Articles | Volume 10, issue 2
https://doi.org/10.5194/soil-10-763-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/soil-10-763-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Advancing studies on global biocrust distribution
Siqing Wang
State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu 730000, PR China
Yuzhong Mountain Ecosystems Observation and Research Station, Lanzhou University, Lanzhou, Gansu 730000, PR China
Li Ma
State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu 730000, PR China
Yuzhong Mountain Ecosystems Observation and Research Station, Lanzhou University, Lanzhou, Gansu 730000, PR China
Liping Yang
State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu 730000, PR China
Yuzhong Mountain Ecosystems Observation and Research Station, Lanzhou University, Lanzhou, Gansu 730000, PR China
Yali Ma
State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu 730000, PR China
Yuzhong Mountain Ecosystems Observation and Research Station, Lanzhou University, Lanzhou, Gansu 730000, PR China
Yafeng Zhang
Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Lanzhou, Gansu 730000, PR China
Shapotou Desert Research and Experiment Station, Northwest Institute of EcoEnvironment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, PR China
Changming Zhao
State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu 730000, PR China
Yuzhong Mountain Ecosystems Observation and Research Station, Lanzhou University, Lanzhou, Gansu 730000, PR China
State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu 730000, PR China
Yuzhong Mountain Ecosystems Observation and Research Station, Lanzhou University, Lanzhou, Gansu 730000, PR China
Instituto Multidisciplinar para el Estudio del Medio “Ramon Margalef”, Universidad de Alicante, Carretera de San Vicente del Raspeig s/n, San Vicente del Raspeig Alicante 03690, Spain
Related subject area
Soils and natural ecosystems
Mineral dust and pedogenesis in the alpine critical zone
The soil knowledge library (KLIB) – a structured literature database on soil process research
Masked diversity and contrasting soil processes in tropical seagrass meadows: the control of environmental settings
Biocrust-linked changes in soil aggregate stability along a climatic gradient in the Chilean Coastal Range
Content of soil organic carbon and labile fractions depend on local combinations of mineral-phase characteristics
Effects of environmental factors and soil properties on soil organic carbon stock in a natural dry tropical area of Cameroon
The role of ecosystem engineers in shaping the diversity and function of arid soil bacterial communities
SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty
Disaggregating a regional-extent digital soil map using Bayesian area-to-point regression kriging for farm-scale soil carbon assessment
Opportunities and limitations related to the application of plant-derived lipid molecular proxies in soil science
Spatial variability in soil organic carbon in a tropical montane landscape: associations between soil organic carbon and land use, soil properties, vegetation, and topography vary across plot to landscape scales
A probabilistic approach to quantifying soil physical properties via time-integrated energy and mass input
Arctic soil development on a series of marine terraces on central Spitsbergen, Svalbard: a combined geochronology, fieldwork and modelling approach
Local versus field scale soil heterogeneity characterization – a challenge for representative sampling in pollution studies
Analysis and definition of potential new areas for viticulture in the Azores (Portugal)
The interdisciplinary nature of SOIL
Jeffrey S. Munroe, Abigail A. Santis, Elsa J. Soderstrom, Michael J. Tappa, and Ann M. Bauer
SOIL, 10, 167–187, https://doi.org/10.5194/soil-10-167-2024, https://doi.org/10.5194/soil-10-167-2024, 2024
Short summary
Short summary
This study investigated how the deposition of mineral dust delivered by the wind influences soil development in mountain environments. At six mountain locations in the southwestern United States, modern dust was collected along with samples of soil and local bedrock. Analysis indicates that at all sites the properties of dust and soil are very similar and are very different from underlying rock. This result indicates that soils are predominantly composed of dust delivered by the wind over time.
Hans-Jörg Vogel, Bibiana Betancur-Corredor, Leonard Franke, Sara König, Birgit Lang, Maik Lucas, Eva Rabot, Bastian Stößel, Ulrich Weller, Martin Wiesmeier, and Ute Wollschläger
SOIL, 9, 533–543, https://doi.org/10.5194/soil-9-533-2023, https://doi.org/10.5194/soil-9-533-2023, 2023
Short summary
Short summary
Our paper presents a new web-based software tool to support soil process research. It is designed to categorize publications in this field according to site and soil characteristics, as well as experimental conditions, which is of critical importance for the interpretation of the research results. The software tool is provided open access for the soil science community such that anyone can contribute to improve the contents of the literature data base.
Gabriel Nuto Nóbrega, Xosé L. Otero, Danilo Jefferson Romero, Hermano Melo Queiroz, Daniel Gorman, Margareth da Silva Copertino, Marisa de Cássia Piccolo, and Tiago Osório Ferreira
SOIL, 9, 189–208, https://doi.org/10.5194/soil-9-189-2023, https://doi.org/10.5194/soil-9-189-2023, 2023
Short summary
Short summary
The present study addresses the soil information gap in tropical seagrass meadows. The different geological and bioclimatic settings caused a relevant soil diversity. Contrasting geochemical conditions promote different intensities of soil processes. Seagrass soils from the northeastern semiarid coast are marked by a more intense sulfidization. Understanding soil processes may help in the sustainable management of seagrasses.
Nicolás Riveras-Muñoz, Steffen Seitz, Kristina Witzgall, Victoria Rodríguez, Peter Kühn, Carsten W. Mueller, Rómulo Oses, Oscar Seguel, Dirk Wagner, and Thomas Scholten
SOIL, 8, 717–731, https://doi.org/10.5194/soil-8-717-2022, https://doi.org/10.5194/soil-8-717-2022, 2022
Short summary
Short summary
Biological soil crusts (biocrusts) stabilize the soil surface mainly in arid regions but are also present in Mediterranean and humid climates. We studied this stabilizing effect through wet and dry sieving along a large climatic gradient in Chile and found that the stabilization of soil aggregates persists in all climates, but their role is masked and reserved for a limited number of size fractions under humid conditions by higher vegetation and organic matter contents in the topsoil.
Malte Ortner, Michael Seidel, Sebastian Semella, Thomas Udelhoven, Michael Vohland, and Sören Thiele-Bruhn
SOIL, 8, 113–131, https://doi.org/10.5194/soil-8-113-2022, https://doi.org/10.5194/soil-8-113-2022, 2022
Short summary
Short summary
Soil organic carbon (SOC) and its labile fractions are influenced by soil use and mineral properties. These parameters interact with each other and affect SOC differently depending on local conditions. To investigate the latter, the dependence of SOC content on parameters that vary on a local scale depending on parent material, soil texture, and land use as well as parameter combinations was statistically assessed. Relevance and superiority of local models compared to total models were shown.
Désiré Tsozué, Nérine Mabelle Moudjie Noubissie, Estelle Lionelle Tamto Mamdem, Simon Djakba Basga, and Dieudonne Lucien Bitom Oyono
SOIL, 7, 677–691, https://doi.org/10.5194/soil-7-677-2021, https://doi.org/10.5194/soil-7-677-2021, 2021
Short summary
Short summary
Studies on soil organic carbon stock (SOCS) in the Sudano-Sahelian part of Cameroon are very rare. Organic C storage decreases with increasing latitude and more than 60 % of the SOCS is stored below the first 25 cm depth. In addition, a good correlation is noted between precipitation which decreases with increasing latitude and the total SOCS, indicating the importance of climate in the distribution of the total SOCS in the study area, which directly influence the productivity of the vegetation.
Capucine Baubin, Arielle M. Farrell, Adam Št'ovíček, Lusine Ghazaryan, Itamar Giladi, and Osnat Gillor
SOIL, 7, 611–637, https://doi.org/10.5194/soil-7-611-2021, https://doi.org/10.5194/soil-7-611-2021, 2021
Short summary
Short summary
In this paper, we describe changes in desert soil bacterial diversity and function when two ecosystem engineers, shrubs and ant nests, in an arid environment are present. The results show that bacterial activity increases when there are ecosystem engineers and that their impact is non-additive. This is one of a handful of studies that investigated the separate and combined effects of ecosystem engineers on soil bacterial communities investigating both composition and function.
Laura Poggio, Luis M. de Sousa, Niels H. Batjes, Gerard B. M. Heuvelink, Bas Kempen, Eloi Ribeiro, and David Rossiter
SOIL, 7, 217–240, https://doi.org/10.5194/soil-7-217-2021, https://doi.org/10.5194/soil-7-217-2021, 2021
Short summary
Short summary
This paper focuses on the production of global maps of soil properties with quantified spatial uncertainty, as implemented in the SoilGrids version 2.0 product using DSM practices and adapting them for global digital soil mapping with legacy data. The quantitative evaluation showed metrics in line with previous studies. The qualitative evaluation showed that coarse-scale patterns are well reproduced. The spatial uncertainty at global scale highlighted the need for more soil observations.
Sanjeewani Nimalka Somarathna Pallegedara Dewage, Budiman Minasny, and Brendan Malone
SOIL, 6, 359–369, https://doi.org/10.5194/soil-6-359-2020, https://doi.org/10.5194/soil-6-359-2020, 2020
Short summary
Short summary
Most soil management activities are implemented at farm scale, yet digital soil maps are commonly available at regional/national scales. This study proposes Bayesian area-to-point kriging to downscale regional-/national-scale soil property maps to farm scale. A regional soil carbon map with a resolution of 100 m (block support) was disaggregated to 10 m (point support) information for a farm in northern NSW, Australia. Results are presented with the uncertainty of the downscaling process.
Boris Jansen and Guido L. B. Wiesenberg
SOIL, 3, 211–234, https://doi.org/10.5194/soil-3-211-2017, https://doi.org/10.5194/soil-3-211-2017, 2017
Short summary
Short summary
The application of lipids in soils as molecular proxies, also often referred to as biomarkers, has dramatically increased in the last decades. Applications range from inferring changes in past vegetation composition to unraveling the turnover of soil organic matter. However, the application of soil lipids as molecular proxies comes with several constraining factors. Here we provide a critical review of the current state of knowledge on the applicability of molecular proxies in soil science.
Marleen de Blécourt, Marife D. Corre, Ekananda Paudel, Rhett D. Harrison, Rainer Brumme, and Edzo Veldkamp
SOIL, 3, 123–137, https://doi.org/10.5194/soil-3-123-2017, https://doi.org/10.5194/soil-3-123-2017, 2017
Short summary
Short summary
We examined the spatial variability in SOC in a 10 000 ha landscape in SW China. The spatial variability in SOC was largest at the plot scale (1 ha) and the associations between SOC and land use, soil properties, vegetation, and topographical attributes varied across plot to landscape scales. Our results show that sampling designs must consider the controlling factors at the scale of interest in order to elucidate their effects on SOC against the variability within and between plots.
Christopher Shepard, Marcel G. Schaap, Jon D. Pelletier, and Craig Rasmussen
SOIL, 3, 67–82, https://doi.org/10.5194/soil-3-67-2017, https://doi.org/10.5194/soil-3-67-2017, 2017
Short summary
Short summary
Here we demonstrate the use of a probabilistic approach for quantifying soil physical properties and variability using time and environmental input. We applied this approach to a synthesis of soil chronosequences, i.e., soils that change with time. The model effectively predicted clay content across the soil chronosequences and for soils in complex terrain using soil depth as a proxy for hill slope. This model represents the first attempt to model soils from a probabilistic viewpoint.
W. Marijn van der Meij, Arnaud J. A. M. Temme, Christian M. F. J. J. de Kleijn, Tony Reimann, Gerard B. M. Heuvelink, Zbigniew Zwoliński, Grzegorz Rachlewicz, Krzysztof Rymer, and Michael Sommer
SOIL, 2, 221–240, https://doi.org/10.5194/soil-2-221-2016, https://doi.org/10.5194/soil-2-221-2016, 2016
Short summary
Short summary
This study combined fieldwork, geochronology and modelling to get a better understanding of Arctic soil development on a landscape scale. Main processes are aeolian deposition, physical and chemical weathering and silt translocation. Discrepancies between model results and field observations showed that soil and landscape development is not as straightforward as we hypothesized. Interactions between landscape processes and soil processes have resulted in a complex soil pattern in the landscape.
Z. Kardanpour, O. S. Jacobsen, and K. H. Esbensen
SOIL, 1, 695–705, https://doi.org/10.5194/soil-1-695-2015, https://doi.org/10.5194/soil-1-695-2015, 2015
J. Madruga, E. B. Azevedo, J. F. Sampaio, F. Fernandes, F. Reis, and J. Pinheiro
SOIL, 1, 515–526, https://doi.org/10.5194/soil-1-515-2015, https://doi.org/10.5194/soil-1-515-2015, 2015
Short summary
Short summary
Vineyards in the Azores have been traditionally settled on lava field terroirs whose workability and trafficability limitations make them presently unsustainable.
A landscape zoning approach based on a GIS analysis, incorporating factors of climate and topography combined with the soil mapping units suitable for viticulture was developed in order to define the most representative land units, providing an overall perspective of the potential for expansion of viticulture in the Azores.
E. C. Brevik, A. Cerdà, J. Mataix-Solera, L. Pereg, J. N. Quinton, J. Six, and K. Van Oost
SOIL, 1, 117–129, https://doi.org/10.5194/soil-1-117-2015, https://doi.org/10.5194/soil-1-117-2015, 2015
Short summary
Short summary
This paper provides a brief accounting of some of the many ways that the study of soils can be interdisciplinary, therefore giving examples of the types of papers we hope to see submitted to SOIL.
Cited articles
Abella, S. R., Gentilcore, D. M., and Chiquoine, L. P.: Resilience and alternative stable states after desert wildfires, Ecol. Monogr., 91, 1–19, https://doi.org/10.1002/ecm.1432, 2020.
Baxter, C., Mallen-Cooper, M., Lyons, M. B., and Cornwell, W. K.: Measuring reflectance of tiny organisms: The promise of species level biocrust remote sensing, Meth. Ecol. Evol., 12, 2174–2183, https://doi.org/10.1111/2041-210x.13690, 2021.
Beaugendre, N., Malam Issa, O., Choné, A., Cerdan, O., Desprats, J.-F., Rajot, J. L., Sannier, C., and Valentin, C.: Developing a predictive environment-based model for mapping biological soil crust patterns at the local scale in the Sahel, Catena, 158, 250–265, https://doi.org/10.1016/j.catena.2017.06.010, 2017.
Belbin, L. and Williams, K. J.: Towards a national bio-environmental data facility: experiences from the Atlas of Living Australia, Int. J. Geogr. Inf. Sci., 30, 108–125, https://doi.org/10.1080/13658816.2015.1077962, 2015.
Belnap, J., Miller, D. M., Bedford, D. R., and Phillips, S. L.: Pedological and geological relationships with soil lichen and moss distribution in the eastern Mojave Desert, CA, USA, J. Arid Environ., 106, 45–57, https://doi.org/10.1016/j.jaridenv.2014.02.007, 2014.
Blanco-Sacristan, J., Panigada, C., Gentili, R., Tagliabue, G., Garzonio, R., Martin, M. P., Ladron de Guevara, M., Colombo, R., Dowling, T. P. F., and Rossini, M.: UAV RGB, thermal infrared and multispectral imagery used to investigate the control of terrain on the spatial distribution of dryland biocrust, Earth Surf. Proc. Land., 46, 2466–2484, https://doi.org/10.1002/esp.5189, 2021.
Boulangeat, I., Philippe, P., Abdulhak, S., Douzet, R., Garraud, L., Lavergne, S., Lavorel, S., van Es, J., Vittoz, P., and Thuiller, W.: Improving plant functional groups for dynamic models of biodiversity: at the crossroads between functional and community ecology, Glob. Change Biol., 18, 3464–3475, https://doi.org/10.1111/j.1365-2486.2012.02783.x, 2012.
Boulangeat, I., Georges, D., and Thuiller, W.: FATE-HD: a spatially and temporally explicit integrated model for predicting vegetation structure and diversity at regional scale, Glob. Change Biol., 20, 2368–2378, https://doi.org/10.1111/gcb.12466, 2014.
Bowker, M. A. and Belnap, J.: A simple classification of soil types as habitats of biological soil crusts on the Colorado Plateau, USA, J. Veg. Sci., 19, 831–840, https://doi.org/10.3170/2008-8-18454, 2008.
Bowker, M. A., Belnap, J., Davidson, D. W., and Phillips, S. L.: Evidence for Micronutrient Limitation of Biological Soil Crusts: Importance to Arid-Lands Restoration, Ecol. Appl., 15, 1941–1951, https://doi.org/10.1890/04-1959, 2005.
Bowker, M. A., Belnap, J., Büdel, B., Sannier, C., Pietrasiak, N., Eldridge, D. J., and Rivera-Aguilar, V.: Controls on Distribution Patterns of Biological Soil Crusts at Micro- to Global Scales, in: Biological Soil Crusts: An Organizing Principle in Drylands, edited by: Weber, B., Büdel, B., and Belnap, J., Springer International Publishing, Cham, 173–197, https://doi.org/10.1007/978-3-319-30214-0_10, 2016.
Brown, J. L. and Anderson, B.: SDMtoolbox: a python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses, Meth. Ecol. Evol., 5, 694–700, https://doi.org/10.1111/2041-210x.12200, 2014.
Budel, B., Darienko, T., Deutschewitz, K., Dojani, S., Friedl, T., Mohr, K. I., Salisch, M., Reisser, W., and Weber, B.: Southern African biological soil crusts are ubiquitous and highly diverse in drylands, being restricted by rainfall frequency, Microb. Ecol., 57, 229–247, https://doi.org/10.1007/s00248-008-9449-9, 2009.
Chamizo, S., Cantón, Y., Miralles, I., and Domingo, F.: Biological soil crust development affects physicochemical characteristics of soil surface in semiarid ecosystems, Soil Biol. Biochem., 49, 96–105, https://doi.org/10.1016/j.soilbio.2012.02.017, 2012a.
Chamizo, S., Stevens, A., Canton, Y., Miralles, I., Domingo, F., and Van Wesemael, B.: Discriminating soil crust type, development stage and degree of disturbance in semiarid environments from their spectral characteristics, Eur. J. Soil Sci., 63, 42–53, https://doi.org/10.1111/j.1365-2389.2011.01406.x, 2012b.
Chamizo, S., Belnap, J., Eldridge, D. J., Cantón, Y., and Malam Issa, O.: The Role of Biocrusts in Arid Land Hydrology, in: Biological Soil Crusts: An Organizing Principle in Drylands, edited by: Weber, B., Büdel, B., and Belnap, J., Springer International Publishing, Cham, 321–346, https://doi.org/10.1007/978-3-319-30214-0_17, 2016.
Chen, J., Zhang, M. Y., Wang, L., Shimazaki, H., and Tamura, M.: A new index for mapping lichen-dominated biological soil crusts in desert areas, Remote Sens. Environ., 96, 165–175, https://doi.org/10.1016/j.rse.2005.02.011, 2005.
Chen, N., Jayaprakash, C., Yu, K., and Guttal, V.: Rising Variability, Not Slowing Down, as a Leading Indicator of a Stochastically Driven Abrupt Transition in a Dryland Ecosystem, Am. Nat., 191, E1–E14, https://doi.org/10.1086/694821, 2018.
Chen, N., Yu, K. L., Jia, R. L., Teng, J. L., and Zhao, C. M.: Biocrust as one of multiple stable states in global drylands, Sci. Adv., 6, eaay3763, https://doi.org/10.1126/sciadv.aay3763, 2020.
Chytrý, M., Hennekens, S. M., Jiménez-Alfaro, B., Knollová, I., Dengler, J., Jansen, F., Landucci, F., Schaminée, J. H. J., Aćić, S., Agrillo, E., Ambarl, D., Angelini, P., Apostolova, I., Attorre, F., Berg, C., Bergmeier, E., Biurrun, I., Botta-Dukát, Z., Brisse, H., Campos, J. A., Carlón, L., Čarni, A., Casella, L., Csiky, J., Ćušterevska, R., Dajić Stevanović, Z., Danihelka, J., De Bie, E., de Ruffray, P., De Sanctis, M., Dickoré, W. B., Dimopoulos, P., Dubyna, D., Dziuba, T., Ejrnaes, R., Ermakov, N., Ewald, J., Fanelli, G., Fernández-González, F., FitzPatrick, Ú., Font, X., García-Mijangos, I., Gavilán, R. G., Golub, V., Guarino, R., Haveman, R., Indreica, A., Işik Gürsoy, D., Jandt, U., Janssen, J. A. M., Jiroušek, M., Kącki, Z., Kavgac, A., Kleikamp, M., Kolomiychuk, V., Krstivojević Ćuk, M., Krstonoić, D., Kuzemko, A., Lenoir, J., Lysenko, T., Marcenò, C., Martynenko, V., Michalcová, D., Moeslund, J. E., Onyshchenko, V., Pedashenko, H., Pérez-Haase, A., Peterka, T., Prokhorov, V., Raomavičius, V., Rodríguez-Rojo, M. P., Rodwell, J. S., Rogova, T., Ruprecht, E., Rūsiṅa, S., Seidler, G., Šibík, J., Šilc, U., Škvorc, Ž., Sopotlieva, D., Stančić, Z., Svenning, J.-C., Swacha, G., Tsiripidis, I., Turtureanu, P. D., Uğurlu, E., Uogintas, D., Valachovič, M., Vashenyak, Y., Vassilev, K., Venanzoni, R., Virtanen, R., Weekes, L., Willner, W., Wohlgemuth, T., and Yamalov, S.: European Vegetation Archive (EVA): an integrated database of European vegetation plots, Appl. Veg. Sci., 19, 173–180, https://doi.org/10.1111/avsc.12191, 2016.
Collier, E. A., Perroy, R. L., Reed, S. C., and Price, J. P.: Mapping biological soil crusts in a Hawaiian dryland, Int. J. Remote Sens., 43, 484–509, https://doi.org/10.1080/01431161.2021.2003904, 2022.
Condon, L. A. and Pyke, D. A.: Fire and Grazing Influence Site Resistance to Bromus tectorum Through Their Effects on Shrub, Bunchgrass and Biocrust Communities in the Great Basin (USA), Ecosystems, 21, 1416–1431, https://doi.org/10.1007/s10021-018-0230-8, 2018.
Crego, R. D., Stabach, J. A., Connette, G., and Leroy, B.: Implementation of species distribution models in Google Earth Engine, Divers. Distrib., 28, 904–916, https://doi.org/10.1111/ddi.13491, 2022.
Cuddington, K., Fortin, M., Gerber, L., Hastings, A., Liebhold, A., O'Connor, M., and Ray, C.: Process-based models are required to manage ecological systems in a changing world, Ecosphere, 4, 1–12, 2013.
Deng, M., Meng, X., Lu, Y., Li, Z., Zhao, L., Niu, H., Chen, H., Shang, L., Wang, S., and Sheng, D.: The Response of Vegetation to Regional Climate Change on the Tibetan Plateau Based on Remote Sensing Products and the Dynamic Global Vegetation Model, Remote Sensing, 14, 3337, https://doi.org/10.3390/rs14143337, 2022.
Durham, R. A., Doherty, K. D., Antoninka, A. J., Ramsey, P. W., and Bowker, M. A.: Insolation and disturbance history drive biocrust biodiversity in Western Montana rangelands, Plant Soil, 430, 151–169, https://doi.org/10.1007/s11104-018-3725-3, 2018.
Elbert, W., Weber, B., Burrows, S., Steinkamp, J., Buedel, B., Andreae, M. O., and Pöschl, U.: Contribution of cryptogamic covers to the global cycles of carbon and nitrogen, Nat. Geosci., 5, 459–462, https://doi.org/10.1038/ngeo1486, 2012.
Eldridge, D. J. and Delgado-Baquerizo, M.: The influence of climatic legacies on the distribution of dryland biocrust communities, Glob. Change Biol., 25, 327–336, https://doi.org/10.1111/gcb.14506, 2019.
Eldridge, D. J. and Tozer, M. E.: Environmental factors relating to the distribution of terricolous bryophytes and lichens in semi-arid eastern Australia, Bryologist, 100, 28–39, 1997.
Eldridge, D. J., Reed, S., Travers, S. K., Bowker, M. A., Maestre, F. T., Ding, J., Havrilla, C., Rodriguez-Caballero, E., Barger, N., Weber, B., Antoninka, A., Belnap, J., Chaudhary, B., Faist, A., Ferrenberg, S., Huber-Sannwald, E., Malam Issa, O., and Zhao, Y.: The pervasive and multifaceted influence of biocrusts on water in the world's drylands, Glob. Change Biol., 26, 6003–6014, https://doi.org/10.1111/gcb.15232, 2020.
Engel, T., Bruelheide, H., Hoss, D., Sabatini, F. M., Altman, J., Arfin-Khan, M. A. S., Bergmeier, E., Černý, T., Chytrý, M., Dainese, M., Dengler, J., Dolezal, J., Field, R., Fischer, F. M., Huygens, D., Jandt, U., Jansen, F., Jentsch, A., Karger, D. N., Kattge, J., Lenoir, J., Lens, F., Loos, J., Niinemets, Ü., Overbeck, G. E., Ozinga, W. A., Penuelas, J., Peyre, G., Phillips, O., Reich, P. B., Römermann, C., Sandel, B., Schmidt, M., Schrodt, F., Velez-Martin, E., Violle, C., and Pillar, V.: Traits of dominant plant species drive normalized difference vegetation index in grasslands globally, Global Ecol. Biogeogr., 32, 695–706, https://doi.org/10.1111/geb.13644, 2023.
Fang, S., Yu, W., and Qi, Y.: Spectra and vegetation index variations in moss soil crust in different seasons, and in wet and dry conditions, International Journal of Applied Earth Observation and Geoinformation, 38, 261–266, https://doi.org/10.1016/j.jag.2015.01.018, 2015.
Fatichi, S., Pappas, C., Zscheischler, J., and Leuzinger, S.: Modelling carbon sources and sinks in terrestrial vegetation, New Phytol., 221, 652–668, https://doi.org/10.1111/nph.15451, 2019.
Ferrenberg, S., Reed, S. C., and Belnap, J.: Climate change and physical disturbance cause similar community shifts in biological soil crusts, P. Natl. Acad. Sci. USA, 112, 12116–12121, https://doi.org/10.1073/pnas.1509150112, 2015.
Fischer, T. and Subbotina, M.: Climatic and soil texture threshold values for cryptogamic cover development: a meta analysis, Biologia, 69, 1520–1530, https://doi.org/10.2478/s11756-014-0464-7, 2014.
Gabay, T., Rotem, G., Gillor, O., and Ziv, Y.: Understanding changes in biocrust communities following phosphate mining in the Negev Desert, Environ. Res., 207, 112200, https://doi.org/10.1016/j.envres.2021.112200, 2022.
Gao, L., Bowker, M. A., Xu, M., Sun, H., Tuo, D., and Zhao, Y.: Biological soil crusts decrease erodibility by modifying inherent soil properties on the Loess Plateau, China, Soil Biol. Biochem., 105, 49–58, https://doi.org/10.1016/j.soilbio.2016.11.009, 2017.
Garcia-Pichel, F., Loza, V., Marusenko, Y., Mateo, P., and Potrafka, R. M.: Temperature Drives the Continental-Scale Distribution of Key Microbes in Topsoil Communities, Science, 340, 1574–1577, https://doi.org/10.1126/science.1236404, 2013.
García-Roselló, E., Guisande, C., Manjarrés-Hernández, A., González-Dacosta, J., Heine, J., Pelayo-Villamil, P., González-Vilas, L., Vari, R. P., Vaamonde, A., Granado-Lorencio, C., and Lobo, J. M.: Can we derive macroecological patterns from primary Global Biodiversity Information Facility data?, Global Ecol. Biogeogr., 24, 335–347, https://doi.org/10.1111/geb.12260, 2015.
Gassmann, F., Klotzli, F., and Walther, G. R.: Simulation of observed types of dynamics of plants and plant communities, J. Veg. Sci., 11, 397–408, https://doi.org/10.2307/3236632, 2000.
Havrilla, C. A. and Barger, N. N.: Biocrusts and their disturbance mediate the recruitment of native and exotic grasses from a hot desert ecosystem, Ecosphere, 9, e02361, https://doi.org/10.1002/ecs2.2361, 2018.
Havrilla, C. A., Chaudhary, V. B., Ferrenberg, S., Antoninka, A. J., Belnap, J., Bowker, M. A., Eldridge, D. J., Faist, A. M., Huber-Sannwald, E., Leslie, A. D., Rodriguez-Caballero, E., Zhang, Y., Barger, N. N., and Vries, F.: Towards a predictive framework for biocrust mediation of plant performance: A meta-analysis, J. Ecol., 107, 2789–2807, https://doi.org/10.1111/1365-2745.13269, 2019.
Hu, P., Zhang, W., Xiao, L., Yang, R., Xiao, D., Zhao, J., Wang, W., Chen, H., and Wang, K.: Moss-dominated biological soil crusts modulate soil nitrogen following vegetation restoration in a subtropical karst region, Geoderma, 352, 70–79, https://doi.org/10.1016/j.geoderma.2019.05.047, 2019.
Jia, R., Chen, N., Yu, K., and Zhao, C.: High rainfall frequency promotes the dominance of biocrust under low annual rainfall, Plant Soil, 435, 257–275, https://doi.org/10.1007/s11104-018-3880-6, 2019.
Jiménez-Valverde, A., Lobo, J. M., and Hortal, J.: Not as good as they seem: the importance of concepts in species distribution modelling, Divers. Distrib., 14, 885–890, https://doi.org/10.1111/j.1472-4642.2008.00496.x, 2008.
Karnieli, A.: Development and implementation of spectral crust index over dune sands, Int. J. Remote Sens., 18, 1207–1220, https://doi.org/10.1080/014311697218368, 1997.
Karnieli, A., Kidron, G. J., Glaesser, C., and Ben-Dor, E.: Spectral characteristics of cyanobacteria soil crust in semiarid environments, Remote Sens. Environ., 69, 67–75, https://doi.org/10.1016/s0034-4257(98)00110-2, 1999.
Kidron, G. J.: Biocrust research: A critical view on eight common hydrological-related paradigms and dubious theses, Ecohydrology, 12, e2061, https://doi.org/10.1002/eco.2061, 2018.
Kidron, G. J.: The enigmatic absence of cyanobacterial biocrusts from the Namib fog belt: Do dew and fog hold the key?, Flora, 257, 151416, https://doi.org/10.1016/j.flora.2019.06.002, 2019.
Kidron, G. J. and Xiao, B.: A false paradigm? Do biocrust types necessarily reflect “successional stages”?, Ecohydrology, 17, e2610, https://doi.org/10.1002/eco.2610, 2023.
Kidron, G. J., Lichner, L., Fischer, T., Starinsky, A., and Or, D.: Mechanisms for biocrust-modulated runoff generation – A review, Earth-Sci. Rev., 231, 104100, https://doi.org/10.1016/j.earscirev.2022.104100, 2022.
Kropfl, A. I., Distel, R. A., Cecchi, G. A., and Villasuso, N. M.: Functional Role of Moss Biocrust in Disturbed Semiarid Shrublands of North-Eastern Patagonia, Argentina, Appl. Ecol. Env. Res., 20, 905–917, https://doi.org/10.15666/aeer/2001_905917, 2022.
Lenton, T. M., Dahl, T. W., Daines, S. J., Mills, B. J., Ozaki, K., Saltzman, M. R., and Porada, P.: Earliest land plants created modern levels of atmospheric oxygen, P. Natl. Acad. Sci. USA, 113, 9704–9709, https://doi.org/10.1073/pnas.1604787113, 2016.
Li, S., Bowker, M. A., and Xiao, B.: Biocrusts enhance non-rainfall water deposition and alter its distribution in dryland soils, J. Hydrol., 595, 126050, https://doi.org/10.1016/j.jhydrol.2021.126050, 2021.
Li, X., Sun, J., Zhang, H., Tan, H., Hui, R., Qi, J., Zhang, P., and Ward, N. D.: Warming decreases desert ecosystem functioning by altering biocrusts in drylands, J. Appl. Ecol., 60, 2676–2687, https://doi.org/10.1111/1365-2664.14528, 2023.
Ma, X., Zhao, Y., Yang, K., Ming, J., Qiao, Y., Xu, M., and Pan, X.: Long-term light grazing does not change soil organic carbon stability and stock in biocrust layer in the hilly regions of drylands, J. Arid Land, 15, 940–959, https://doi.org/10.1007/s40333-023-0064-x, 2023.
Machado de Lima, N. M., Muñoz-Rojas, M., Vázquez-Campos, X., and Branco, L. H. Z.: Biocrust cyanobacterial composition, diversity, and environmental drivers in two contrasting climatic regions in Brazil, Geoderma, 386, 114914, https://doi.org/10.1016/j.geoderma.2020.114914, 2021.
Maestre, F. T., Benito, B. M., Berdugo, M., Concostrina-Zubiri, L., Delgado-Baquerizo, M., Eldridge, D. J., Guirado, E., Gross, N., Kefi, S., Le Bagousse-Pinguet, Y., Ochoa-Hueso, R., and Soliveres, S.: Biogeography of global drylands, New Phytol., 231, 540–558, https://doi.org/10.1111/nph.17395, 2021.
Mäkinen, J., Numminen, E., Niittynen, P., Luoto, M., and Vanhatalo, J.: Spatial confounding in Bayesian species distribution modeling, Ecography, 2022, e06183, https://doi.org/10.1111/ecog.06183, 2022.
Marsh, J., Nouvet, S., Sanborn, P., and Coxson, D.: Composition and function of biological soil crust communities along topographic gradients in grasslands of central interior British Columbia (Chilcotin) and southwestern Yukon (Kluane), Can. J. Botany, 84, 717–736, https://doi.org/10.1139/b06-026, 2006.
McCann, E., Reed, S. C., Saud, P., Reibold, R. H., Howell, A., and Faist, A. M.: Plant growth and biocrust-fire interactions across five North American deserts, Geoderma, 401, 115325, https://doi.org/10.1016/j.geoderma.2021.115325, 2021.
McCune, B., Yang, S., Jovan, S., and Root, H. T.: Climate and epiphytic macrolichen communities in the Four Corners region of the USA, Bryologist, 125, 70–90, https://doi.org/10.1639/0007-2745-125.1.070, 2022.
Ming, J., Zhao, Y., Wu, Q., He, H., and Gao, L.: Soil temperature dynamics and freezing processes for biocrustal soils in frozen soil regions on the Qinghai–Tibet Plateau, Geoderma, 409, 115655, https://doi.org/10.1016/j.geoderma.2021.115655, 2022.
Miranda-González, R. and McCune, B.: The weight of the crust: Biomass of crustose lichens in tropical dry forest represents more than half of foliar biomass, Biotropica, 52, 1298–1308, https://doi.org/10.1111/btp.12837, 2020.
Morillas, L. and Gallardo, A.: Biological soil crusts and wetting events: Effects on soil N and C cycles, Appl. Soil Ecol., 94, 1–6, https://doi.org/10.1016/j.apsoil.2015.04.015, 2015.
Munoz-Martin, M. A., Becerra-Absalon, I., Perona, E., Fernandez-Valbuena, L., Garcia-Pichel, F., and Mateo, P.: Cyanobacterial biocrust diversity in Mediterranean ecosystems along a latitudinal and climatic gradient, New Phytol., 221, 123–141, https://doi.org/10.1111/nph.15355, 2019.
Noy, K., Ohana-Levi, N., Panov, N., Silver, M., and Karnieli, A.: A long-term spatiotemporal analysis of biocrusts across a diverse arid environment: The case of the Israeli-Egyptian sandfield, Sci. Total Environ., 774, 145154, https://doi.org/10.1016/j.scitotenv.2021.145154, 2021.
Oliva, G., Dos Santos, E., Sofia, O., Umana, F., Massara, V., Garcia Martinez, G., Caruso, C., Cariac, G., Echevarria, D., Fantozzi, A., Butti, L., Bran, D., Gaitan, J., Ferrante, D., Paredes, P., Dominguez, E., and Maestre, F. T.: The MARAS dataset, vegetation and soil characteristics of dryland rangelands across Patagonia, Sci. Data, 7, 327, https://doi.org/10.1038/s41597-020-00658-0, 2020.
Palmer, B., Hernandez, R., and Lipson, D. A.: The fate of biological soil crusts after fire: A meta-analysis, Global Ecol. Conserv., 24, e01380, https://doi.org/10.1016/j.gecco.2020.e01380, 2020.
Palmer, B., Lawson, D., and Lipson, D. A.: Years After a Fire, Biocrust Microbial Communities are Similar to Unburned Communities in a Coastal Grassland, Microb. Ecol., 85, 1028–1044, https://doi.org/10.1007/s00248-022-02137-y, 2022.
Panigada, C., Tagliabue, G., Zaady, E., Rozenstein, O., Garzonio, R., Di Mauro, B., De Amicis, M., Colombo, R., Cogliati, S., Miglietta, F., and Rossini, M.: A new approach for biocrust and vegetation monitoring in drylands using multi-temporal Sentinel-2 images, Prog. Phys. Geogr., 43, 496–520, https://doi.org/10.1177/0309133319841903, 2019.
Pearce, J. L., Cherry, K., Drielsma, M., Ferrier, S., and Whish, G.: Incorporating expert opinion and fine-scale vegetation mapping into statistical models of faunal distribution, J. Appl. Ecol., 38, 412–424, https://doi.org/10.1046/j.1365-2664.2001.00608.x, 2001.
Perry, G. L. W., Seidl, R., Bellvé, A. M., and Rammer, W.: An Outlook for Deep Learning in Ecosystem Science, Ecosystems, 25, 1700–1718, https://doi.org/10.1007/s10021-022-00789-y, 2022.
Porada, P., Weber, B., Elbert, W., Pöschl, U., and Kleidon, A.: Estimating global carbon uptake by lichens and bryophytes with a process-based model, Biogeosciences, 10, 6989–7033, https://doi.org/10.5194/bg-10-6989-2013, 2013.
Porada, P., Pöschl, U., Kleidon, A., Beer, C., and Weber, B.: Estimating global nitrous oxide emissions by lichens and bryophytes with a process-based productivity model, Biogeosciences, 14, 1593–1602, https://doi.org/10.5194/bg-14-1593-2017, 2017.
Porada, P., Tamm, A., Raggio, J., Cheng, Y., Kleidon, A., Pöschl, U., and Weber, B.: Global NO and HONO emissions of biological soil crusts estimated by a process-based non-vascular vegetation model, Biogeosciences, 16, 2003–2031, https://doi.org/10.5194/bg-16-2003-2019, 2019.
Pravalie, R.: Drylands extent and environmental issues. A global approach, Earth-Sci. Rev., 161, 259–278, https://doi.org/10.1016/j.earscirev.2016.08.003, 2016.
Pushkareva, E., Johansen, J. R., and Elster, J.: A review of the ecology, ecophysiology and biodiversity of microalgae in Arctic soil crusts, Polar Biol., 39, 2227–2240, https://doi.org/10.1007/s00300-016-1902-5, 2016.
Qiu, D., Bowker, M. A., Xiao, B., Zhao, Y., Zhou, X., and Li, X.: Mapping biocrust distribution in China's drylands under changing climate, Sci. Total Environ., 905, 167211, https://doi.org/10.1016/j.scitotenv.2023.167211, 2023.
Quillet, A., Peng, C., and Garneau, M.: Toward dynamic global vegetation models for simulating vegetation-climate interactions and feedbacks: recent developments, limitations, and future challenges, Environ. Rev., 18, 333–353, https://doi.org/10.1139/a10-016, 2010.
Read, C. F., Duncan, D. H., Vesk, P. A., Elith, J., and Wan, S.: Biocrust morphogroups provide an effective and rapid assessment tool for drylands, J. Appl. Ecol., 51, 1740–1749, https://doi.org/10.1111/1365-2664.12336, 2014.
Reed, S. C., Coe, K. K., Sparks, J. P., Housman, D. C., Zelikova, T. J., and Belnap, J.: Changes to dryland rainfall result in rapid moss mortality and altered soil fertility, Nat. Clim. Change, 2, 752–755, https://doi.org/10.1038/nclimate1596, 2012.
Rodriguez-Caballero, E., Knerr, T., and Weber, B.: Importance of biocrusts in dryland monitoring using spectral indices, Remote Sens. Environ., 170, 32–39, https://doi.org/10.1016/j.rse.2015.08.034, 2015.
Rodríguez-Caballero, E., Escribano, P., Olehowski, C., Chamizo, S., Hill, J., Cantón, Y., and Weber, B.: Transferability of multi- and hyperspectral optical biocrust indices, ISPRS J. Photogramm., 126, 94–107, https://doi.org/10.1016/j.isprsjprs.2017.02.007, 2017.
Rodriguez-Caballero, E., Belnap, J., Budel, B., Crutzen, P. J., Andreae, M. O., Pöschl, U., and Weber, B.: Dryland photoautotrophic soil surface communities endangered by global change, Nat. Geosci., 11, 185–189, https://doi.org/10.1038/s41561-018-0072-1, 2018.
Rodriguez-Caballero, E., Stanelle, T., Egerer, S., Cheng, Y., Su, H., Canton, Y., Belnap, J., Andreae, M. O., Tegen, I., and Reick, C. H.: Global cycling and climate effects of aeolian dust controlled by biological soil crusts, Nat. Geosci., 15, 458–463, https://doi.org/10.1038/s41561-022-00942-1, 2022a.
Rodríguez-Caballero, E., Reyes, A., Kratz, A., Caesar, J., Guirado, E., Schmiedel, U., Escribano, P., Fiedler, S., and Weber, B.: Effects of climate change and land use intensification on regional biological soil crust cover and composition in southern Africa, Geoderma, 406, 115508, https://doi.org/10.1016/j.geoderma.2021.115508, 2022b.
Root, H. T. and McCune, B.: Regional patterns of biological soil crust lichen species composition related to vegetation, soils, and climate in Oregon, USA, J. Arid Environ., 79, 93–100, https://doi.org/10.1016/j.jaridenv.2011.11.017, 2012.
Shi, W., Pan, Y.-X., Zhang, Y.-F., Hu, R., and Wang, X.-P.: The effect of different biocrusts on soil hydraulic properties in the Tengger Desert, China, Geoderma, 430, 116304, https://doi.org/10.1016/j.geoderma.2022.116304, 2023.
Skidmore, A. K., Franklin, J., Dawson, T. P., and Pilesjö, P.: Geospatial tools address emerging issues in spatial ecology: a review and commentary on the Special Issue, Int. J. Geogr. Inf. Sci., 25, 337–365, https://doi.org/10.1080/13658816.2011.554296, 2011.
Soberon, J. and Nakamura, M.: Niches and distributional areas: Concepts, methods, and assumptions, P. Natl. Acad. Sci. USA, 106, 19644–19650, 2009.
Song, G., Hui, R., Yang, H., Wang, B., and Li, X.: Biocrusts mediate the plant community composition of dryland restoration ecosystems, Sci. Total Environ., 844, 157135, https://doi.org/10.1016/j.scitotenv.2022.157135, 2022.
Sun, F., Xiao, B., Kidron, G. J., and Tuller, M.: Towards the effects of moss-dominated biocrusts on surface soil aeration in drylands: Air permeability analysis and modeling, Catena, 223, 106942, https://doi.org/10.1016/j.catena.2023.106942, 2023.
Sun, H., Ma, X., Liu, Y., Zhou, G. Y., Ding, J. L., Lu, L., Wang, T. J., Yang, Q. L., Shu, Q. T., and Zhang, F.: A New Multiangle Method for Estimating Fractional Biocrust Coverage From Sentinel-2 Data in Arid Areas, IEEE T. Geosci. Remote Sens., 62, 4404015, https://doi.org/10.1109/tgrs.2024.3361249, 2024.
Thonicke, K., Venevsky, S., Sitch, S., and Cramer, W.: The role of fire disturbance for global vegetation dynamics: coupling fire into a Dynamic Global Vegetation Model, Global Ecol. Biogeogr., 10, 661–677, https://doi.org/10.1046/j.1466-822x.2001.00175.x, 2001.
Tucker, C. L., McHugh, T. A., Howell, A., Gill, R., Weber, B., Belnap, J., Grote, E., and Reed, S. C.: The concurrent use of novel soil surface microclimate measurements to evaluate CO2 pulses in biocrusted interspaces in a cool desert ecosystem, Biogeochemistry, 135, 239–249, https://doi.org/10.1007/s10533-017-0372-3, 2017.
Velasco Ayuso, S., Oñatibia, G. R., Maestre, F. T., and Yahdjian, L.: Grazing pressure interacts with aridity to determine the development and diversity of biological soil crusts in Patagonian rangelands, Land Degrad. Dev., 31, 488–499, https://doi.org/10.1002/ldr.3465, 2019.
Wang, S., Liu, B., Zhao, Y., Gao, L., Yin, B., Yang, K., and Ji, J.: Determination of the representative elementary area (REA) of biocrusts: A case study from the Hilly Loess Plateau region, China, Geoderma, 406, 115502, https://doi.org/10.1016/j.geoderma.2021.115502, 2022.
Wang, Y., Xiao, B., Wang, W., and Kidron, G. J.: Interactions between biocrusts and herbaceous communities are divergent in dry and wet semiarid ecosystems, Sci. Total Environ., 941, 173759, https://doi.org/10.1016/j.scitotenv.2024.173759, 2024.
Wang, Z., Wu, B., Zhang, M., Zeng, H., Yang, L., Tian, F., Ma, Z., and Wu, H.: Indices enhance biological soil crust mapping in sandy and desert lands, Remote Sens. Environ., 278, 113078, https://doi.org/10.1016/j.rse.2022.113078, 2022.
Weber, B. and Hill, J.: Remote Sensing of Biological Soil Crusts at Different Scales, in: Biological Soil Crusts: An Organizing Principle in Drylands, edited by: Weber, B., Büdel, B., and Belnap, J., Springer International Publishing, Cham, 215–234, https://doi.org/10.1007/978-3-319-30214-0_12, 2016.
Weber, B., Olehowski, C., Knerr, T., Hill, J., Deutschewitz, K., Wessels, D. C. J., Eitel, B., and Buedel, B.: A new approach for mapping of Biological Soil Crusts in semidesert areas with hyperspectral imagery, Remote Sens. Environ., 112, 2187–2201, https://doi.org/10.1016/j.rse.2007.09.014, 2008.
Weber, B., Budel, B., and Belnap, J. (Eds.): Biological Soil Crusts: An Organizing Principle in Drylands, Springer Nature, https://doi.org/10.1007/978-3-319-30214-0, 2016.
Weber, B., Belnap, J., Budel, B., Antoninka, A. J., Barger, N. N., Chaudhary, V. B., Darrouzet-Nardi, A., Eldridge, D. J., Faist, A. M., Ferrenberg, S., Havrilla, C. A., Huber-Sannwald, E., Malam Issa, O., Maestre, F. T., Reed, S. C., Rodriguez-Caballero, E., Tucker, C., Young, K. E., Zhang, Y., Zhao, Y., Zhou, X., and Bowker, M. A.: What is a biocrust? A refined, contemporary definition for a broadening research community, Biol. Rev., 97, 1768–1785, https://doi.org/10.1111/brv.12862, 2022.
Wei, X., Qin, F., Han, B., Zhou, H., Liu, M., and Shao, X.: Spatial variations of bacterial communities associated with biological soil crusts along a climatic gradient in alpine grassland ecosystems, Plant Soil, 480, 493–506, https://doi.org/10.1007/s11104-022-05595-y, 2022.
Whitney, K. M., Vivoni, E. R., Duniway, M. C., Bradford, J. B., Reed, S. C., and Belnap, J.: Ecohydrological role of biological soil crusts across a gradient in levels of development, Ecohydrology, 10, e1875, https://doi.org/10.1002/eco.1875, 2017.
Williams, A. J., Buck, B. J., Soukup, D. A., and Merkler, D. J.: Geomorphic controls on biological soil crust distribution: A conceptual model from the Mojave Desert (USA), Geomorphology, 195, 99–109, https://doi.org/10.1016/j.geomorph.2013.04.031, 2013.
Wolf, S., Mahecha, M. D., Sabatini, F. M., Wirth, C., Bruelheide, H., Kattge, J., Moreno Martinez, A., Mora, K., and Kattenborn, T.: Citizen science plant observations encode global trait patterns, Nat. Ecol. Evol., 6, 1850–1859, https://doi.org/10.1038/s41559-022-01904-x, 2022.
Wright, A. J. and Collins, S. L.: Drought experiments need to incorporate atmospheric drying to better simulate climate change, BioScience, 74, 65–71, https://doi.org/10.1093/biosci/biad105, 2024.
Yang, H., Liu, C., Liu, Y., and Xing, Z.: Impact of human trampling on biological soil crusts determined by soil microbial biomass, enzyme activities and nematode communities in a desert ecosystem, Eur. J. Soil Biol., 87, 61–71, https://doi.org/10.1016/j.ejsobi.2018.05.005, 2018.
Yu, H., Cooper, A. R., and Infante, D. M.: Improving species distribution model predictive accuracy using species abundance: Application with boosted regression trees, Ecol. Model., 432, 109202, https://doi.org/10.1016/j.ecolmodel.2020.109202, 2020.
Zhang, Y. M., Chen, J., Wang, L., Wang, X. Q., and Gu, Z. H.: The spatial distribution patterns of biological soil crusts in the Gurbantunggut Desert, Northern Xinjiang, China, J. Arid Environ., 68, 599–610, https://doi.org/10.1016/j.jaridenv.2006.06.012, 2007.
Zhao, Y., Qin, N., Weber, B., and Xu, M.: Response of biological soil crusts to raindrop erosivity and underlying influences in the hilly Loess Plateau region, China, Biodivers. Conserv., 23, 1669–1686, https://doi.org/10.1007/s10531-014-0680-z, 2014.
Zhao, Y., Ji, J., Zhang, W., Ming, J., Huang, W., and Gao, L.: Characteristics of spatial and temporal variability in the distribution of biological soil crusts on the Loess Plateau, China, Chinese J. Appl. Ecol., 35, 739–748, 2024.
Short summary
Biological soil crusts cover a substantial proportion of dryland ecosystems and play crucial roles in ecological processes. Consequently, studying the spatial distribution of biocrusts holds great significance. This study aimed to stimulate global-scale investigations of biocrust distribution by introducing three major approaches. Then, we summarized present understandings of biocrust distribution. Finally, we proposed several potential research topics.
Biological soil crusts cover a substantial proportion of dryland ecosystems and play crucial...