investigating the functioning of the soil–
plant system. ERT has been used before to assess static and
dynamics properties of the root zone in the context of agro-
nomic, ecological, and engineering studies. In the agronomic

context, Michot et al. (2003) were amongst the first to use
ERT to observe root water uptake patterns of maize in the
field. In the following years, the potential of ERT to moni-
tor soil water depletion in the root zone was further demon-
strated by various authors using a range of crops, soils, and
climates (these include, amongst others, Amato et al., 2009;
Srayeddin and Doussan, 2009; Cassiani et al., 2012; Garré
et al., 2013; Blanchy et al., 2020c). Whalley et al. (2017)
were the first to bring the technique explicitly to the breed-
ing context by testing its ability to discriminate between the
soil moisture profiles under 13 wheat varieties over 3 years.
Amongst the tested techniques, ERT provided the best dis-
crimination among wheat lines. They found inter-genotype
differences in the depth of water uptake and in the extent of
surface drying, paving the way for ERT as a technique for be-
lowground plant phenotyping, complementing aboveground
high-throughput field phenotyping (HTFP).

Despite its clear potential, past studies highlighted a few
remaining challenges in using ERT as a fully fledged below-
ground phenotyping technique. In agronomic applications,
ERT is mostly implemented as a surface transect or grid.
To maximize the resolution in the root zone, small electrode
spacings (0.2–0.5 m) should be adopted. Nevertheless, the
resolution and sensitivity of the imaging declines with depth.
Obtaining a high spatial resolution throughout the root zone
while attaining sufficient depth penetration is a significant
challenge (Zhao et al., 2019). The resolution of ERT is typ-
ically limited to the decimetre range in the field, especially
when targeting (the effects of) roots at greater depths. The
effect of small uncertainties in electrode positions quickly in-
flates when electrode spacings are reduced and when surface
electrodes are combined with buried or borehole electrodes
(Wilkinson et al., 2008; Ochs et al., 2022). In addition, the
choice of electrode configuration significantly influences the
quality of ERT data and the sensitivity distribution (Garre
et al., 2021). Optimizing electrode layouts and measurement
arrays for specific phenotyping objectives (balancing space
and time resolution) is therefore key to getting robust and
accurate phenotyping data sets (Uhlemann et al., 2018).

Another challenge is that apparent resistivity measure-
ments need to be converted to resistivity distributions by an
inversion process if spatially explicit information is required.
The classical geophysical inversion is ill-posed, and choos-
ing the most appropriate inversion parameters still requires
significant expert knowledge. In addition, the quality of the
inversion results is sensitive to several factors, which may
sometimes change during the growing season (e.g. chang-
ing contact resistances due to drought). Developing robust
inversion algorithms with clear descriptions of the used ap-
proaches and applied regularization strengths remains impor-
tant. Improving the transparency and accuracy of the inver-
sion process is necessary to develop standardized process-
ing pipelines and resulting indicators for breeders. Different
types of inversion strategies should be explored, such as joint
or coupled inversion, machine learning, or other types of hy-
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brid algorithms (Wagner and Uhlemann, 2021). As a geo-
physical inversion is ill-posed, ERT data inversion results are
inevitably associated with uncertainties. Understanding and
quantifying these uncertainties (Tso et al., 2021; Linde et al.,
2017) and developing strategies to manage and communicate
them are important for the reliable interpretation of resistiv-
ity distributions and derived phenotyping indicators.

Finally, establishing standardized (meta-)data formats,
procedures for ERT measurement for phenotyping, and cal-
ibration and data processing is crucial for ensuring consis-
tency, comparability, and interoperability of data across dif-
ferent studies and locations. Currently, typically, very lit-
tle information about the exact settings of the measure-
ment device, electrode array, and data processing is shared
in research publications. Some initiatives, such as REDA
(https://geophysics-ubonn.github.io/reda/index.html, last ac-
cess: 16 January 2025), try to address this but are cur-
rently not widely adopted. Well-documented, open-access
ERT data sets for agriculture and, in particular, phenotyp-
ing are rare (CAGS, https://agrogeophy.github.io/datasets/,
last access: 16 January 2025). There are some efforts for
unified data models in the phenotyping community (e.g.
MIAPPE, https://www.miappe.org/, last access: 16 January
2025), in environmental monitoring (e.g. eLTER, https://
zenodo.org/records/6373410, last access: 16 January 2025,
ENVRI-FAIR, Wohner et al., 2022), and in geoscience (e.g.
ODM2, ODMX, https://odmx.org/, last access: 16 January
2025), but those remain limited to certain sub-communities
or projects. In addition, there is no clear, broadly accepted
standard for the ERT data storage, processing, and sharing in
the framework of belowground phenotyping. This hampers
the wide use and application of the technique and/or result-
ing data sets.

HYDRAS (HYdrology, Drones and RAinout Shelters) is
an open-access field-phenotyping infrastructure, located near
Ghent in Belgium. It was designed to address these chal-
lenges and to bring electrical resistivity tomography, along-
side drone imagery and environmental monitoring, to a tech-
nological readiness level closer to what breeders and re-
searchers of the soil–plant–atmosphere system need. The ob-
jective of this work was to investigate whether electrical re-
sistivity tomography (ERT) provides sufficient precision and
accuracy to distinguish between belowground plant traits of
different genotypes of the same crop species. We address the
issues of depth resolution; automated data processing; phe-
notyping indicator extraction; and open, interoperable data
sets. Using the data of a proof-of-concept (POC) experi-
ment conducted in 2023, we illustrate steps towards address-
ing these challenges and highlight potential further develop-
ments.

2 Methodology

The HYDRAS open field-phenotyping infrastructure com-
prises fields with mobile rainout shelters used to generate
precise drought periods and neighbouring control fields. Reg-
ular drone flights with RGB and multispectral cameras gen-
erate high-throughput phenotyping indicators characterizing
the aboveground part of the plant at key phenological stages.
Continuous electrical resistivity tomography (ERT) moni-
toring provides indicators representing the plant below the
ground. Measurement methods are calibrated and validated
with independent soil and plant sensors. In this work, we
present the results of the belowground phenotyping activities
during the proof-of-concept (POC) experiment conducted
in 2023, with three distinct soybean genotypes known for
their contrasting reactions to drought stress: Glycine max (L.)
Merr. cv. Lenka, Glycine max (L.) Merr. cv. Hermes, and
Glycine max (L.) Merr. cv. Pro-1. The Lenka genotype is
known to be more resistant to drought thanks to the slow
canopy drought trait (Ye et al., 2019). Pro-1 and Hermes do
not have this trait, but the Pro-1 genotype has a more compact
habitus that can potentially make it more drought tolerant.

2.1 Site description

HYDRAS is located in Melle, Belgium (50.99281° N,
3.78602° E), on a sandy soil classified as a Eutric Stagnic
Glossic Retisol according the WRB (2022) or as Sbc accord-
ing to the Belgian soil classification system. Each drought
and control block consists of three fields undergoing a 3-year
crop rotation, with six blocks in total (see Fig. 1). The size
of each field is 30 m× 10 m. The drought blocks have an ad-
ditional parking for the shelters, which is not used for exper-
iments. The year 2023 was the first year of operation of the
infrastructure. Two weather stations are present: one under-
neath a shelter and one in the open air. HYDRAS is equipped
with a calibration pit. In this pit, soil moisture, soil tempera-
ture, and electrical resistivity sensors monitor the soil status
continuously in each horizon (see below for details). This al-
lows us to establish a robust field-specific pedophysical rela-
tionship by curve-fitting to the soil moisture–electrical con-
ductivity data from the pit. The pit also provides continuous
validation data characterizing the field status. In addition, soil
moisture and water potential sensors are installed near the
soil surface in the experimental fields to validate the ERT
measurements during the growing season.

2.2 Data acquisition

2.2.1 Electrical resistivity tomography

In HYDRAS, electrical resistivity tomography (ERT) is used
to identify differences in the root system functioning of a
panel of plant genotypes by monitoring the impact of each
genotype on soil water depletion patterns. We start the grow-
ing season with well-watered soil all along the ERT transect.
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Figure 1. Layout of the HYDRAS field-phenotyping infrastruc-
ture during the POC2023 experiment. The control and drought field
equipped with ERT in 2023 are indicated in shaded green. Black
lines indicate the location of an ERT transect constituted by surface
electrodes and electrodes buried at 0.5 m depth. The polygons inside
the fields represent the plots sown with soybean.

The electrical resistivity of the soil increases (or the conduc-
tivity decreases) where water disappears through the process
of root water uptake, amongst others. In the electrical resis-
tivity profile, this appears as a series of root water uptake
bulbs or as a drying front along the transect if the plant rows
are close to each other. Upon an irrigation event, new water
infiltrates into the profile, affecting the drying patterns. The
root water uptake is therefore most visible in the time lapse
ERT data over a dry period. The effect of root-induced soil
moisture changes is generally much larger than other, direct
effects of the growing root biomass (Ehosioke et al., 2020).

ERT quantifies the bulk electrical resistivity of the soil be-
tween a series of electrodes. The bulk electrical resistivity
corresponds to the combined resistivity of soil particles, pore
water, and air. A basic measurement system consists of four
electrodes (A, B, M, N), often referred to as a “quadrupole”.
A direct current of known intensity (I ) is sent between elec-
trodes A and B, while a potential difference (V ) is measured
between electrodes M and N. The resistivity meter switches
the polarity of the current using a square wave to avoid polar-
ization of the injection electrodes. It then computes a trans-
fer resistance (R, �) for each combination of four electrodes
based on Ohm’s law: R = V / I. Based on the distances be-
tween the four electrodes, a geometric factor K can be com-
puted to transform this transfer resistance into a bulk appar-
ent electrical resistivity (ρa, �m): ρa =K ×R. This resis-
tivity is “apparent” because it represents the resistivity of a
homogeneous isotropic ground with the same transfer resis-

tance. Electrical conductivity (EC, mS m−1) is the inverse of
the resistivity.

For the POC experiment, we sowed the three soybean
genotypes on 24 May 2023 (for more information on the tim-
ing of different agronomic and experimental events, see Ap-
pendix A). We then equipped one field in the control block
and one in the drought block with three ERT transects cross-
ing the soybean genotype plots (the shaded fields in Fig. 1).
Each transect was 26.4 m long (excluding the borders of the
field) and consisted of a surface cable and a cable buried at
0.5 m depth. The buried cable increases the resolution in the
bottom part of the root zone. The surface electrode spacing
was 0.3 m, whereas the electrode spacing along the buried
cable was 0.6 m (see Fig. 2a and b). This resulted in a total of
426 electrodes per field connected to the ERT base unit. The
surface electrodes had a diameter of 0.01 m and a length of
0.1 m and were connected to the multicore cables. The cable
take-outs of the buried cables served directly as electrodes.
In the HYDRAS installation, the buried cables stay in place
permanently since they are installed under the plough depth.
The surface cables are put in place after sowing, stay there
for the entire growth period, and are removed at harvest.

We performed the ERT measurements with a single-
channel, multi-electrode autonomous resistivity system de-
veloped and sold by Subsurface Insights (Hanover, NH,
United States) and Metinco (Wapenveld, The Netherlands).
These systems can support thousands of electrodes. The two
systems installed in HYDRAS have 420 electrodes each.
These systems are specifically designed for unattended long-
term monitoring efforts and, apart from needing external
power, are fully self-contained. An internal single-board
computer controls the data acquisition and communicates
with a cloud server for data storage and further processing.
Users can control acquisition and can access collected data
through a web interface and a software API. The system can
inject currents of up to 120 mA or, alternatively, can apply a
fixed transmitter (Tx, between electrodes A and B) voltage
between 0 and 150 V. In the POC experiment, we applied a
Tx voltage of 20 V. This Tx voltage was found to be adequate
to have a good signal-to-noise ratio for our electrode spacing
and soil type. The measurement sequence for the POC ex-
periment contained dipole–dipole and gradient quadrupoles
on the same line and between surface and buried lines (full
sequence available in the Appendix). We collected recipro-
cals of all quadrupoles for error assessment. One ERT mea-
surement sequence of 2118 quadrupoles took about 1.5 h and
was repeated continuously from 21 June 2023 (just after sow-
ing) to 30 September 2023 (just before harvest). There is an
obvious trade-off between acquisition (slower for a single-
channel device than for a multi-channel device) and instru-
ment price (cheaper for a single-channel device than for a
multi-channel devices). The cheaper instrument price of the
SSI single-channel device allows for multiple devices in the
field and for simultaneous data acquisition from multiple
fields.
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Figure 2. (a) Top-view scheme of the ERT-equipped fields in HYDRAS during the POC2023 experiment. Colours represent genotypes.
Small dots represent electrodes of the three ERT transects: TA, TB, and TC. (b) Side-view scheme of the ERT-equipped fields, highlighting
electrode numbering. (c) Calibration pit with sensors, electrode locations, and soil profiles.

As Fig. 2a shows, we adopted two types of plant row ori-
entations in this POC experiment (along and perpendicular
to the ERT transects) to assess whether this orientation in-
fluences the measurements. The orientation did not affect
the ERT-derived indicators considerably, confirming that the
2.5 D assumption (homogeneity in the Y direction) holds for
both row orientations in this trial. Analysis of the yield data
of the trial revealed that the yield in the plots with rows
perpendicular to the ERT transects was systematically lower
than in the plots with rows established along the ERT tran-
sects. This was most likely due to more edge effects and more
of an impact by tractor wheel tracks (data not shown).

2.2.2 Environmental monitoring

Four soil water potential sensors (TEROS 21, METER
Group) and nine soil moisture sensors (CS616, Campbell
Scientific) were installed vertically in the soil surface. Fig-
ure 2a shows the location of those sensors in the field. They
are all, at maximum, two plant rows away from the ERT
transects. The site has a calibration pit equipped with soil
moisture, soil water potential, and soil temperature sensors
(T107, Campbell Scientific) and four electrodes in each of
the four soil horizons up to 1 m depth (see Fig. 2c). Sen-
sors and electrical resistivity measurements are continuously
logged throughout the year to establish the field-scale soil hy-
draulic functions, thermal characteristics, and pedophysical
calibration functions. Figure 3b shows significant variability
near the soil surface, but at 0.6 and 0.9 m depth, the soil mois-
ture remained rather constant throughout the season. As the
soil pit was bare and because the fields were sown with soy-

bean, the evapotranspiration was higher in the fields than in
the pit, which resulted in lower soil moisture contents in the
field than in the pit. The pit should therefore not be used to as-
sess the field status of soil variables but rather as a field-scale
source of data on soil hydraulic, thermal, and pedophysical
functions.

Meteorological variables (solar radiation, precipitation,
wind direction, wind speed, air temperature, water vapour
pressure, atmospheric pressure) were measured using a AT-
MOS 41 weather station (METER Group). One station was
mounted in open air, and the other was mounted under the
rainout shelter when drought was applied to assess the im-
pact of the shelter on the microclimate.

2.2.3 Aboveground phenotyping using drone imaging

Drone-based high-throughput field phenotyping was exe-
cuted in analogy with Borra-Serrano et al. (2020) and Pranga
et al. (2021). In total, 14 flights were performed using a UAV
DJI Matrice 600 Pro (DJI, Shenzhen, China) equipped with
an RGB camera (a6400, Sony Corporation, Tokyo, Japan),
a 10-band multispectral camera (MX dual-camera system,
MicaSense, Seattle, USA), and a thermal camera (WIRIS
Pro, Workswell, Czech Republic). For this article, only mul-
tispectral data were used. Flight speed and flight altitude
were 2.7 m s−1 and 30 m for the multispectral sensor. This
resulted in a ground sampling distance of 2.0 cm per pixel.
All flights were conducted within 2 h of solar noon and with
80 %–80 % side and front overlap. Multispectral images were
processed, and geo-referenced orthophotos were created us-
ing PIX4Dmapper 4.7.5 (Pix4D S.A., Switzerland). Several
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Figure 3. Overview of environmental conditions in the calibration
pit, drought, and control fields. (a) Precipitation and cumulative pre-
cipitation deficit (=6(ET0−P )) under drought and control treat-
ments. The cyan irrigation event was only applied on the control
plots. The yellow band indicates the length of the applied drought
treatment with the rainout shelter. (b) Soil moisture in the calibra-
tion pit at four depths (grey hues) and in the drought (orange hues)
and control fields (blue hues) at 0.15 m depth (different hues in-
dicate different locations in the field). (c) Soil water potential in
the calibration pit at four depths (grey hues) and in the drought
(0–0.10 m depth) and control fields (vertical installation depth: 0–
0.10 m). (d) Soil temperature in the calibration pit at four depths
(grey hues) and in the control treatment (vertical installation depth:
0–0.10 m).

plant indices were calculated, but, here, we only show the
soil-adjusted vegetation index (SAVI). This index minimizes
the influence of soil brightness using a correction factor. NIR
represents the pixel values from the near-infrared band, Red
represents the pixel values from the near-red band, and L rep-
resents the amount of green vegetation cover.

SAVI=
(NIR−Red)

(NIR+Red+L)
· (1+L) (1)

Generally, in areas with no green vegetation cover, L= 1;
in areas of moderate green vegetative cover, L= 0.5; and in
areas with very high vegetation cover, L= 0 (which is equiv-
alent to the normalized difference vegetation index (NDVI)
method). This index outputs values between −1.0 and 1.0.

2.3 Processing and quality control

Figure 4 shows an overview of the data processing workflow.
The workflow is divided into four different steps: preprocess-

ing, quality assessment, inversion, and computing indicators.
More explanations of some of these steps are given below.

2.3.1 Quality assessment

From the field ERT unit, the data are continuously uploaded
to a server, where a basic quality assessment at the level
of the quadrupoles is executed. Users are alerted when the
server does not receive data or when the raw data do not reach
defined thresholds (e.g. very low injection current). Figure 5
shows the evolution of the raw metrics for each measured
quadrupole over the entire monitoring period: current (I ),
measured voltage (Vmn), contact resistance (cR, estimated
resistance between the electrode and the soil), apparent re-
sistivity (ρa), standard deviation from stacking (SD), and rel-
ative difference in apparent resistivity to the reference back-
ground image (1ρa/ρa0) from the first survey (ρa0). cR is
calculated from the same measurement data that are used for
resistivity. This is given for an electrode pair by dividing the
voltage applied across the electrodes by the current and then
dividing by 2 to determine approximate resistance per elec-
trode. This overview enables us to spot any irregularities in
the system or sudden environmental changes, such as heavy
rainfall after a dry period (e.g. end of August), allowing for
real-time alerting during the monitoring period.

Quadrupoles with electrodes often associated with high
contact resistances (>50 k�) were removed from the data
sets. Negative apparent resistivities, as well as quadrupoles
with large (> 50 %) standard deviations, were also removed
before further processing. In addition, quadrupoles with in-
jection electrode pairs buried and voltage electrode pairs at
the surface (or the opposite) were removed from the data
set. After preliminary inspection of the raw data, we noticed
that these quadrupoles lead to significant artefacts around the
electrodes, possibly caused by small inaccuracies in the po-
sition of the surface cable with respect to the buried cable.
From synthetic studies, we found that 2 cm misplacement of
electrodes (longitudinal or lateral to the transect) can repro-
duce the artefacts we observed if all data are used to invert the
data set (data not shown). Given the relatively small electrode
spacing of the survey and the difficulty in positioning the sur-
face electrode right on top of the buried ones with centimetric
precision, we decided to remove these quadrupoles from the
inversion. More background on the effect of electrode mis-
placement on ERT accuracy can be found in, amongst others,
Wilkinson et al. (2010), Uhlemann et al. (2018), and Olden-
borger et al. (2005).

The pipeline computes reciprocal errors, and Fig. 6 shows
the evolution of their distribution as a function of time for
each transect. The reciprocal errors tend to increase as the
soil dries out because this also increases the contact resis-
tance of the electrodes at the surface (see Fig. 5). In this
study, the reciprocal errors were not used for filtering as most
outliers were already removed by the previous filters. How-
ever, filtering on reciprocal error might be needed for a nois-
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Figure 4. Overview of the HYDRAS belowground phenotyping data processing pipeline.

ier survey. We fitted a power-law error model for each sur-
vey on a transect using the binned reciprocal errors (Koestel
et al., 2008). This approach ensures a sufficient number of
data points to obtain a robust error model while allowing the
error model to vary throughout the season. The implementa-
tion of the data processing can be found in the accompanying
Jupyter notebook.

2.3.2 Data inversion

The ERT data were processed using the ResIPy software
v3.5.1 (Blanchy et al., 2020a) that makes use of the Occam-
based R2 inversion code (Binley, 2015). Each survey was
inverted and compared to the first recorded survey following
the difference inversion method (LaBrecque and Yang, 2001)
(reg_mode = 2 in ResIPy). The difference inversion consists
of first inverting a reference survey (in our case, the first sur-
vey collected on 21 June 2023) and then computing, for each
subsequent survey, the difference with respect to this refer-
ence survey. For a given survey, the response (i.e. transfer re-
sistances for each quadrupole) from the inverted model of the
reference survey is computed and added to the difference be-
tween the measured transfer resistances of the reference and
the given survey. This new data set of transfer resistances is
then inverted. This approach highlights differences between
survey dates and suppresses the systematic errors that might
arise due to electrode placement. It is well suited when elec-
trodes are kept in place between surveys, as was the case in
this study. The inversion procedure was done using a triangu-
lar mesh. The objective function to be minimized consisted
of a data misfit (weighted by the errors computed from the
fitted error model) and a model misfit (smooth L2 regular-

ization). Inversions typically converged within five iterations
and reached a final weighted root-mean-square error close to
1. More details on the inversion can be found in Binley and
Slater (2020). Appendix C shows several of these inversion
quality indicators as a function of time for all transects.

2.3.3 Temperature correction and conversion to soil
moisture

After inversion, resistivity data were temperature-corrected
and converted to soil moisture using a site-specific pedophys-
ical relationship, established using multi-sensor data in the
HYDRAS calibration pit (see Fig. 3d). The resistivity data
of this study are corrected for temperature using the follow-
ing relationship (Ma et al., 2010; Campbell et al., 1949):
ECb,20 =

ECb
[1+α(T−20)] , with α = 0.02. The soil temperature

profile during the measurements was assumed to be equal to
the temperature measured in the different soil horizons of the
calibration pit, which is a simplification of reality.

Figure 7 shows the sensor data from the calibration pit for
the four soil horizons. As the deepest layers never reached
dry conditions, the in-field pedophysical relationship for
those horizons cannot be established in the dry range at the
moment. Further monitoring in coming years will improve
the number of data in the dryer range. For illustration, we fit
the simplified Waxman–Smits model to the data of each soil
horizon. The data largely follow the expected trend but also
exhibit significant scatter. Since we want to investigate the
pedophysical relationship further in future experiments, we
have not used it in the current article to compute indicators
based on estimated soil moisture.
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Figure 5. Evolution of raw metrics at quadrupole level (Quads)
measured by the ERT system, featuring injected current (I ), mea-
sured voltage (Vmn), contact resistances (cR), apparent resistivity
(ρa), standard stacking deviation (SD), and relative change in ap-
parent resistivity from the first survey (1ρa/ρa0). Vertical white
bands show no-data time. The data are shown here for transect A
of the ERT field to which the drought treatment was applied (see
Fig. 2 for transect location within the field).

2.3.4 Data dissemination: from geophysicists to plant
scientists and breeders

While profiles of inverted electrical conductivity are cer-
tainly interesting to geophysicists, they have less meaning
for plant scientists or breeders who use the HYDRAS open-
access infrastructure. As such, we translated the geophysi-
cal results into phenotyping indicators that are more inter-
pretable for crop breeders and researchers. Table 1 shows
four of those indicators with their potential. We computed
indicators along the inverted profile and the profile of differ-
ence compared to the background. Figure 8 illustrates how
these indicators are computed in EC or 1 EC profiles. The
shape of the inverted EC profile often takes the form of a
sigmoid (Shanahan et al., 2015): EC= a+ b

1+e−(c+d·z) . The
parameters of the sigmoid summarize information about the
shape of the soil moisture profile. Fitting parameter a defines
an offset from zero soil moisture, and b controls the width of
the sigmoid (magnitude of the drying), d controls the steep-
ness of the curve, and c defines the depth of inflection in the

soil profile. Parameters c and d influence the drying depth.
The integration of the negative difference in EC with depth
(green-shaded zone in Fig. 8b) gives an estimation of the ex-
tent of the water depletion caused primarily by root water
uptake. Similarly, the 10th percentile of the depths at which
a negative difference larger than a threshold of 20 % change
occurs (vertical dashed line in Fig. 8b) is an indicator for the
advancement of the drying depth in the soil profile (horizon-
tal orange line). The pedophysical relationship shown above
allows us to translate EC to soil moisture (not done here).

To enable users to interact with the data set and to ex-
plore and compare profiles in space, depth, and time, all pro-
cessed data from the ERT pipeline were summarized into
an HTML report with interactive Bokeh (https://docs.bokeh.
org/en/latest/#, v3.4.0, last access: 25 March 2024) figures
(available in the GitLab repository).

3 Results

3.1 Apparent resistivities

The first question of the POC experiment was whether the
electrical resistivity measurements are sensitive enough to
detect subtle differences in water depletion patterns and
strategies between contrasting genotypes of the same crop
species. Figure 9 shows the pseudo-section of the ERT tran-
sect B in the control field. Raw apparent resistivities reflect
consistent patterns related to different root water uptake pat-
terns of the three investigated genotypes in different plots
along the transect. For instance, Hermes and Pro_1 take up
more water earlier in the growing season than Lenka. We ob-
serve similar trends in the part of the transect with plant rows
that are longitudinal to the ERT transect as in the part with
rows crossing the transect.

To further detect the subtle differences between genotypes,
we take advantage of the statistical design of the study and
look at the apparent electrical conductivity distributions. In
Fig. 10, the impact of the drought treatment is clearly visi-
ble in the apparent conductivity distributions. This confirms
the capability of ERT to monitor the dynamic impact of
both treatment and genotype on bulk soil electrical proper-
ties. This means that, even without further inversion or other
data processing, a statistical test can be executed to discrimi-
nate between genotypes in terms of the impact of drought on
belowground behaviour. Figure 10 shows the distribution of
the apparent conductivity values of each treatment–genotype
combination. We performed an ANOVA (analysis of vari-
ance) with the statsmodels Python package v0.14.0 (Seabold
and Perktold, 2010) considering two factors: genotype (Her-
mes, Lenka, Pro-1) and treatment (drought, control). The ef-
fect of drought is significant (p value< 0.05) for shallow
pseudo-depths at all four time points and for the deepest
pseudo-depth only in mid-July. The genotypes show signif-
icant differences for shallow pseudo-depths but not for the
deeper depths. A root sampling campaign, just after harvest,
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Figure 6. Evolution of the distribution of reciprocal errors ( |RN−RR |RN+RR
2

× 100) during the growing season of the POC23 experiment for all

ERT transects (TA, TB, and TC) in the control (subplots a, b, c) and drought (subplots d, e, f) conditions. Reciprocal errors are distributed in
classes for easier visualization. The percentage of quadrupoles in each class is indicated on the vertical axis.

Table 1. Description of the proposed phenotyping indicators derived from the average electrical conductivity profiles.

Indicator Meaning Formula

Fitting parameter sigmoid (subplot a) Shape of the soil moisture profile at a specific date EC = a+ b
1+e−(c+d·z)

a,b Offset and asymptote of the sigmoid, control mag-
nitude of the drying

c Depth of inflection of the profile
d Steepness of the sigmoid around the inflection point

Drying area (DA) (green area, subplot b) Integrative total water uptake from the soil profile
since the start of the experiment and a specific date

∫ 1.5
0

1EC
EC0

dz, where 1EC
EC0

< 0 %

Drying depth (DD) (orange line, subplot b) The 20th percentile of all depths in the soil profile
where a −20 % change as compared to the first
survey has occurred at a specific date

q20(z), where 1EC
EC0

<-20 %

has shown that there are few roots present at depths below
−0.5 m in any of the treatment–genotype combinations, with
Pro-1 showing the most roots in the deepest layer, especially
under drought conditions (data not shown). This might ex-
plain why we did not find a significant difference in apparent
electrical conductivity below that depth.

Apparent conductivity data do not disclose information
about specific depths of water depletion (but rather of
pseudo-depths). For example, large drying or wetting at the
surface will decrease or increase the apparent conductivity in
the surface but also, to a lesser extent, for quadrupoles with
deeper measurement volumes. This makes it difficult to relate
the data to plant traits such as rooting depth, root density, or
depths of water uptake. To obtain depth-explicit information,
a data inversion or other advanced data processing such as
coupled modelling and/or machine learning is necessary. In

addition, it is not possible to use the pedophysical relation-
ships from the control pit to convert apparent EC to depth-
specific soil water content. Indeed, the apparent resistivities
are depth-weighted integrative measurements, while soil wa-
ter content from sensors is depth-specific. Only inverting the
apparent resistivities will enable us to obtain depth-specific
EC values which can then be converted to soil moisture with
a pedophysical relationship.

3.2 Inverted transects

Figure 11 shows the inverted transect B (control) at three mo-
ments in June during a period with little rain. Differences in
soil water depletion between genotypes are apparent. For in-
stance, Lenka took up less water than Pro-1 and Hermes. The
figure also illustrates how the drying front tends to increase
with time. Water depletion is mainly caused by the crop as
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Figure 7. Evolution of volumetric soil moisture θ with respect
to the bulk temperature-corrected electrical conductivity (ECb,20)
based on the data collected at the different depths in the control pit.
For illustration, the simplified Waxman–Smits model was fit to the
data of each soil horizon, as shown in Garré et al. (2013) (black line
on top of the data points).

Figure 8. Example of indicators computed on either (a) electrical
conductivity (EC) profile or (b) its relative difference (1EC/EC0)
from the reference survey (survey0). Subplot (c) shows how the sig-
moid function changes with respect to an increase in each of its
parameters.

the bare plot in the middle does not show the deep drying
pattern.

3.3 Profile evolution

From the inverted section, we extracted average profiles for
each plot and then merged per genotype by taking the aver-
age profile of all plots (see Fig. 12). By subtracting the av-
erage background profile from this, we can depict the per-
centage change occurring over the profile as compared to
the background. Drying under the control is faster during
the early natural drought but is more limited in time than for
the drought treatment in which an artificial drought was gen-
erated using the rainout shelter. After the rainfall events of
July, the control field becomes wetter than at the start (blue

band starting in August, Fig. 12), and only superficial dry-
ing was observed after. From the colour gradient, differences
between genotypes remain difficult to see, which is why in-
dicators were derived.

3.4 Indicators

Figure 13c–f show the evolution of four selected indicators
computed from the inverted electrical conductivity profile
and the profile of change in conductivity with respect to the
background for different genotypes. We present the indica-
tors alongside meteorological conditions (Fig. 13a) and crop
development as represented by the UAV-based phenotyping
SAVI (Fig. 13b). The indicators differ clearly between the
control and the drought treatments. From the end of July
onwards, genotypes submitted to the drought treatment ex-
hibit larger drying patterns than in the control. This is ap-
parent from the drying area (DA) (see Table 1 for definitions
of indicators), which resides for a much longer period in a
zone of great water depletion (large negative value) in the
drought conditions than in the control, and this is the case
for all genotypes. This is because, in the control, rainfall re-
plenishes the soil moisture profile. The effect of crop wa-
ter uptake is therefore partially undone. The DA even be-
comes positive at some moments in time, which means that
the soil was wetter then than at the start of the experiment.
The difference between treatments decreases from Septem-
ber onwards. Since the shelters were removed, both treat-
ments were receiving rain again, and the crop reached phys-
iological maturity. Where DA is a robust indicator which is
smooth over time because it represents an integration of the
whole profile, the other indicators are more noisy. The dry-
ing depth (DD), for example, represents one specific point
in the profile intersecting with the 20 % threshold, which is
much more sensitive to slight changes in the profile. We per-
formed ANOVA tests on all time steps of all four indicators
and indicated at which time during the year the genotype ef-
fect and/or the treatment effect is significant using grey dots
at the top and bottom edges of the subplots. Significant dif-
ferences between genotypes (dark grey) are mostly observed
in the beginning of the growing season, which correlates with
the pseudo-sections shown in Fig. 9. Just like with vegetation
indices, curves could be fitted to the time evolution of these
belowground indicators to assess rates of drying or similar
properties.

In Fig. 14, we zoom in on the genotype differences in our
four selected indicators at two specific moments in the crop
growth: flowering (r2), just before the drought application,
and seed filling (r5), just after the drought application. The
control is shown in blue, and the drought is shown in orange.
In sigmoid c, we see the clearest genotype effect on 11 July.
This parameter reflects the inflection point of the sigmoid,
which is therefore related to the drying depth.
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Figure 9. Evolution of pseudo-section for transect B in the control field. Note that the depth on the vertical axis is not the actual depth of the
reading but rather an estimation of the depth above which most of the signal originates (a pseudo-depth) based on the electrode location and
measurement geometry.

Figure 10. Kernel density function of all apparent conductivities for three different pseudo-depths (PDs) along with ANOVA p values for
the genotype factor (pgen) and for the drought or control factor (ptrt). All p values are rounded to three decimal places. The interaction term
was not significant (> 0.05) for all cases. The subplots at different depths do not share the same vertical axis.

4 Discussion

The proof-of-concept experiment with the HYDRAS infras-
tructure in 2023 established a data set at a high spatial and
temporal resolution. This data set characterized differences
in belowground behaviour between control and drought treat-
ments and soybean genotypes under realistic field conditions
in a real, living soil. We have shown that ERT is not only ca-
pable of detecting differences between crops or treatments, as
previously done in the literature, but also has sufficient preci-
sion to distinguish between genotypes of the same crop. We
highlighted the potential to automatically derive phenotyping
indicators related to dynamic belowground plant traits. To
our knowledge, the only permanent infrastructure which is

capable of monitoring water depletion and root system activ-
ity at the same spatio-temporal resolution is the sEIT instal-
lation at the Selhausen minirhizotron facility in Selhausen,
Germany (Weigand et al., 2022). The sEIT system there con-
sisted of 40 electrodes (0.25 m electrode spacing) installed
across three agricultural test plots (each of 3.75 m width). It
does not have rainout shelters but did allow the testing and
validation of many of the available techniques over several
years of operation, yielding an impressive open subsoil data
set (Lärm et al., 2023). In that installation, both electrical re-
sistivity and chargeability properties are measured, which is
a meaningful addition to the information which can be de-
rived from resistivity. Chargeability was shown to be more
directly linked to root biomass, which opens up new pos-
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Figure 11. Evolution of the selected inverted transect B in the control field. Plot positions are denoted with vertical dashed lines and
horizontal coloured lines.

Figure 12. Evolution of profiles of inverted, temperature-corrected
electrical conductivity (EC) for the three genotypes under both
treatments (control and drought) during the growth season. The
rainfall deficit is shown in subplot (a) for both the control (plain
black line) and drought (dashed black line) fields. The period of the
drought application is indicated by the yellow-shaded area. Missing
data are indicated by white bars at that date. The white line shows a
−50 % change, while the dark-blue line shows a 0 % change.

sibilities (Weigand and Kemna, 2017). However, accurately
measuring these properties with sufficient data remains chal-
lenging. With HYDRAS, we take belowground field pheno-
typing one step further with the fully automated pipeline, de-
rived phenotyping indicators and a field setup for breeding
trials including rainout shelters.

Weigand et al. (2022) highlighted the need to further inves-
tigate innovative ways to assess uncertainties without com-
promising measurement time and, more importantly, ways
to incorporate that information into the data processing and
interpretation. This is also the case for the current data set,

Figure 13. Example indicators and their evolution for the three
genotypes as a function of the treatment applied (plain line: con-
trol, dashed line: drought). (a) Rainfall and precipitation deficit, (b)
SAVI (soil-adjusted vegetation index) and important growth stages
(reproductive stages r2, r5, and r8), (c)–(d) parameters b and c of
the sigmoid fitted to the electrical conductivity profile, (d) drying-
area indicator, and (f) drying-depth indicator. For the subplots with
indicators (c)–(f), an ANOVA was performed. The grey and light-
grey dots show when the p value for the genotype factor and the
drought or control factor was below 0.05, respectively.
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Figure 14. Violin plots showing the distribution of the indicators
calculated from the electrical conductivity profiles for the three
genotypes in control and drought conditions.

which exhibits error levels which change over time. We do
take them into account in the inversion, letting the error
model vary over time, but we did not yet assess how this
affects the precision of our derived indicators. This would
be an interesting topic for future research. Nevertheless, the
automated, online monitoring also directly allows the user
to spot and resolve inevitable field issues instantaneously.
The SSI system provides email alerts for the operators us-
ing basic and more advanced warning thresholds based on
system status (battery, temperature, connectivity) and mea-
surement metrics (contact resistance, plausible values, etc.).
This makes it possible to minimize error sources and data
gaps.

The HYDRAS ERT setup has the advantage of having
both a surface and a buried cable to enhance the sensitivity
and resolution in the root zone. Based on this configuration,
quadrupoles along the surface line, along the buried line, and
between the surface and buried line were added. However,
the combination of centimetre inaccuracies in the placement
of the belowground cable with small electrode spacings re-
sulted in inversion difficulties. Quadrupoles with injection
electrodes in the surface line and potential electrodes in the
buried line (or inversely) led to inversion artefacts close to the
electrodes when inverted. We tested the approach of Wilkin-
son et al. (2015), including electrode location as part of the
inversion, but this resulted in too many degrees of freedom
in our case. However, simulating the data with slight elec-
trode displacements (longitudinal or lateral) resulted in sim-
ilar artefacts, which confirms the hypothesis. Further inves-
tigation is necessary to fully exploit the potential of the sub-
surface cable without compromising the inversion results.

The HYDRAS POC2023 data set is not only one of the
rare freely available data sets resulting in defined below-
ground phenotyping indicators which can be related to crop
traits but also the first to develop the belowground pheno-
typing data acquisition and processing pipeline in a fully au-
tomated way at field scale. This resulted in a standardized,
reproducible, and high-quality data set and associated pro-
cessing scripts. Although several attempts have been made

to make geophysical data sets more FAIR (Findable, Acces-
sible, Interoperable and Reproducible), the agrogeophysical
community is far from reaching a community data model or
reporting standard. Initiatives have been launched, such as
CAGS (https://agrogeophy.github.io/catalog/, last access: 16
January 2025), but often become inactive or phase out af-
ter project funding stops. Others, such as the REDA pack-
age (https://geophysics-ubonn.github.io/reda/, last access: 16
January 2025), remain but are not widely adopted. In ad-
dition, these existing initiatives do not yet seek much com-
patibility with data standards from the research communities
which seek to use the data, such as the phenotyping or preci-
sion agriculture communities. The POC2023 and following
open data sets from HYDRAS seek to bridge that gap and
open up the discussion on the specific needs of users in dis-
tinct use cases. For the HYDRAS pipeline, we explored sev-
eral data models from different scientific communities and
came up with a data model proposal largely compatible with
the eLTER and the MIAPPE standards.

The infrastructure is not only a crucial asset for the
phenotyping and breeding community; 2-D and 3-D, high-
resolution, automated monitoring of water flow, solute,
and heat transport processes in the undisturbed soil–plant–
atmosphere continuum under agricultural land use provides
several exciting opportunities, especially since the mobile
shelters provide a crucial control on the top boundary con-
dition of the soil. One of the opportunities is improving
the understanding of how soil health and its management
drive plant performance in agroecosystems. As Carminati
and Javaux (2020) and Abdalla et al. (2021) have highlighted,
soil – and, more particularly, the rhizosphere – is a major
driver of the plants response to drought. However, studying
this in field conditions remains challenging. The HYDRAS
infrastructure, complemented with ground-truthing data of
small-scale processes in the rhizosphere or at the level of
plant organs, could help better understand how agricultural
practices can optimize the soil–plant interactions. Without
aspiring to be exhaustive, potential fields of research tackled
in this infrastructure could be the investigation of the (pref-
erential) flow and transport of agro-chemicals, the impact of
agricultural management practices on soil health in its vari-
ous dimensions and on the water use efficiency of crops, the
effects of irrigation with different types of water sources on
soil salinization, and so on. In addition, this infrastructure en-
ables us to further explore the drivers and multiscale nature
of the pedophysical relationship and the uncertainties asso-
ciated with it. Taking into account the heterogeneities in the
pedophysical relationships can improve our ability to detect
differences between genotypes (e.g. Blanchy et al., 2020b).
A full analysis of the uncertainties associated with the pedo-
physics is out of the scope of this paper but will be actively
investigated in future work. In short, this infrastructure pro-
vides new and exciting opportunities for the broad soil sci-
ence community.
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5 Conclusions

The HYDRAS POC2023 experiment has shown that ERT
monitoring at a high spatio-temporal resolution offers un-
precedented capabilities for reproducible and accurate be-
lowground field phenotyping. The raw apparent conductivity
data clearly show differences between treatments (drought or
control) and soybean genotypes, highlighting the information
content in the data. Inversion allows us to further fine-tune
the information in relation to depth-specific data, which is
then used to develop phenotyping indicators related to spe-
cific plant traits of interest. Further improvement is desirable
to quantify the uncertainties added in each step and to show
how these propagate through the entire acquisition and pro-
cessing pipeline to the final indicators since this influences
the interpretation of the data and the power of statistical tests.
Various approaches are present in the literature, including
Bayesian inversion techniques, joint inversion, and coupled
inversion using soil–plant models, which can now be tested
based on the big phenotyping data set.

Appendix A: Field management activities

Table A1. Field management activities.

Date Action

19 May 2023 Seedbed preparation
23 May 2023 Sowing of soybean (row spacing of 25 cm, plant spacing of 6.2 cm, sowing depth of 3.5 cm)
24 May 2023 Sowing of soybean in ERT fields (parallel and perpendicular sowing direction)
25 May 2023 Soil herbicide application
26 May 2023 Installation of ERT cables and electrodes
26 May 2023 Netting
30 May 2023 First germination observed
12 Jun 2023 Removal of net
13 Jun 2023 Weeding
21 Jun 2023 Spraying
21 Jun 2023 Start of ERT monitoring
12 Jul 2023 Drought start – rainout shelters placed above four plots (a1, b1, c1, d1)
19 Jul 2023 Control plots irrigated (8 mm m−2)
16 Aug 2023 Drought stop – rainout shelters removed from four plots (a1, b1, c1, d1)
29 Aug 2023 Pesticide application: acaricide Floramite was sprayed on all fields (dose: 0.4 L ha−1)
4 Oct 2023 Harvest
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Appendix B: Measurement sequence

The sequence of quadrupoles used is composed of a “plot se-
quence” that is moved along the surface and a buried line
of a transect. The plot sequence includes 12 surface elec-
trodes spaced 0.3 m apart (electrodes 1 to 12) and 6 buried
electrodes spaced 0.6 m apart (electrodes 13 to 18). The plot
sequence contains one injection in the surface electrodes,
with potential readings between the injection dipole (gradi-
ent), outside on the surface, and in the buried lines (dipole–
dipole). Another injection is done with a buried pair of elec-
trodes, and similar potentials are collected. The plot sequence
is repeated at every fourth surface electrode (two buried elec-
trodes) along the transects to form the final sequence used.
This measurement sequence was chosen as a compromise
between the spatial and temporal resolution. The sequence
includes all reciprocal quadrupoles.

Table B1. Plot sequence repeated along each transect. A and B
are injection electrodes, and M and N are potential electrodes used
to measure voltage. Electrodes 1 to 12 are surface electrodes with
0.3 m spacing. Electrodes 13 to 16 are buried electrodes with 0.6 m
spacing. Electrode 1 is on top of electrode 13. K is the geometric
factor computed.

A B M N K [m]

1 6 2 3 3.2
1 6 3 4 5.7
1 6 4 5 3.2
1 6 7 8 −4.0
1 6 8 9 −12.7
1 6 9 10 −27.1
1 6 10 11 −48.5
1 6 11 12 −77.8
1 6 13 14 5.1
1 6 14 15 5.3
1 6 15 16 −17.5

13 16 2 3 12.4
13 16 3 4 11.3
13 16 4 5 12.6
13 16 6 7 11.1
13 16 14 15 6.0
13 16 17 18 −14.0
2 3 1 6 3.2
3 4 1 6 5.7
4 5 1 6 3.2
7 8 1 6 −4.0
8 9 1 6 −12.7
9 10 1 6 −27.1

10 11 1 6 −48.5
11 12 1 6 −77.8
13 14 1 6 5.1
14 15 1 6 5.3
15 16 1 6 −17.5
2 3 13 16 12.4
3 4 13 16 11.3
4 5 13 16 12.6
6 7 13 16 11.1

14 15 13 16 6.0
17 18 13 16 −14.0

Appendix C: Overview of inversion quality indicators

Figure C1. Overview of inversion quality indicators: (a) number
of iterations, (b) final root-mean-square (rms) misfit, and (c) num-
ber of data read (i.e. number of data after filtering that are actually
inverted).

Code and data availability. The notebooks and data
used to generate the figures in this paper can be found
at https://zenodo.org/records/14673647 (Blanchy, G. and
Garré, 2025). The data set of POC2023 can be found here:
https://doi.org/10.5281/zenodo.14175354 (De Swaef et al., 2024).
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