Articles | Volume 1, issue 1
SOIL, 1, 47–64, 2015
https://doi.org/10.5194/soil-1-47-2015
SOIL, 1, 47–64, 2015
https://doi.org/10.5194/soil-1-47-2015

Original research article 06 Jan 2015

Original research article | 06 Jan 2015

Quantifying soil and critical zone variability in a forested catchment through digital soil mapping

M. Holleran et al.

Related authors

An open-source database for the synthesis of soil radiocarbon data: International Soil Radiocarbon Database (ISRaD) version 1.0
Corey R. Lawrence, Jeffrey Beem-Miller, Alison M. Hoyt, Grey Monroe, Carlos A. Sierra, Shane Stoner, Katherine Heckman, Joseph C. Blankinship, Susan E. Crow, Gavin McNicol, Susan Trumbore, Paul A. Levine, Olga Vindušková, Katherine Todd-Brown, Craig Rasmussen, Caitlin E. Hicks Pries, Christina Schädel, Karis McFarlane, Sebastian Doetterl, Christine Hatté, Yujie He, Claire Treat, Jennifer W. Harden, Margaret S. Torn, Cristian Estop-Aragonés, Asmeret Asefaw Berhe, Marco Keiluweit, Ágatha Della Rosa Kuhnen, Erika Marin-Spiotta, Alain F. Plante, Aaron Thompson, Zheng Shi, Joshua P. Schimel, Lydia J. S. Vaughn, Sophie F. von Fromm, and Rota Wagai
Earth Syst. Sci. Data, 12, 61–76, https://doi.org/10.5194/essd-12-61-2020,https://doi.org/10.5194/essd-12-61-2020, 2020
Short summary
A probabilistic approach to quantifying soil physical properties via time-integrated energy and mass input
Christopher Shepard, Marcel G. Schaap, Jon D. Pelletier, and Craig Rasmussen
SOIL, 3, 67–82, https://doi.org/10.5194/soil-3-67-2017,https://doi.org/10.5194/soil-3-67-2017, 2017
Short summary
Influence of climate variability on water partitioning and effective energy and mass transfer in a semi-arid critical zone
Xavier Zapata-Rios, Paul D. Brooks, Peter A. Troch, Jennifer McIntosh, and Craig Rasmussen
Hydrol. Earth Syst. Sci., 20, 1103–1115, https://doi.org/10.5194/hess-20-1103-2016,https://doi.org/10.5194/hess-20-1103-2016, 2016
Short summary
Passive soil heating using an inexpensive infrared mirror design – a proof of concept
C. Rasmussen, R. E. Gallery, and J. S. Fehmi
SOIL, 1, 631–639, https://doi.org/10.5194/soil-1-631-2015,https://doi.org/10.5194/soil-1-631-2015, 2015
Short summary
Decadal-scale soil redistribution along hillslopes in the Mojave Desert
O. Crouvi, V. O. Polyakov, J. D. Pelletier, and C. Rasmussen
Earth Surf. Dynam., 3, 251–264, https://doi.org/10.5194/esurf-3-251-2015,https://doi.org/10.5194/esurf-3-251-2015, 2015

Related subject area

Soil systems
Comparison of regolith physical and chemical characteristics with geophysical data along a climate and ecological gradient, Chilean Coastal Cordillera (26 to 38° S)
Mirjam Schaller, Igor Dal Bo, Todd A. Ehlers, Anja Klotzsche, Reinhard Drews, Juan Pablo Fuentes Espoz, and Jan van der Kruk
SOIL, 6, 629–647, https://doi.org/10.5194/soil-6-629-2020,https://doi.org/10.5194/soil-6-629-2020, 2020
Short summary
Obtaining more benefits from crop residues as soil amendments by application as chemically heterogeneous mixtures
Marijke Struijk, Andrew P. Whitmore, Simon R. Mortimer, and Tom Sizmur
SOIL, 6, 467–481, https://doi.org/10.5194/soil-6-467-2020,https://doi.org/10.5194/soil-6-467-2020, 2020
Short summary
Modeling soil and landscape evolution – the effect of rainfall and land-use change on soil and landscape patterns
W. Marijn van der Meij, Arnaud J. A. M. Temme, Jakob Wallinga, and Michael Sommer
SOIL, 6, 337–358, https://doi.org/10.5194/soil-6-337-2020,https://doi.org/10.5194/soil-6-337-2020, 2020
Short summary
Soil environment grouping system based on spectral, climate, and terrain data: a quantitative branch of soil series
Andre Carnieletto Dotto, Jose A. M. Demattê, Raphael A. Viscarra Rossel, and Rodnei Rizzo
SOIL, 6, 163–177, https://doi.org/10.5194/soil-6-163-2020,https://doi.org/10.5194/soil-6-163-2020, 2020
Short summary
Spatially resolved soil solution chemistry in a central European atmospherically polluted high-elevation catchment
Daniel A. Petrash, Frantisek Buzek, Martin Novak, Bohuslava Cejkova, Pavel Kram, Tomas Chuman, Jan Curik, Frantisek Veselovsky, Marketa Stepanova, Oldrich Myska, Pavla Holeckova, and Leona Bohdalkova
SOIL, 5, 205–221, https://doi.org/10.5194/soil-5-205-2019,https://doi.org/10.5194/soil-5-205-2019, 2019
Short summary

Cited articles

Ashtekar, J. M. and Owens, P. R.: Remembering Knowledge: An Expert Knowledge Based Approach to Digital Soil Mapping, Soil Horizons, 54, https://doi.org/10.2136/sh13-01-0007, 2013.
Ballabio, C., Fava, F., and Rosenmund, A.: A plant ecology approach to digital soil mapping, improving the prediction of soil organic carbon content in alpine grasslands, Geoderma, 187, 102–116, https://doi.org/10.1016/j.geoderma.2012.04.002, 2012.
Beaudette, D. E. and O'Geen, A. I.: Quantifying the Aspect Effect: An Application of Solar Radiation Modeling for Soil Survey (vol 73, pg 1345, 2009), Soil Sci. Soc. Am. J., 73, 1755–1755, https://doi.org/10.2136/sssaj2008.0229er, 2009.
Ben-Dor, E.: Quantitative remote sensing of soil properties, Adv. Agronomy, 75, 173–243, https://doi.org/10.1016/S0065-2113(02)75005-0, 2002.
Ben-Dor, E., Patkin, K., Banin, A., and Karnieli, A.: Mapping of several soil properties using DAIS-7915 hyperspectral scanner data – a case study over clayey soils in Israel, Int. J. Remote Sens., 23, 1043–1062, https://doi.org/10.1080/01431160010006962, 2002.