Articles | Volume 1, issue 1
https://doi.org/10.5194/soil-1-287-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/soil-1-287-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
An overview of the recent approaches to terroir functional modelling, footprinting and zoning
E. Vaudour
CORRESPONDING AUTHOR
AgroParisTech, UMR1402 INRA/AgroParisTech ECOSYS, Pôle Sol, avenue Lucien Brétignières, 78850 Thiverval-Grignon, France
INRA, UMR1402 INRA/AgroParisTech ECOSYS, Pôle Sol, avenue Lucien Brétignières, 78850 Thiverval-Grignon, France
E. Costantini
Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CRA), Agrobiology and Pedology Research Centre (CRA-ABP) D'Azeglio 30, Firenze 50121, Italy
G. V. Jones
Department of Environmental Studies 101A Taylor Hall, Ashland, OR 97520, USA
S. Mocali
Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CRA), Agrobiology and Pedology Research Centre (CRA-ABP) D'Azeglio 30, Firenze 50121, Italy
Related authors
No articles found.
Edoardo A. C. Costantini, Cristina Branquinho, Alice Nunes, Gudrun Schwilch, Ilan Stavi, Alejandro Valdecantos, and Claudio Zucca
Solid Earth, 7, 397–414, https://doi.org/10.5194/se-7-397-2016, https://doi.org/10.5194/se-7-397-2016, 2016
Short summary
Short summary
The success of restoration projects relies on a proper understanding of the relationships between soil, plants, hydrology, climate, and land management at different scales, which are particularly complex in drylands.
Several soil indicators, which can be used to assess the effectiveness of restoration strategies in dryland ecosystems at different spatial and temporal scales, are discussed from different viewpoints of pedology, ecology, hydrology, and land management.
E. A. C. Costantini, A. E. Agnelli, A. Fabiani, E. Gagnarli, S. Mocali, S. Priori, S. Simoni, and G. Valboa
SOIL, 1, 443–457, https://doi.org/10.5194/soil-1-443-2015, https://doi.org/10.5194/soil-1-443-2015, 2015
Short summary
Short summary
Earthworks carried out before planting a new vineyard caused, in the surface soil layer, an increase in lime and a decline in soil OC and N contents, along with a reduction in the abundance and diversity of microbial and mesofauna communities. Five years after the new vineyard establishment, soil was still far from its original quality and this limited vine development. The reduced OM input resulting from the management and the poor residue biomass was a major factor in delaying soil resilience.
Related subject area
Soils and plants
Soil bacterial communities triggered by organic matter inputs associates with a high-yielding pear production
Soil nitrogen and water management by winter-killed catch crops
Rhizodeposition efficiency of pearl millet genotypes assessed on a short growing period by carbon isotopes (δ13C and F14C)
Inducing banana Fusarium wilt disease suppression through soil microbiome reshaping by pineapple–banana rotation combined with biofertilizer application
Soil δ15N is a better indicator of ecosystem nitrogen cycling than plant δ15N: A global meta-analysis
Hydrological soil properties control tree regrowth after forest disturbance in the forest steppe of central Mongolia
Effects of application of biochar and straw on sustainable phosphorus management
Altitude and management affect soil fertility, leaf nutrient status and Xanthomonas wilt prevalence in enset gardens
Nitrogen availability determines the long-term impact of land use change on soil carbon stocks in grasslands of southern Ghana
Time-lapse monitoring of root water uptake using electrical resistivity tomography and mise-à-la-masse: a vineyard infiltration experiment
Distribution of phosphorus fractions with different plant availability in German forest soils and their relationship with common soil properties and foliar P contents
Bone char effects on soil: sequential fractionations and XANES spectroscopy
Leaf waxes in litter and topsoils along a European transect
Paleosols can promote root growth of recent vegetation – a case study from the sandy soil–sediment sequence Rakt, the Netherlands
Lime and zinc application influence soil zinc availability, dry matter yield and zinc uptake by maize grown on Alfisols
Switchgrass ecotypes alter microbial contribution to deep-soil C
Tree species and functional traits but not species richness affect interrill erosion processes in young subtropical forests
Integrated soil fertility management in sub-Saharan Africa: unravelling local adaptation
Evaluation of vineyard growth under four irrigation regimes using vegetation and soil on-the-go sensors
Functional homogeneous zones (fHZs) in viticultural zoning procedure: an Italian case study on Aglianico vine
Predicting soil water repellency using hydrophobic organic compounds and their vegetation origin
The use of soil electrical resistivity to monitor plant and soil water relationships in vineyards
The fate of seeds in the soil: a review of the influence of overland flow on seed removal and its consequences for the vegetation of arid and semiarid patchy ecosystems
Influence of long-term mineral fertilization on metal contents and properties of soil samples taken from different locations in Hesse, Germany
Li Wang, Xiaomei Ye, Hangwei Hu, Jing Du, Yonglan Xi, Zongzhuan Shen, Jing Lin, and Deli Chen
SOIL, 8, 337–348, https://doi.org/10.5194/soil-8-337-2022, https://doi.org/10.5194/soil-8-337-2022, 2022
Short summary
Short summary
Yield-invigorating soils showed a higher content of organic matter and harbored unique bacterial communities with greater diversity than yield-debilitating soils. In addition, Chloroflexi was served as a keystone taxon in manipulating the interaction of bacterial communities. Our findings help elucidate the role of soil microbiome in maintaining crop production and factors controlling the assembly of soil microbiome.
Norman Gentsch, Diana Heuermann, Jens Boy, Steffen Schierding, Nicolaus von Wirén, Dörte Schweneker, Ulf Feuerstein, Robin Kümmerer, Bernhard Bauer, and Georg Guggenberger
SOIL, 8, 269–281, https://doi.org/10.5194/soil-8-269-2022, https://doi.org/10.5194/soil-8-269-2022, 2022
Short summary
Short summary
This study focuses on the potential of catch crops as monocultures or mixtures to improve the soil water management and reduction of soil N leaching losses. All catch crop treatments preserved soil water for the main crop and their potential can be optimized by selecting suitable species and mixture compositions. Mixtures can compensate for the individual weaknesses of monocultures in N cycling by minimizing leaching losses and maximizing the N transfer to the main crop.
Papa Mamadou Sitor Ndour, Christine Hatté, Wafa Achouak, Thierry Heulin, and Laurent Cournac
SOIL, 8, 49–57, https://doi.org/10.5194/soil-8-49-2022, https://doi.org/10.5194/soil-8-49-2022, 2022
Short summary
Short summary
Unravelling relationships between plant rhizosheath, root exudation and soil C dynamic may bring interesting perspectives in breeding for sustainable agriculture. Using four pearl millet lines with contrasting rhizosheaths, we found that δ13C and F14C of root-adhering soil differed from those of bulk and control soil, indicating C exudation in the rhizosphere. This C exudation varied according to the genotype, and conceptual modelling performed with data showed a genotypic effect on the RPE.
Beibei Wang, Mingze Sun, Jinming Yang, Zongzhuan Shen, Yannan Ou, Lin Fu, Yan Zhao, Rong Li, Yunze Ruan, and Qirong Shen
SOIL, 8, 17–29, https://doi.org/10.5194/soil-8-17-2022, https://doi.org/10.5194/soil-8-17-2022, 2022
Short summary
Short summary
Pineapple–banana rotation combined with bio-organic fertilizer application is effective in Fusarium wilt suppression. Bacterial and fungal communities are changed. Large changes in the fungal community and special Burkholderia functions in the network are likely the most responsible factors for soil-borne disease suppression. Pineapple–banana rotation combined with bio-organic fertilizer application has strong potential for the sustainable management of banana Fusarium wilt disease.
Kaihua Liao, Xiaoming Lai, and Qing Zhu
SOIL, 7, 733–742, https://doi.org/10.5194/soil-7-733-2021, https://doi.org/10.5194/soil-7-733-2021, 2021
Short summary
Short summary
Since the 20th century, human beings have released a large amount of reactive nitrogen by excessive application of nitrogen fertilizer, which resulted in enhanced greenhouse effect. It is not clear how the ecosystem nitrogen cycle evolves during global warming. In this study, we collected global data and used meta-analysis to reveal the response of nitrogen cycle to climate warming. The results show that the future climate warming can accelerate the process of ecosystem nitrogen cycle.
Florian Schneider, Michael Klinge, Jannik Brodthuhn, Tino Peplau, and Daniela Sauer
SOIL, 7, 563–584, https://doi.org/10.5194/soil-7-563-2021, https://doi.org/10.5194/soil-7-563-2021, 2021
Short summary
Short summary
The central Mongolian forest steppe underlies a recent decline of forested area. We analysed the site and soil properties in the Khangai Mountains to identify differences between disturbed forest areas with and without regrowth of trees. More silty soils were found under areas with tree regrowth and more sandy soils under areas without tree regrowth. Due to the continental, semi-arid climate, soil properties which increase the amount of available water are decisive for tree regrowth in Mongolia.
Xue Li, Na Li, Jinfeng Yang, Yansen Xiang, Xin Wang, and Xiaori Han
SOIL Discuss., https://doi.org/10.5194/soil-2021-49, https://doi.org/10.5194/soil-2021-49, 2021
Preprint withdrawn
Short summary
Short summary
The application of biochar in soil not only solves the problem of resource waste and environmental pollution caused by agricultural and forestry wastes but also improves the soil environment. In this study, the basic properties of the soil, P fractions, change in P forms, the relationship between Hedley-P, and distribution of different P forms in the soil were studied.
Sabura Shara, Rony Swennen, Jozef Deckers, Fantahun Weldesenbet, Laura Vercammen, Fassil Eshetu, Feleke Woldeyes, Guy Blomme, Roel Merckx, and Karen Vancampenhout
SOIL, 7, 1–14, https://doi.org/10.5194/soil-7-1-2021, https://doi.org/10.5194/soil-7-1-2021, 2021
Short summary
Short summary
Nicknamed the
tree against hunger, enset (Ensete ventricosum) is an important multipurpose crop for the farming systems of the densely populated Gamo highlands in Ethiopia. Its high productivity and tolerance to droughts are major assets. Nevertheless, enset production is severely threatened by a wilting disease. This observational study aims to assess soil and leaf nutrients in enset gardens at different altitudes to see if fertility management can be linked to disease prevalence.
John Kormla Nyameasem, Thorsten Reinsch, Friedhelm Taube, Charles Yaw Fosu Domozoro, Esther Marfo-Ahenkora, Iraj Emadodin, and Carsten Stefan Malisch
SOIL, 6, 523–539, https://doi.org/10.5194/soil-6-523-2020, https://doi.org/10.5194/soil-6-523-2020, 2020
Short summary
Short summary
Long-term studies on the impact of land use change and crop selection on soil organic carbon (SOC) stocks in sub-Saharan Africa are scarce. Accordingly, this study analysed the impact of converting natural grasslands to a range of low-input production systems in a tropical savannah on SOC stocks. Apart from the cultivation of legume tree and/or shrub species, all land management techniques were detrimental. Grazed grasslands in particular had almost 50 % less SOC than natural grasslands.
Benjamin Mary, Luca Peruzzo, Jacopo Boaga, Nicola Cenni, Myriam Schmutz, Yuxin Wu, Susan S. Hubbard, and Giorgio Cassiani
SOIL, 6, 95–114, https://doi.org/10.5194/soil-6-95-2020, https://doi.org/10.5194/soil-6-95-2020, 2020
Short summary
Short summary
The use of non-invasive geophysical imaging of root system processes is of increasing interest to study soil–plant interactions. The experiment focused on the behaviour of grapevine plants during a controlled infiltration experiment. The combination of the mise-à-la-masse (MALM) method, a variation of the classical electrical tomography map (ERT), for which the current is transmitted directly into the stem, holds the promise of being able to image root distribution.
Jörg Niederberger, Martin Kohler, and Jürgen Bauhus
SOIL, 5, 189–204, https://doi.org/10.5194/soil-5-189-2019, https://doi.org/10.5194/soil-5-189-2019, 2019
Short summary
Short summary
Phosphorus (P) seems to be a limiting factor for forest nutrition. At many German forest sites, trees show a deficiency in P nutrition. However, total soil P is an inadequate predictor to explain this malnutrition. We examined if soil properties such as pH, SOC, and soil texture may be used to predict certain P pools in large forest soil inventories. Models using soil properties and P pools with different bioavailability are not yet adequate to explain the P nutrition status in tree foliage.
Mohsen Morshedizad, Kerstin Panten, Wantana Klysubun, and Peter Leinweber
SOIL, 4, 23–35, https://doi.org/10.5194/soil-4-23-2018, https://doi.org/10.5194/soil-4-23-2018, 2018
Short summary
Short summary
We investigated how the composition of bone char (BC) particles altered in soil and affected the soil P speciation by fractionation and X-ray absorption near-edge structure spectroscopy. Bone char particles (BC from pyrolysis of bone chips and BCplus, a BC enriched with S compounds) were collected at the end of incubation-leaching and ryegrass cultivation trials. Soil amendment with BCplus led to elevated P concentrations and maintained more soluble P species than BC even after ryegrass growth.
Imke K. Schäfer, Verena Lanny, Jörg Franke, Timothy I. Eglinton, Michael Zech, Barbora Vysloužilová, and Roland Zech
SOIL, 2, 551–564, https://doi.org/10.5194/soil-2-551-2016, https://doi.org/10.5194/soil-2-551-2016, 2016
Short summary
Short summary
For this study we systematically investigated the molecular pattern of leaf waxes in litter and topsoils along a European transect to assess their potential for palaeoenvironmental reconstruction. Our results show that leaf wax patterns depend on the type of vegetation. The vegetation signal is not only found in the litter; it can also be preserved to some degree in the topsoil.
Martina I. Gocke, Fabian Kessler, Jan M. van Mourik, Boris Jansen, and Guido L. B. Wiesenberg
SOIL, 2, 537–549, https://doi.org/10.5194/soil-2-537-2016, https://doi.org/10.5194/soil-2-537-2016, 2016
Short summary
Short summary
Investigation of a Dutch sandy profile demonstrated that buried soils provide beneficial growth conditions for plant roots in terms of nutrients. The intense exploitation of deep parts of the soil profile, including subsoil and soil parent material, by roots of the modern vegetation is often underestimated by traditional approaches. Potential consequences of deep rooting for terrestrial carbon stocks, located to a relevant part in buried soils, remain largely unknown and require further studies.
Sanjib K. Behera, Arvind K. Shukla, Brahma S. Dwivedi, and Brij L. Lakaria
SOIL Discuss., https://doi.org/10.5194/soil-2016-41, https://doi.org/10.5194/soil-2016-41, 2016
Revised manuscript not accepted
Short summary
Short summary
Zinc (Zn) deficiency is widespread in all types of soils of world including acid soils affecting crop production and nutritional quality of edible plant parts. The present study was carried out to assess the effects of lime and farmyard manure addition to two acid soils of India on soil properties, extractable zinc by different extractants, dry matter yield, Zn concentration and uptake by maize. Increased level of lime application led to enhancement of soil pH and reduction in extractable Zn in
Damaris Roosendaal, Catherine E. Stewart, Karolien Denef, Ronald F. Follett, Elizabeth Pruessner, Louise H. Comas, Gary E. Varvel, Aaron Saathoff, Nathan Palmer, Gautam Sarath, Virginia L. Jin, Marty Schmer, and Madhavan Soundararajan
SOIL, 2, 185–197, https://doi.org/10.5194/soil-2-185-2016, https://doi.org/10.5194/soil-2-185-2016, 2016
Short summary
Short summary
Switchgrass is a deep-rooted perennial grass bioenergy crop that can sequester soil C. Although switchgrass ecotypes vary in root biomass and architecture, little is known about their effect on soil microbial communities throughout the soil profile. By examining labeled root-C uptake in the microbial community, we found that ecotypes supported different microbial communities. The more fungal community associated with the upland ecotype could promote C sequestration by enhancing soil aggregation.
S. Seitz, P. Goebes, Z. Song, H. Bruelheide, W. Härdtle, P. Kühn, Y. Li, and T. Scholten
SOIL, 2, 49–61, https://doi.org/10.5194/soil-2-49-2016, https://doi.org/10.5194/soil-2-49-2016, 2016
Short summary
Short summary
Different tree species affect interrill erosion, but a higher tree species richness does not mitigate soil losses in young subtropical forest stands. Different tree morphologies and tree traits (e.g. crown cover or tree height) have to be considered when assessing erosion in forest ecosystems. If a leaf litter cover is not present, the remaining soil surface cover by stones and biological soil crusts is the most important driver for soil erosion control.
B. Vanlauwe, K. Descheemaeker, K. E. Giller, J. Huising, R. Merckx, G. Nziguheba, J. Wendt, and S. Zingore
SOIL, 1, 491–508, https://doi.org/10.5194/soil-1-491-2015, https://doi.org/10.5194/soil-1-491-2015, 2015
Short summary
Short summary
The "local adaptation" component of integrated soil fertility management operates at field and farm scale. At field scale, the application of implements other than improved germplasm, fertilizer, and organic inputs can enhance the agronomic efficiency (AE) of fertilizer. Examples include the application of lime, secondary and micronutrients, water harvesting, and soil tillage practices. At farm scale, targeting fertilizer within variable farms is shown to significantly affect AE of fertilizer.
J. M. Terrón, J. Blanco, F. J. Moral, L. A. Mancha, D. Uriarte, and J. R. Marques da Silva
SOIL, 1, 459–473, https://doi.org/10.5194/soil-1-459-2015, https://doi.org/10.5194/soil-1-459-2015, 2015
A. Bonfante, A. Agrillo, R. Albrizio, A. Basile, R. Buonomo, R. De Mascellis, A. Gambuti, P. Giorio, G. Guida, G. Langella, P. Manna, L. Minieri, L. Moio, T. Siani, and F. Terribile
SOIL, 1, 427–441, https://doi.org/10.5194/soil-1-427-2015, https://doi.org/10.5194/soil-1-427-2015, 2015
Short summary
Short summary
This paper aims to test a new physically oriented approach to viticulture zoning at the farm scale which is strongly rooted in hydropedology and aims to achieve a better use of environmental features with respect to plant requirement and wine production. The physics of our approach are defined by the use of soil-plant-atmosphere simulation models which apply physically based equations to describe the soil hydrological processes and solve soil-plant water status.
J. Mao, K. G. J. Nierop, M. Rietkerk, and S. C. Dekker
SOIL, 1, 411–425, https://doi.org/10.5194/soil-1-411-2015, https://doi.org/10.5194/soil-1-411-2015, 2015
Short summary
Short summary
In this study we show how soil water repellency (SWR) is linked to the quantity and quality of SWR markers in soils mainly derived from vegetation. To predict the SWR of topsoils, we find the strongest relationship with ester-bound alcohols, and for subsoils with root-derived ω-hydroxy fatty acids and α,ω-dicarboxylic acids. From this we conclude that, overall, roots influence SWR more strongly than leaves and subsequently SWR markers derived from roots predict SWR better.
L. Brillante, O. Mathieu, B. Bois, C. van Leeuwen, and J. Lévêque
SOIL, 1, 273–286, https://doi.org/10.5194/soil-1-273-2015, https://doi.org/10.5194/soil-1-273-2015, 2015
Short summary
Short summary
The available soil water (ASW) is a major contributor to the viticulture "terroir". Electrical resistivity tomography (ERT) allows for measurements of soil water accurately and with low disturbance. This work reviews the use of ERT to spatialise soil water and ASW. A case example is also presented: differences in water uptake (as evaluated by fraction of transpirable soil water variations) depending on grapevine water status (as measured by leaf water potential) are evidenced and mapped.
E. Bochet
SOIL, 1, 131–146, https://doi.org/10.5194/soil-1-131-2015, https://doi.org/10.5194/soil-1-131-2015, 2015
Short summary
Short summary
Since seeds are the principle means by which plants move across the landscape, the final fate of seeds plays a fundamental role in the origin, maintenance, functioning and dynamics of plant communities. In arid and semiarid patchy ecosystems, where seeds are scattered into a heterogeneous environment and intense rainfalls occur, the transport of seeds by runoff to new sites represents an opportunity for seeds to reach more favourable sites for seed germination and seedling survival.
S. Czarnecki and R.-A. Düring
SOIL, 1, 23–33, https://doi.org/10.5194/soil-1-23-2015, https://doi.org/10.5194/soil-1-23-2015, 2015
Short summary
Short summary
This study covers both aspects of understanding of soil system and soil contamination after 14 years of fertilizer application and residual effects of the fertilization 8 years after cessation of fertilizer treatment. Although many grassland fertilizer experiments have been performed worldwide, information about residual effects of fertilizer applications on grassland ecosystem functioning is still rare. This study reports the importance of monitoring of the long-term impact of fertilization.
Cited articles
Abbona, E. A., Sarandón, S. J., Marasas, M. E., and Astier, M.: Ecological sustainability evaluation of traditional management in different systems in Berisso, Argentina, Agr. Ecosyst. Environ., 119, 335–345, 2007.
Acevedo-Opazo, C., Tisseyre, B., Guillaume, S., and Ojeda, H.: The potential of high spatial resolution information to define within-vineyard zones related to vine water status, Precis. Agric., 9, 285–302, 2008a.
Acevedo-Opazo, C., Tisseyre, B., Ojeda, H., Ortega-Farias, S., and Guillaume, S.: Is it possible to assess the spatial variability of vine water status? J. Int. Sci. Vigne Vin, 42, 203–219, 2008b.
Acevedo-Opazo, C., Ortega-Farias, S., and Fuentes, S.: Effects of grapevine (Vitis vinifera L.) water status on water consumption, vegetative growth and grape quality: an irrigation scheduling application to achieve regulated deficit irrigation, Agr. Water Manage., 97, 956–964, 2010a.
Acevedo-Opazo, C., Tisseyre, B., Ojeda, H., and Guillaume, S.: Spatial extrapolation of the vine (Vitis vinifera L.) water status: a first step towards a spatial prediction model, Irrigation Sci., 28, 143–155, 2010b.
Acevedo-Opazo, C., Valdés-Gómez, H., Taylor, J. A., Avalo, A., Verdugo-Vásquez, N., Araya, M., Jara-Rojas, F., and Tisseyre, B.: Assessment of an empirical spatial prediction model of vine water status for irrigation management in a grapevine field, Agr. Water Manage., 124, 58–68, 2013.
Agati, G., D'Onofrio, C., Ducci, E., Cuzzola, A., Remorini, D., Tuccio, L., Lazzini, F., and Mattii, G.: Potential of a multiparametric optical sensor for determining in situ the maturity components of red and white Vitis vinifera wine grapes, J. Agr. Food Chem., 61, 12211–12218, 2013.
Agnelli, A., Bol, R., Trumbore, S. E., Dixon, L., Cocco, S., and Corti, G.: Carbon and nitrogen in soil and vine roots in harrowed and grass-covered vineyards, Agr. Ecosyst. Environ., 193, 70–82, 2014.
Altieri, M. A. and Nicholls, C. I.: The simplification of traditional vineyard based agroforests in northwestern Portugal: some ecological implications, Agroforest. Syst., 56, 185–191, 2002.
Anastasiadi, M., Zira, A., Magiatis, P., Haroutounian, S. A., Skaltsounis, A. L., and Mikros, E.: 1H NMR-based metabonomics for the classification of Greek wines according to variety, region, and vintage. Comparison with HPLC data, J. Agr. Food Chem., 57, 11067–11074, 2009.
Anderson, J. D., Jones, G. V., Tait, A., Hall, A., and Trought, M. T. C.: Analysis of viticulture region climate structure and suitability in New Zealand, International Journal of Vine and Wine Sciences, 46, 149–165, 2012.
Anderson, J. D., Dimou, P., Jones, G. V., Kalivas, D., Koufos, G., Mavromatis, T., Koundouras, S., and Fyllas, N. M.: Harvest dates, climate, and viticultural region zoning in Greece. Proceedings of the 10th International Terroir Congress, 7–10 July, 2014, Tokaj, Hungary, 2, 55–60, 2014.
André, F., Van Leeuwen, Saussez, S., Van Durmen, R., Bogaert, P., Moghadas, D., de Rességuier, L., Delvaux, B., Vereecken, H., and Lambot, S.: High resolution imaging of a vineyard in south of France using ground-penetrating radar, electromagnetic induction and electrical resistivity tomography, J. Appl. Geophys., 78, 113–122, 2012.
Andrenelli, M. C., Magini, S., Pellegrini, S., Perria, R., Vignozzi, N., and Costantini, E. A. C.: The use of the ARP© system to reduce the costs of soil survey for precision viticulture, J. Appl. Geophys., 99, 24–34, 2013.
Arnó, J., Martínez-Casasnovas, J. A., Ribes-Dasi, M., and Rosell, J. R.: Review. Precision viticulture. Research topics, challenges and opportunities in site-specific vineyard management, Spanish J. Agr. Res., 7, 779–790, 2009.
Arnó, J., Rosell, J. R., Blanco, R., Ramos, M. C., and Martínez-Casasnovas, J. A.: Spatial variability in grape yield and quality influenced by crop and soil nutrition characteristics, Precis. Agric., 13, 393–410, 2012.
Arnó, J., Escolà, A., Vallès, J. M., Llorens, J., Sanz, R., Masip, J., Palacín, J., and Rosell-Polo, J. R.: Leaf area index estimation in vineyards using a ground-based LiDAR scanner, Precis. Agric., 14, 290–306, 2013.
Bailly, J. S., Lagacherie, P., Millier, C., Puech, C., and Kosuth, P.: Agrarian landscapes linear features detection from LiDAR: application to artificial drainage networks, Int. J. Remote Sens., 29, 3489–3508, 2008.
Bailly, J. S., Levavasseur, F., and Lagacherie, P.: A spatial stochastic algorithm to reconstruct artificial drainage networks from incomplete network delineations, Int. J. Appl. Earth Obs., 13, 853–862, 2011.
Baluja, J., Diago, M. P., Balda, P., Zorer, R., Meggio, F., Morales, F., and Tardaguila, J.: Assessment of vineyard water status variability by thermal and multispectral imagery using an unmanned aerial vehicle (UAV), Irrigation Sci., 30, 511–522, 2012a.
Baluja, J., Diago, M. P., Goovaerts, P., and Tardaguila, J.: Assessment of the spatial variability of anthocyanins in grapes using a fluorescence sensor: relationships with vine vigour and yield, Precis. Agric., 13, 457–472, 2012b.
Baluja, J., Tardaguila, J., Ayestaran, B., and Diago, M. P.: Spatial variability of grape composition in a Tempranillo (Vitis vinifera L.) vineyard over a 3-year survey, Precis. Agric., 14, 40–58, 2013.
Baralon, K., Payan, J. C., Salançon, E., and Tisseyre, B.: SPIDER: spatial extrapolation of the vine water status at the whole denomination scale from a reference site, J. Int. Sci. Vigne Vin, 46, 167–175, 2012.
Barata, A., Malfeito-Ferreira, M., and Loureiro, V.: The microbial ecology of wine grape berries, Int. J. Food Microbiol., 153, 243–259, 2012.
Barham, E.: Translating terroir: the global challenge of French AOC labelling, J. Rural Stud., 19, 127–138, 2003.
Baronti, S., Vaccari, F. P., Miglietta, F., Calzolari, C., Lugato, E., Orlandini, S., Pini, R., Zulian, C., and Genesio, L.: Impact of biochar application on plant water relations in Vitis vinifera (L.), Eur. J. Agron., 53, 38–44, 2014.
Baveye, P. C. and Laba, M.: Moving away from the geostatistical lamppost: why, where, and how does the spatial heterogeneity of soils matter?, Ecol. Model., 298, 24–38, 2015.
Ben Ghozlen, N., Cerovic, Z. G., Germain, C., Toutain, S., and Latouche, G.: Non-destructive optical monitoring of grape maturation by proximal sensing, Sensors, 10, 10040–10068, 2010.
Bellvert, J., Zarco-Tejada, P. J., Girona, J., and Fereres, E.: Mapping crop water stress index in a "Pinot-noir" vineyard: comparing ground measurements with thermal remote sensing imagery from an unmanned aerial vehicle, Precis. Agric., 15, 361–376, 2014.
Besky, S.: The labor of terroir and the terroir of labor: Geographical Indication and Darjeeling tea plantations, Agric. Human Values, 31, 83–96, 2014.
Beucher, S. and Lantuéjoul, C.: Use of watersheds in contour detection, International Workshop on image processing, Real time edge and motion detection/estimation, Rennes, France, 17–21 September 1979, available at: http://cmm.ensmp.fr/ beucher/publi/watershed.pdf (last access: 13 March 2015), 1979.
Blavet, D., De Noni, G., Le Bissonnais, Y., Léonard, M., Maillo, L., Laurent, J. Y., Asseline, J., Leprun, J. C., Arshad, M. A., and Roose, E.: Effect of land use and management on the early stages of soil water erosion in French Mediterranean vineyards, Soil Till. Res., 106, 124–136, 2009.
Bockstaller, C., Guichard, L., Keichinger, O., Girardin, P., Galan, M. B., and Gaillard, G.: Comparison of methods to assess the sustainability of agricultural systems. A review, Agron. Sustain. Dev., 29, 223–235, 2009.
Bokulich, N. A., Thorngate, J. H., Richardson, P. M., and Mills, D. A.: Microbial biogeography of wine grapes is conditioned by cultivar, vintage and climate, P. Natl. Acad. Sci., 111, E139–E148, 2013.
Bonfante, A., Basile, A., Langella, G., Manna, P., and Terribile, F.: A physically oriented approach to analysis and mapping of terroirs, Geoderma, 167–168, 103–117, 2011.
Bowen, S. and Zapata, A. V.: Geographical indications, terroir, and socioeconomic and ecological sustainability: the case of tequila, J. Rural Stud., 25, 108–119, 2009.
Bramley, R. G. V.: Understanding variability in winegrape production systems. 2. Within vineyard variation in quality overall several vintages, Aust. J. Grape Wine R., 11, 33–42, 2005.
Bramley, R. G. V. and Hamilton, R. P.: Understanding variability in winegrape production systems. 1. Within vineyard variation in yield overall several vintages, Aust. J. Grape Wine R., 10, 32–45, 2004.
Bramley, R. G. V. and Hamilton, R. P.: Terroir and precision viticulture: are they compatible?, J. Int. Sci. Vigne Vin, 41, 1–8, 2007.
Bramley, R. G. V., Evans, K. J., Dunne, K. J., and Gobbett, D. L.: Spatial variation in response to "reduced input" spray programs for powdery mildew and botrytis identified through whole-of-block experimentation, Aust. J. Grape Wine R., 17, 341–350, 2011a.
Bramley, R. G. V., Le Moigne, M., Evain, S., Ouzman, J., Florin, L., Fadaili, E. M., Hinze, C. J., and Cerovic, Z. G.: On-the-go sensing of grape berry anthocyanins during commercial harvest: development and prospects, Aust. J. Grape Wine R., 17, 316–326, 2011b.
Bramley, R. G. V., Ouzman, J., and Boss, P. K.: Variation in vine vigour, grape yield and vineyard soils and topography as indicators of variation in the chemical composition of grapes, wine and wine sensory attributes, Aust. J. Grape Wine R., 17, 217–229, 2011c.
Bramley, R. G. V., Ouzman, J., and Thornton, C.: Selective harvesting is a feasible and profitable strategy even when grape and wine production is geared towards large fermentation volumes, Aust. J. Grape Wine R., 17, 298–305, 2011d.
Bramley, R. G. V., Trought, M. C. T., and Praat, J. P.: Vineyard variability in Malborough, New Zealand: characterizing variation in vineyard performance and options for the implementation of precision viticulture, Aust. J. Grape Wine R., 17, 72–78, 2011e.
Brenot, J., Quiquerez, A., Petit, C., and Garcia, J. P.: Erosion rates and sediment budgets in vineyards at 1-m resolution based on stock unearthing (Burgundy, France), Geomorphology, 100, 345–355, 2008.
Brevik, E. C., Cerdà, A., Mataix-Solera, J., Pereg, L., Quinton, J. N., Six, J., and Van Oost, K.: The interdisciplinary nature of SOIL, SOIL, 1, 117–129, https://doi.org/10.5194/soil-1-117-2015, 2015.
Brillante, L., Bois, B., Mathieu, O., Bichet, V., Michot, D., and Lévêque, J.: Monitoring soil volume wetness in heterogeneous soils by electrical resistivity. A field-based pedotransfer function, J. Hydrol., 516, 56–66, 2014.
Brisson, N., Launay, M., Mary, B., and Beaudoin, N.: Conceptual basis, formalisations and parameterization of the STICS crop model, Quae, Paris, 2009.
Bulgarelli, D., Schlaeppi, K., Spaepen, S., Ver Loren van Themaat, E., Schulze-Lefert, P.: Structure and functions of the bacterial microbiota of plants, Annu. Rev. Plant Biol., 64, 807–38, 2013.
Bustamante, M. A., Said-Pullicino, D., Agulló, E., Andreu, E., Paredes, C., and Moral, R.: Application of winery and distillery waste composts to a Jumilla (SE Spain) vineyard: Effects on the characteristics of a calcareous sandy-loam soil, Agr. Ecosyst. Environ., 140, 80–87, 2011.
Cabral-Chamorro, A.: Observaciones sobre la regulación y ordenación del mercado del vino en Jerez de la Frontera 1850–1935: antecedentes del consejo regulador de la denominación de origen Jerez-Xérès-Cherry, Agricultura y Sociedad, 44, 171–197, 1987 (in Spanish).
Carey, V. A., Saayman, D., Archer, E., Barbeau, G., and Wallace, M.: Viticultural terroirs in Stellenbosch, South Africa. I. The identification of natural terroir units, J. Int. Sci. Vigne Vin, 42, 169–183, 2008.
Carré, F. and Girard, M. C.: Quantitative mapping of soil types based on regression kriging of taxonomic distances with landform and land cover attributes, Geoderma, 110, 241–263, 2002.
Carré, F. and McBratney, A. B.: Digital terron mapping, Geoderma, 128, 340–353, 2005.
Carré, F., McBratney, A. B., Mayr, T., and Montanarella, L.: Digital soil assessments: beyond DSM, Geoderma, 142, 69–79, 2007.
Castellarin, S. D., Matthews, M. A., Di Gaspero, G., and Gambetta, G. A.: Water deficits accelerate ripening and induce changes in gene expression regulating flavonoid biosynthesis in grape berries, Planta, 227, 101–112, 2007.
Castrignanò, A., Costantini, E. A. C., Barbetti, R., and Sollitto, D.: Accounting for extensive topographic and pedologic secondary information to improve soil mapping, Catena, 77, 28–38, 2009.
Celette, F., Ripoche, A., and Gary, C.: WaLIS. A simple model to simulate water partitioning in a crop association: the example of intercropped vineyard, Agr. Water Manage., 97, 1749–1759, 2010.
Chanussot, J., Bas, P., and Bombrun, L.: Airborne remote sensing of vineyards for the detection of dead vine trees, Geoscience and Remote Sensing Symposium, 2005. IGARSS '05, Proceedings, 2005 IEEE International, 5, 3090–3093, 2005.
Chevigny, E., Quiquerez, A., Petit, C., and Curmi, P.: Lithology, landscape structure and management practice changes: Key factors patterning vineyard soil erosion at metre-scale spatial resolution, Catena, 121, 354–364, 2014.
Chopin, E. I. B., Marin, B., Mkoungafoko, R., Rigaux, A., Hopgood, M. J., Delannoy, E., Cancès, B., and Laurain, M.: Factors affecting distribution and mobility of trace elements (Cu, Pb, Zn) in a perennial grapevine (Vitis vinifera L.) in the Champagne region of France, Environ. Pollut., 156, 1092–1098, 2008.
Clark, L. R., Fitzpatrick, R. W., Murray, R. S., and McCarthy, G.: Vineyard soil degradation following irrigation with saline groundwater for twenty years, 17th World Congress of Soil Science Bangkok, Thailand, 14–20, 2002.
Coll, P., Le Cadre, E., Blanchart, E., Hinsinger, P., and Villenave, C.: Organic viticulture and soil quality, a long-term study in Southern France, Appl. Soil Ecol., 50, 37–44, 2011.
Compant, S., Mitter, B., Colli-Mull, J. G., Gangl, H., and Sessitsch, A.: Endophytes of grapevine flowers, berries, and seeds: identification of cultivable bacteria, comparison with other plant parts, and visualization of niches of colonization, Microb. Ecol., 62, 188–197, 2011.
Corbane, C., Andrieux, P., Voltz, M., Chadoeuf, J., Albergel, J., Robbez-Masson, J. M., and Zante, P.: Assessing the variability of soil surface characteristics in row-cropped fields: the case of Mediterranean vineyards in Southern France, Catena, 72, 79–90, 2008a.
Corbane, C., Raclot, D., Jacob, F., Albergel, J., and Andrieux, P.: Remote sensing of soil surface characteristics from a multiscale classification approach, Catena, 75, 308–318, 2008b.
Corbane, C., Jacob, F., Raclot, D., Albergel, J., and Andrieux, P.: Multitemporal analysis of hydrological soil surface characteristics using aerial photos: A case study on a Mediterranean vineyard, Int. J. Appl. Earth Obs., 18, 356–367, 2012.
Costantini, E. A. C. and Barbetti, R.: Environmental and visual impact analysis of viticulture and olive tree cultivation in the Province of Siena (Italy), Eur. J. Agron., 28, 412–426, 2008.
Costantini, E. A. C. and Bucelli, P.: Soil and terroir, in: Soil security for ecosystem management, edited by: Kapur, S. and Erşahin, S., SpringerBriefs in Environment, Security, Development and Peace, 8, 97–133, https://doi.org/10.1007/978-3-319-00699-4_6, 2014.
Costantini, E. A. C. and Lorenzetti, M.: Soil degradation processes in the Italian agricultural and forest ecosystems, Italian J. Agronomy, 8, 233–243, 2013.
Costantini, E. A. C., Pellegrini, S., Vignozzi, N., and Barbetti, R.: Micromorphological characterization and monitoring of internal drainage in soils of vineyards and olive groves in Central Italy, Geoderma, 131, 388–403, 2006.
Costantini, E. A. C., Pellegrini, S., Bucelli, P., Storchi, P., Vignozzi, N., Barbetti, R., and Campagnolo, S.: Relevance of the Lin's and Host hydropedological models to predict grape yield and wine quality, Hydrol. Earth Syst. Sci., 13, 1635–1648, https://doi.org/10.5194/hess-13-1635-2009, 2009.
Costantini, E. A. C., Pellegrini, S., Bucelli, P., Barbetti, R., Campagnolo, S., Storchi, P., Magini, S., and Perria, R.: Mapping suitability for Sangiovese wine by means of δ13C and geophysical sensors in soils with moderate salinity, Eur. J. Agron., 33, 208–217, 2010.
Costantini, E. A. C., Bucelli, P., and Priori, S.: Quaternary landscape history determines the soil functional characters of terroir, Quaternary Int., 265, 63–73, 2012.
Costantini, E. A. C., Agnelli, A., Bucelli, P., Ciambotti, A., Dell'Oro, V., Natarelli, L., Pellegrini, S., Perria, R., Priori, S., Storchi, P., Tsolakis, C., and Vignozzi, N.: Unexpected relationships between δ13C and grape performance in organic farming, J. Int. Sci. Vigne Vin, 47, 269–285, 2013.
Costantini, E. A. C., Agnelli, A., Fabiani, A., Gagnarli, E., Mocali, S., Priori, S., Simoni, S., and Valboa, G.: Short term recovery of soil biological functions in a new vineyard cultivated in organic farming, Geophys. Res. Abstr., EGU2014-3691-1, EGU General Assembly 2014, Vienna, Austria, 2014.
Crescimanno, G. and Garofalo, P.: Management of irrigation with saline water in cracking clay soils, Soil Sci. Soc. Am. J., 70, 1774–1787, 2006.
Crescimanno, G., De Santis, A., and Provenzano, G.: Soil structure and bypass flow processes in a Vertisol under sprinkler and drip irrigation, Geoderma, 138, 110–118, 2007.
Cunha, C. R., Peres, E., Morais, R., Oliveira, A. A., Matos, S. G., Fernades, M. G., Ferreira, P. J. S. G., and Reis, M. J. C. S.: The use of mobile devices with multi-tag technologies for an overall contextualized vineyard management, Comput. Electron. Agr., 73, 154–164, 2010.
Da Costa, J. P., Michelet, F., Germain, C., Lavialle, O., and Grenier, G.: Delineation of vine parcels by segmentation of high resolution remote sensed images, Precis. Agric., 8, 95–110, 2007.
Daly, C., Halbleib, M., Smith, J. I., Gibson, W. P., Doggett, M. K., Taylor, G. H., Curtis, J., and Pasteris, P. A.: Physiographically-sensitive mapping of temperature and precipitation across the conterminous United States, Int. J. Climatol., 28, 2031–2064, 2008.
Daniel, R.: The metagenomics of soil, Nat. Rev. Microbiol., 3, 470–478, 2005.
Daouk, S., De Alencastro, L. F., and Pfeifer, H. R.: The herbicide glyphosate and its metabolite AMPA in the Lavaux vineyard area, western Switzerland: proof of widespread export to surface waters. Part II: The role of infiltration and surface runoff, J. Environ. Sci. Heal. B, 48, 725–736, https://doi.org/10.1080/03601234.2013.780548, 2013.
De Assis Silva, S., Marçal de Queiroz, D., De Assis De Carvalho Pinto, F., and Terra Santos, N.: Characterization and delimitation of the terroir coffee in plantations in the municipal district of Araponga, Minas Gerais, Brazil, Revista Ciência Agronômica, 45, 18–26, 2014.
Delenne, C., Durrieu, S., Rabatel, G., Deshayes, M., Bailly, J. S., Lelong, C., and Couteron, P.: Textural approaches for vineyard detection and characterization using very high spatial resolution remote sensing data, Int. J. Remote Sens., 29, 1153–1167, 2008.
Delenne, C., Durrieu, S., Rabatel, G., and Deshayes, M.: From pixel to vine parcel: a complete methology for vineyard delineation and characterization using remote-sensing data, Comput. Electron. Agr., 70, 78–83, 2010.
Dell'Amico, E., Mazzocchi, M., Cavalca, L., Allievi, L., and Andreoni, V.: Assessment of bacterial community structure in a long-term copper-polluted ex-vineyard soil, Microbiol. Res., 163, 671–683, 2008.
Deloire, A., Vaudour, E., Carey, V., Bonnardot, V., and Van Leeuwen, C.: Grapevine responses to terroir: a global approach, J. Int. Sci. Vigne Vin, 39, 149–162, 2005.
Dion, R.: Le paysage et la vigne: essai de géographie historique, Payot, Paris, 1990 (in French).
Di Paola-Naranjo, R. D., Baroni, M. V., Podio, N. S., Rubinstein, H. R., Fabani, M. P., Badini, R. G., Inga, M., Ostera, H. A., Cagnoni, M., Gallegos, E., Gautier, E., Peral-García, P., Hoogewerff, J., and Wunderlin, D. A.: Fingerprints for main varieties of Argentinean wines: terroir differentiation by inorganic, organic, and stable isotopic analyses coupled to chemometrics, J. Agr. Food Chem., 59, 7854–7865, 2011.
Dobrowski, S. Z., Ustin, S. L., and Wolpert, J. A.: Grapevine dormant pruning weight prediction using remotely sensed data, Aust. J. Grape Wine R., 9, 177–182, 2003.
Dobrowski, S. Z., Ustin, S. L., and Wolpert, J. A.: Remote estimation of vine canopy density in vertically shoot-positioned vineyards: determining optimal vegetation indices, Aust. J. Grape Wine R., 8, 117–125, 2008.
Doolittle, J. A. and Brevik, E. C.: The use of electromagnetic induction techniques in soil studies, Geoderma, 223–225, 33–45, 2014.
Doré, T., Makowski, M., Malézieux, E., Munier-Jolain, N., Tchamitchian, M., and Tittonell, P.: Facing up to the paradigm of ecological intensification in agronomy: revisiting methods, concepts and knowledge, Eur. J. Agron., 34, 197–210, 2011.
El Azzi, D., Viers, J., Guiresse, M., Probst, A., Aubert, D., Caparros, J., Charles, F., Guizien, K., and Probst, J. L.: Origin and fate of copper in a small Mediterranean vineyard catchment, new insights from combined chemical extraction and δ65Cu isotopic composition, Sci. Total Environ., 463–464, 91–101, 2013.
El Hadri, H., Chéry, P., Jalabert, S., Lee, A., Potin-Gautier, M., and Lespes, G.: Assessment of diffuse contamination of agricultural soil by copper in Aquitaine region by using French national databases, Sci. Total Environ., 441, 239–247, 2012.
Fernández-Calviño, D., Garrido-Rodríguez, B., López-Periago, J. E., Paradelo, M., and Arias-Estévez, M.: Spatial distribution of copper fractions in a vineyard soil, Land Degrad. Dev., 24, 556–563, 2013.
Fiorillo, E., Crisci, A., De Filippis, T., Di Gennaro, S. F., Di Blasi, S., Matese, A., Primicerio, J., Vaccari, F. P., and Genesio, L.: Airborne high-resolution images for grape classification: changes in correlation between technological and late maturity in a Sangiovese vineyard in Central Italy, Aust. J. Grape Wine R., 18, 80–90, 2012.
Follain, S., Ciampalini, R., Crabit, A., Coulouma, G., and Garnier, F.: Effects of redistribution processes on rock fragment variability within a vineyard topsoil in Mediterranean France, Geomorphology, 175–176, 45–53, 2012.
Fulton, A., Schwankl, L., Lynn, K., Lampinen, B., Edstrom, J., and Prichard, T.: Using EM and VERIS technology to assess land suitability for orchard and vineyard development, Irrigation Sci., 29, 497–512, 2011.
Galleguillos, M., Jacob, F., Prévot, L., French, A., and Lagacherie, P.: Comparison of two temperature differencing methods to estimate daily evapotranspiration over a Mediterranean vineyard watershed from ASTER data, Remote Sens. Environ., 115, 1326–1340, 2011a.
Galleguillos, M., Jacob, F., Prévot, L., Lagacherie, P., and Liang, S.: Mapping daily evaporation over a Mediterranean vineyard watershed, IEEE Geosci. Remote S., 8, 168–172, 2011b.
Gilbert, J. A., Van der Lelie, D., and Zarraonaindia, I.: Microbial terroir for wine grapes, P. Natl Acad. Sci., 111, 5–6, 2014.
Gil-Pérez, B., Zarco-Tejada, P. J., Correa-Guimaraes, A., Relea-Gangas, E., Navas-Gracia, L. M., Hernández-Navarro, S., Sanz-Requena, J. F., Berjón, A., and Martín-Gil, J.: Remote sensing detection of nutrient uptake in vineyards using narrow-band hyperspectral imagery, Vitis, 49, 167–173, 2010.
Girard, M. C.: Recherche d'une modélisation en vue d'une représentation spatiale de la couverture pédologique, Application à une région des plateaux jurassiques de Bourgogne, Thèse de doctorat d'Etat, Institut National Agronomique Paris-Grignon, Sols, 13, 1983 (in French).
Gong, P., Mahler, S. A., Biging, G. S., and Newburn, D. A.: Vineyard identification in a oak woodland landscape with airborne digital camera imagery, Int. J. Remote Sens., 24, 1303–1315, 2003.
Goulet, E., Dousset, S., Chaussod, R., Bartoli, F., Dolédec, A. F., and Andreux, F.: Water-stable aggregates and organic matter pools in a calcareous vineyard soil under four soil-surface management systems, Soil Use Manage., 20, 318–324, 2004.
Guilpart, N., Métay, A., and Gary, C.: Grapevine bud fertility and number of berries per bunch are determined by water and nitrogen stress around flowering in the previous year, Eur. J. Agron., 54, 9–20, 2014.
Hajkowitcz, S. and Young, M.: Costing yield loss from acidity, sodicity, and dryland salinity to Australian agriculture, Land Degrad. Dev., 16, 417–433, 2005.
Hall, A. and Jones, G. V.: Spatial analysis of climate in winegrape growing regions in Australia, Aust. J. Grape Wine R., 16, 389–404, 2010.
Hall, A. and Wilson, M. A.: Object-based analysis of grapevine canopy relationships with winegrape composition and yield in two contrasting vineyards using multitemporal high spatial resolution optical remote sensing, Int. J. Remote Sens., 34, 1772–1797, 2013.
Hall, A., Lamb, D. W., Holzapfel, B. P., and Louis, J. P.: Optical remote sensing applications in viticulture – a review, Aust. J. Grape Wine R., 8, 36–47, 2002.
Hall, A., Louis, J., and Lamb, D.: Characterizing and mapping vineyard canopy using high-spatial-resolution aerial multispectral images, Comput. Geosci., 29, 813–822, 2003.
Hall, A., Louis, J. P., and Lamb, D. W.: Low-resolution remotely sensed images of winegrape vineyards map spatial variability in planimetric canopy instead of leaf area index, Aust. J. Grape Wine R., 14, 9–17, 2008.
Hall, A., Lamb, D. W., Holzapfel, B. P., and Louis, J. P.: Within-season temporal variation in correlations between vineyard canopy and winegrape composition and yield, Precis. Agric., 12, 103–107, 2011.
Hanjra, M. A. and Qureshi, E.: Global water crisis and future food security in an era of climate change, Food Policy, 35, 365–377, 2010.
Haralick, R. M., Shanmugam, K., and Dinstein, I.: Textural features for image classification, IEEE T. Syst. Man. Cyb., 3, 610–621, 1973.
Hartemink, A. E. and Minasny, B.: Towards digital soil morphometrics, Geoderma, 230–231, 305–317, 2014.
Herrera-Nuñez, J. C., Ramazotti, S., Stagnari, F., and Pisante, M.: A multivariate clustering approach for characterization of the Montepulciano d'Abruzzo Colline Teramane area, Am. J. Enol. Vitic., 62, 239–244, 2011.
Herrero-Langreo, A., Tisseyre, B., Goutouly, J.P., Scholasch, T., and Van Leeuwen, C.: Mapping grapevine (Vitis vinifera L.) water status during the season using carbon isotope ratio (δ13C) as ancillary data, Am. J. Enol. Viticult., 64, 307–315, 2013.
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., and Jarvis, A.: Very high resolution interpolated climate surfaces for global land areas, Int. J. Climatol., 25, 1965–1978, 2005.
Hole, F. D.: An approach to landscape analysis with emphasis on soil, Geoderma, 21, 1–23, 1978.
Hugues, P., McBratney, A. B., Malone, B. P., and Minasny, B.: Development of terrons for the Lower Hunter Valley wine-growing region, in: Digital soil assessments and beyond, edited by: Minasny, B., Malone, B. P., and McBratney, A. B., Taylor&Francis, London, 31–36, 2012.
Iglesias, A., Garrote, L., Flores, F., and Moneo, M.: Challenges to manage the risk of water scarcity and climate change in the Mediterranean, Water Resour. Manage., 21, 775–788, 2007.
Jacobsen, R.: American Terroir: Savoring the Flavors of Our Woods, Waters, and Fields, Bloomsbury USA, New York, 2010.
Jacobson, A. R., Dousset, S., Guichard, N., Baveye, P. C., and Andreux, F.: Diuron mobility through vineyard soils contaminated with copper, Environ. Pollut., 138, 250–259, 2005.
Jacobson, A. R., Dousset, S., Andreux, F., and Baveye, P. C.: Electron microprobe and synchrotron X-ray fluorescence mapping of the heterogeneous distribution of copper in high-copper vineyard soils, Environ. Sci. Technol., 14, 6343–6349, 2007.
Johnson, L. F.: Temporal stability of an NDVI-LAI relationship in a Napa Valley vineyard, Aust. J. Grape Wine R., 9, 96–101, 2003.
Johnson, L. F., Roczen, D. E., Youkhana, S. K., Nemani, R. R., and Bosch, D. F.: Mapping vineyard leaf area with multispectral satellite imagery, Comput. Electron. Agr., 38, 33–44, 2003.
Jones, G. V. and Alves, F.: Spatial Analysis of Climate in Winegrape Growing Regions in Portugal, Proceedings of the 9th International Terroir Congress, 25–29 June, 2012, Burgundy and Champagne, France, Vol. 1, 1–4, 2012.
Jones, G. V. and Davis, R. E.: Climate influences on grapevine phenology, grape composition, and wine production and quality for Bordeaux, France, Am. J. Enol. Viticult., 51, 249–261, 2000.
Jones, G. V., Moriondo, M., Bois, B., Hall, A., and Duff, A.: Analysis of the spatial climate structure in viticulture regions worldwide, Bull. OIV, 944–946, 507–518, 2009.
Jones, G. V., Duff, A. A., Hall, A., and Myers, J. W.: Spatial analysis of climate in winegrape growing regions in the Western United States, Am. J. Enol. Viticult., 61, 313–326, 2010.
Komárek, M., Száková, J., Rohošková, M., Javorská, H., Chrastný, V., and Balík, J.: Copper contamination of vineyard soils from small wine producers: a case study from the Czech Republic, Geoderma, 147, 16–22, 2008.
Lacas, J. G., Carluer, N., and Voltz, M.: Efficiency of a grass buffer strip for limiting diuron losses from an uphill vineyard towards surface and subsurface waters, Pedosphere, 22, 580–592, 2012.
Lagacherie, P., Robbez-Masson, J. M., Nguyen-The, N., and Barthès, J. P.: Mapping of reference area representativity using a mathematical soilscape distance, Geoderma, 101, 105–118, 2001.
Lagacherie, P., Coulouma, G., Ariagno, P., Virat, P., Boizard, H., and Richard, G.: Spatial variability of soil compaction over a vineyard region in relation with soils and cultivation operations, Geoderma, 134, 207–216, 2006.
Lagacherie, P., Bailly, J. S., Monestiez, P., and Gomez, C.: Using scattered hyperspectral imagery data to map the soil properties of a region, Eur. J. Soil Sci., 63, 110–119, 2012.
Lai, H. Y., Juang, K. W., and Chen, B. C.: Copper concentrations in grapevines and vineyard soils in central Taiwan, Soil Sci. Plant Nutr., 56, 601–606, 2013.
Lamb, D. W., Weedon, M. M., and Bramley, R. G. V.: Using remote sensing to predict grape phenolics and colour at harvest in a Cabernet-Sauvignon vineyard: timing observations against vine phenology and optimising image resolution, Aust. J. Grape Wine R., 10, 46–54, 2004.
Lamb, D. W., Mitchell, A., and Hyde, G.: Vineyard trellising with steel posts distorts data from EM soil surveys, Aust. J. Grape Wine R., 11, 24–32, 2005.
Landry, D., Dousset, S., Fournier, J. C., and Andreux, F.: Leaching of glyphosate and AMPA under two soil management practices in Burgundy vineyards (Vosne-Romanée, 21-France), Environ. Pollut., 138, 191–200, 2005.
Lanjeri, S., Segarra, D., and Melia, J.: Interannual vineyard crop variability in the Castilla-La Mancha region during the period 1991–1996 with Landsat Thematic Mapper images, Int. J. Remote Sens., 25, 2441–2457, 2004.
Laville, P.: Le terroir, un concept indispensable à l'élaboration et à la protection des appellations d'origine comme à la gestion des vignobles: le cas de la France, Bull. OIV, 709–710, 217–241, 1990.
Le Bissonnais, Y., Blavet, D., De Noni, G., Laurent, J.-Y., Asseline, J., and Chenu, C.: Erodibility of Mediterranean vineyard soils: relevant aggregate stability methods and significant soil variables, Eur. J. Soil Sci., 58, 188–195, 2007.
Lebon, E., Dumas, V., Pieri, P., and Schultz, H. R.: Modelling the seasonal dynamics of the soil water balance of vineyards, Funct. Plant Biol., 30, 699–710, 2003.
Lee, J. and Steenwerth, K. L.: "Cabernet Sauvignon" grape anthocyanin increased by soil conservation practices, Scientia Hort, 159, 128–133, 2013.
Lefrancq, M., Imfeld, G., Payraudeau, and Millet, M.: Kresoxim methyl deposition, drift and runoff in a vineyard catchment, Sci. Total Environ., 442, 503–508, 2013.
Lieskovsky, J. and Kenderessy, P.: Modelling the effect of vegetation cover and different tillage practices on soil erosion in vineyards: a case study in Vráble (Slovakia) using WATEM/SEDEM, Land Degrad. Dev., 25, 288–296, 2014.
Liguori, M., Tixier, M. S., Fabio Hernandes, A., Douin, M., and Kreiter, S.: Agroforestry management and phytoseiid communities in vineyards in the South of France, Exp. Appl. Acarol., 55, 167–181, 2011.
Llorens, J., Gil, E., Llop, J., and Queraltó, M: Georeferenced LiDAR 3D vine plantation map generation, Sensors, 11, 6237–6256, https://doi.org/10.3390/s110606237, 2011.
López-Rituerto, E., Savorani, F., Avenoza, A., Busto, J. H., Peregrina, J. M., and Balling Engelsen, S.: Investigations of la Rioja terroir for wine production using 1H NMR metabolomics, J. Agr. Food Chem., 60, 3452–3461, 2012.
Louchart, X. and Voltz, M.: Aging effects on the availability of herbicides to runoff transfer, Environ. Sci. Technol., 41, 1137–1144, 2007.
Luvisi, A., Pagano, M., Bandinelli, R., Rinaldelli, E., Gini, B., Scartòn, M., Manzoni, G., and Triolo, E.: Virtual vineyard for grapevine management purposes: A RFID/GPS application, Comput. Electron. Agr., 75, 368–371, 2011.
Mackie, K. A., Müller, T., Zikeli, S., and Kandeler, E.: Long-term copper application in an organic vineyard modifies spatial distribution of micro-organisms, Soil Biol. Biochem., 65, 245–253, 2013.
Malone, B. P., Hugues, P., McBratney, A. B., and Minasny, B.: A model for the identification of terrons in the Lower Hunter Valley, Australia, Geoderma Reg., 1, 31–47, 2014.
Manandhar, R., Odeh, I. O. A., and Pontius Jr., R. G.: Analysis of twenty years of categorical land transitions in the Lower Hunter of New South Wales, Australia, Agr. Ecosyst. Environ., 135, 336–346, 2010.
Marchionni, S., Braschi, E., Tommasini, S., Bollati, A., Cifelli, F., Mulinacci, N., Mattei, M., and Conticelli, S.: High precision 87Sr/86Sr analyses in wines and their use as geological fingerprint for tracing geographic provenance, J. Agr. Food Chem., 61, 6822–6831, 2013.
Marre, A.: Existe-t-il des terroirs en Champagne?, Revue Géographique de l'Est, 1–2, 17–30, 2004 (in French).
Martín, P., Zarco-Tejada, P. J., González, M. R., and Berjón, A.: Using hyperspectral remote sensing to map grape quality in "Tempranillo" vineyards affected by iron deficiency chlorosis, Vitis, 46, 7–14, 2007.
Martínez-Casasnovas, J. A., Ramos, M. C., and García-Hernández, D.: Effects of land-use changes in vegetation cover and sidewall erosion in a gully head of the Penedès region (northeast Spain), Earth Surf. Proc. Land., 34, 1927–1937, 2009.
Martínez-Casasnovas, J. A., Agelet-Fernandez, J., Arnó, J., and Ramos, M. C.: Analysis of vineyard differential management zones and relation to vine development, grape maturity and quality, Spanish J. Agr. Res., 10, 326–337, 2012.
Martínez-Casasnovas, J. A., Ramos, M. C., and Benites, G.: Soil and water assessment tool soil loss simulation at the sub-basin scale in the Alt Penedès-Anoia vineyard region (NE Spain) in the 2000s, Land Degrad. Dev., online first, https://doi.org/10.1002/ldr.2240, 2013.
Martini, E., Comina, C., Priori, S., and Costantini, E. A. C.: A combined geophysical-pedological approach for precision viticulture in the Chianti hills, Bollettino di Geofisica Teorica ed Applicata, 54, 165–181, 2013.
Martins, G., Lauga, B., Miot-Sertier, C., Mercier, A., Lonvaud, A., Soulas, M. L., Soulas, G., and Masneuf-Pomarède, I.: Characterization of epiphytic bacterial communities from grapes, leaves, bark and soil of grapevine plants grown, and their relations, Plos one, 8, e73013, 1–9, 2013.
Matheron, G.: Traité de géostatistique appliquée, Tome 1, Editions Technip, Paris, France, 1962 (in French).
Matheron, G.: Les variables régionalisées et leur estimation: une application de la théorie des fonctions aléatoires aux sciences de la nature, Masson, Paris, 1965 (in French).
Mathews, A. J. and Jensen, J. L. R.: An airborne LiDAR-based methodology for vineyard parcel detection and delineation, Int. J. Remote Sens., 33, 5251–5267, 2012.
Mathews, A. J. and Jensen, J. L. R.: Visualizing and quantifying vineyard canopy LAI using an Unmanned Aerial Vehicle (UAV) collected high density structure from motion point cloud, Remote Sens., 5, 2164–2183, 2013.
Mazzetto, F., Calcante, A., Mena, A., and Vercesi, A.: Integration of optical and analogue sensors for monitoring canopy health and vigour in precision viticulture, Precis. Agric., 11, 636–649, 2010.
Meggio, F., Zarco-Tejada, P. J., Núñez, L. C., Sepulcre-Cantó, G., González, M. R., and Martín, P.: Grape quality assessment in vineyards affected by iron deficiency chlorosis using narrow-band physiological remote sensing indices, Remote Sens. Environ., 114, 1968–1986, 2010.
Mercurio, M., Grilli, E., Odierna, P., Morra, V., Prohaska, T., Coppola, E., Grifa, C., Buondonno, A., and Langella, A.: A "Geo-Pedo-Fingerprint" (GPF) as a tracer to detect univocal parent material-to-wine production chain in high quality vineyard districts, Campi Flegrei (Southern Italy), Geoderma, 230–231, 64–78, 2014.
Minasny, B., Whelan, B. M., Triantafilis, J., and McBratney, A. B.: Pedometrics research in the vadose zone-review and perspectives, Vadose Zone J., Special section: Digital soil mapping, 12, 4, https://doi.org/10.2136/vzj2012.0141, 2013.
Mirlean, N., Roisenberg, A., and Chies, J. O.: Metal contamination of vineyard soils in wet subtropics (Southern Brazil), Bull. Environ. Contam. Toxicol., 82, 373–377, 2007.
Mirlean, N., Baisch, P., and Medeanic, S.: Copper bioavailability and fractionation in copper-contaminated sandy soils in the wet subtropics (Southern Brazil), Bull. Environ. Contam. Toxicol., 82, 373–377, 2009.
Mocali, S. and Benedetti, A.: Exploring research frontiers in microbiology: the challenge of metagenomics in soil microbiology, Res. Microbiol., 161, 497–505, 2010.
Mocali, S., Fabiani, A., Kuramae, E., de Hollander, M., Kowalchuk, G. A., Vignozzi, N., Valboa, G., and Costantini, E.: Genetic and functional diversity of soil microbial communities associated to grapevine plants and wine quality, Geophys. Res. Abstr., EGU2013-1187-1, EGU General Assembly 2013, Vienna, Austria, 2013.
Montes, C., Lhomme, J. P., Demarty, J., Prévot, L., and Jacob, F.: A three-source SVAT modeling of evaporation: application to the seasonal dynamics of a grassed vineyard, Agr. Forest Meteorol., 191, 64–80, 2014.
Morari, F., Castrignanò, A., and Pagliarin, C.: Application of multivariate geostatistics in delineating management zones within a gravelly vineyard using geo-electrical sensors, Comput. Electron. Agr., 68, 97–107, 2009.
Myrold, D. D. and Nannipieri, P.: Classical techniques versus omics approaches, in: Omics in soil Science, edited by: Nannipieri, P., Pietramellara, G., and Renella, G., Caster Academic Press, Norfolk, UK, 179–187, 2014.
Nannipieri, P., Ascher, J., Ceccherini, M., Landi, L., Pietramellara, G., and Renella, G.: Microbial diversity and soil functions, Eur. J. Soil Sci., 54, 655–670, 2003.
Nendel, C. and Kersebaum, K. C.: A simple model approach to simulate nitrogen dynamics in vineyard soils, Ecol. Model., 177, 1–15, 2004.
Novara, A., Gristina, L., Saladino, S. S., Santoro, A., and Cerdà, A.: Soil erosion assessment on tillage and alternative soil managements in a Sicilian vineyard, Soil Till. Res., 117, 140–147, 2011.
Novara, A., Gristina, L., Guaitoli, F., Santoro, A., and Cerdà, A.: Managing soil nitrate with cover crops and buffer strips in Sicilian vineyards, Solid Earth, 4, 255–262, 2013.
Oliver, M. A. and Webster, R.: A tutorial guide to geostatistics: computing and modelling variograms and kriging, Catena, 113, 56–69, 2014.
Paranychianakis, N. V. and Angelakis, A. N.: The effect of water stress and rootstock on the development of leaf injuries in grapevines irrigated with saline effluent, Agr. Water Manage., 95, 375–382, 2008.
Paroissien, J. B., Lagacherie, P., and Le Bissonnais, Y.: A regional-scale study of multi-decennial erosion of vineyard fields using vine-stock unearthing–burying measurements, Catena, 82, 159–168, 2010.
Pedroso, M., Taylor, J., Tisseyre, B., Charnomordic, B., and Guillaume, S.: A segmentation algorithm for the delineation of agricultural management zones, Comput. Electron. Agr., 70, 199–208, 2010.
Pereira, G. E., Gaudillère, J. P., Van Leeuwen, C., Hilbert, G., Maucourt, M., Deborde, C., Moing, A., and Rolin, D.: 1H NMR metabolite fingerprints of grape berry: comparison of vintage and soil effects in Bordeaux grapevine growing areas, Anal. Chim. Acta, 563, 346–352, 2006.
Pietrzak, U. and McPhail, D. C.: Copper accumulation, distribution and fractionation in vineyard soils of Victoria, Australia, Geoderma, 122, 151–166, 2004.
Pinto, C., Pinho, D., Sousa, S., Pinheiro, M., Egas, C., and Gomes, A. C.: Unraveling the diversity of the grapevine microbiome, Plos One, 9, e85622, https://doi.org/10.1371/journal.pone.0085622, 2014.
Plan Bleu: Mediterranean strategy for sustainable development follow-up, Main indicators, 2013 update, available at: http://planbleu.org/sites/default/files/publications/idd_2013en.pdf (last access: 13 March 2015), 2013.
Primicerio, J., Di Gennaro, S. F., Fiorillo, E., Genesio, L., Lugato, E., Matese, A., and Vaccari, F. P.: A flexible unmanned aerial vehicle for precision agriculture, Precis. Agric., 13, 517–523, 2012.
Priori, S., Fantappiè, M., Magini, S., and Costantini, E. A. C.: Using the ARP-03 for high-resolution mapping of calcic horizons, Int. Agrophys., 27, 313–321, 2013a.
Priori, S., Martini, E., Andrenelli, M. C., Magini, S., Agnelli, A. E., Bucelli, P., Biagi, M., Pellegrini, S., and Costantini, E. A. C.: Improving wine quality through harvest zoning and combined use of remote and proximal sensing, Soil Sci. Soc. Am. J., 77, 1338–1348, 2013b.
Priori, S., Barbetti, R., L'Abate, G., Bucelli, P., Storchi, P., and Costantini, E. A. C.: Natural terroir units, Siena province, Tuscany, Journal Maps, 10, 466–477, 2014.
Puletti, N., Perria, R., and Storchi, P.: Unsupervised classification of very high remotely sensed images for grapevine rows detection, Eur. J. Remote Sens., 47, 45–54, 2014.
Quénol, H. and Bonnardot, V.: A multi-scale climatic analysis of viticultural terroirs in the context of climate change: the TERADCLIM Project, J. Int. Sci. Vigne Vin, Special Issue Laccave, 25–34, 2014.
Quiquerez, A., Chevigny, E., Allemand, P., Curmi, P., Petit, C., and Grandjean, P.: Assessing the impact of soil surface characteristics on vineyard erosion from very high spatial resolution aerial images (Côte de Beaune, Burgundy, France), Catena, 116, 163–172, 2014.
Rabatel, G., Debain, C., Delenne, C., and Deshayes, M.: "Bacchus" methodological approach for vineyard inventory and management, edited by: Montesinos Aranda, S. and Quintanilla, A., European Commission, DG Research, RTD action: energy, environment and sustainable development, 67–87, 2006.
Rabatel, G., Delenne, C., and Deshayes, M.: A non-supervised approach using Gabor filters for vine-plot detection in aerial images, Comput. Electron. Agr., 62, 159–168, 2008.
Ramos, M. C. and Martínez-Casasnovas, J. A.: Nutrient losses by runoff in vineyards of the Mediterranean Alt Penedès region (NE Spain), Agr. Ecosyst. Environ., 113, 356–363, 2006.
Ramos, M. C. and Martínez-Casasnovas, J. A.: Soil water variability and its influence on transpirable soil water fraction with two grape varieties under different rainfall regimes, Agr. Ecosyst. Environ., 185, 253–262, 2014.
Renouf, V., Claisse, O., and Lonvaud-Funel, A.: Understanding the microbial ecosystem on the grape berry surface through numeration and identification of yeast and bacteria, Aust. J. Grape Wine R., 11, 316–327, 2005.
Renouf, V., Claisse, O., and Lonvaud-Funel, A.: Inventory and monitoring of wine microbial consortia, Appl. Microbiol. Biotechnol., 75, 149–164, 2007.
Riches, D., Porter, I. J., Oliver, D. P., Bramley, R. G. V., Rawnsley, B., Edwards, J., and White, R. E.: Review: soil biological properties as indicators of soil quality in Australian viticulture, Aust. J. Grape Wine R., 19, 311–323, 2013.
Riou, C., Valancogne, C., and Pieri, P.: Un modèle simple d'interception du rayonnement solaire par la vigne. Vérification expérimentale, Agronomie, 9, 441–450, 1989 (in French).
Riou, C., Pieri, P., and Le Clech, B.: Consommation d'eau de la vigne en conditions hydriques non limitantes, Formulation simplifies de la transpiration, Vitis, 33, 109–115, 1994 (in French).
Ripoche, A., Celette, F., Cinna, J. P., and Gary, C.: Design of intercrop management plans to fulfil production and environmental objectives in vineyards, Eur. J. Agron., 32, 30–39, 2010.
Ripoche, A., Metay, A., Celette, F., and Gary, C.: Changing the soil surface management in vineyards: immediate and delayed effects on the growth and yield of grapevine, Plant. Soil, 339, 259–271, 2011.
Rodríguez-Pérez, J. R., Riaño, D., Carlisle, E., Ustin, S., and Smart, D. R.: Evaluation of hyperspectral reflectance indexes to detect grapevine water status in vineyards, Am. J. Enol. Viticult., 58, 302–317, 2007.
Rodríguez-Pérez, J. R., Álvarez-López, C. J., Miranda, D., and Álvarez, M. F.: Vineyard area estimation using medium spatial resolution satellite imagery, Span. J. Agric. Res., 6, 441–452, 2008.
Rodríguez-Pérez, J. R., Plant, R. E., Lambert, J. J., and Smart, D. R.: Using apparent soil electrical conductivity (ECa) to characterize vineyard soils of high clay content, Precis. Agric., 12, 775–794, 2011.
Rossi, R., Pollice, A., Diago, M. P., Oliveira, M., Millan, B., Bitella, G., Amato, M., and Tardaguila, J.: Using an automatic resistivity profiler soil sensor on-the-go in precision viticulture, Sensors, 13, 1121–1136, 2013.
Roudier, P., Tisseyre, B., Poilvé, H., and Roger, J. M.: Management zone delineation using a modified watershed algorithm, Precis. Agric., 9, 233–250, 2008.
Roudier, P., Tisseyre, B., Poilvé, H., and Roger, J. M.: A technical opportunity index adapted to zone-specific management, Precis. Agric., 12, 130–145, 2011.
Ruiz-Colmenero, M., Bienes, R., and Marques, M. J.: Soil and water conservation dilemmas associated with the use of green cover in steep vineyards, Soil Till. Res., 117, 211–223, 2011.
Ruiz-Colmenero, M., Bienes, R., Eldridge, D. J., and Marques, M. J.: Vegetation cover reduces erosion and enhances soil organic carbon in a vineyard in the central Spain, Catena, 104, 153–160, 2013.
Rusjan, D., Strlič, M., Pucko, D., and Korošec-Koruza, Z.: Copper accumulation regarding the soil characteristics in sub-Mediterranean vineyards of Slovenia, Geoderma, 141, 111–118, 2007.
Salome, C., Coll, P., Lardo, E., Villenave, C., Blanchart, E., Hinsinger, P., Marsden, C., and Le Cadre, E.: Relevance of use-invariant soil properties to assess soil quality of vulnerable ecosystems: The case of Mediterranean vineyards, Ecol. Indic., 43, 83–93, 2014.
Samouëlian, A., Cousin, I., Tabbagh, A., Bruand, A., and Richard, G.: Electrical resistivity survey in soil science: a review, Soil Till. Res., 83, 173–193, 2005.
Santesteban, L. G., Guillaume, S., Royo, J. B., and Tisseyre, B.: Are precision agriculture tools and methods relevant at the whole-vineyard scale?, Precis. Agric., 14, 2–17, 2013.
Schmidt, H. P., Kammann, C., Niggli, C., Evangelou, M. W. H., Mackie, K. A., and Abiven, S.: Biochar and biochar-compost as soil amendments to a vineyard soil: influences on plant growth, nutrient uptake, plant health and grape quality, Agr. Ecosyst. Environ., 191, 117–123, 2014.
Scholander, P. F., Bradstreet, E. D., Hemmingsen, E. A., and Hammel, H. T.: Sap pressure in vascular plants. Negative hydrostatic pressure can be measured in plants, Science, 148, 3668, 339–346, 1965.
Setati, M. E., Jacobson, D., Andong, U. C., and Bauer, F.: The vineyard yeast microbiome, a mixed model microbial map, Plos One, 7, e52609, https://doi.org/10.1371/journal.pone.0052609, 2012.
Son, H. S., Hwang, G. S., Kim, K. M., Ahn, H. J., Park, W. M., Van Den Berg, F., Hong, Y. S., and Lee, C. H.: Metabolomic studies on geographical grapes and their wines using 1H NMR analysis coupled with multivariate statistics, J. Agr. Food Chem., 57, 1481–1490, 2009.
Stamatiadis, S., Taskos, D., Tsadila, E., Christofides, C., Tsadilas, C., and Schepers, J. S.: Comparison of passive and active canopy sensors for the estimation of vine biomass production, Precis. Agric., 11, 306–315, 2010.
Steenwerth, K. and Belina, K. M.: Cover crops enhance soil organic matter, carbon dynamics and microbiological function in a vineyard agroecosystem, Appl. Soil Ecol., 40, 359–369, 2008.
Steenwerth, K. L. and Belina, K. M.: Vineyard weed management practices influence nitrate leaching and nitrous oxide emissions, Agr. Ecosyst. Environ., 138, 127–131, 2010.
Steenwerth, K. L., Pierce, D. L., Carlisle, E. A., Spencer, R. G. M., and Smart, D. R.: A vineyard agroecosystem. Disturbance and precipitation affect soil respiration under Mediterranean conditions, Soil Sci. Soc. Am. J., 74, 231–239, 2010.
Stevens, R. M., Pech, J. M., Gibberd, M. R., Walker, R. R., and Nicholas, P. R.: Reduced irrigation and rootstock effects on vegetative growth, yield and its components, and leaf physiological responses of Shiraz, Aust. J. Grape Wine R., 16, 413–425, 2010.
Stevens, R. M., Harvey, G., Norton, S., and Frahn, W.: Over-canopy saline sprinkler irrigation of grapevines during different growth stages, Agr. Water Manage., 101, 62–70, 2011.
Tagarakis, A., Liakos, V., Fountas, S., Koundouras, S., and Gemtos, T. A.: Management zones delineation using fuzzy clustering techniques in grapevines, Precis. Agric., 140, 18–39, 2013.
Tan, Z. X., Lal, R., and Wiebe, K. D.: Global soil nutrient depletion and yield reduction, J. Sustain. Agr., 26, 123–146, 2005.
Tarolli, P., Sofia, G., Calligaro, S., Prosdocimi, M., Preti, F., and Dalla Fontana, G.: Vineyards in terraced landscapes: new opportunities from Lidar data, Land Degrad. Dev., 26, 92–102, 2015.
Tarr, P. T., Dreyer, M. L., Athanas, M., Shahgholi, M., Saarloos, K., and Second, T. P.: A metabolomics based approach for understanding the influence of terroir in Vitis Vinifera L., Metabolomics, 9, S170–S177, 2013.
Tatti, E., Goyer, C., Zebarth, B. J., Burton, D. L., Giovanetti, L., and Viti, C.: Short-term effects of mineral and organic fertilizer on denitrifiers, nitrous oxide emissions and denitrification in long-term amended vineyard soils, Soil Sci. Soc. Am. J., 77, 113–122, 2012.
Taylor, J. A., McBratney, A. B., and Whelan, B. M.: Establishing management classes for broadacre agricultural production, Agron. J., 99, 1366–1376, 2007.
Taylor, J. A., Coulouma, G., Lagacherie, P., and Tisseyre, B.: Mapping soil units within a vineyard using statistics associated with high-resolution apparent soil electrical conductivity data and factorial discriminant analysis, Geoderma, 153, 278–284, 2009.
Taylor, J. A., Acevedo-Opazo, C., Ojeda, H., and Tisseyre, B.: Identification and significance of sources of spatial variation in grapevine water status, Aust. J. Grape Wine R., 16, 218–226, 2010.
Taylor, J. A., Jacob, F., Galleguillos, M., Prévot, L., Guix, N., and Lagacherie, P.: The utility of remotely-sensed vegetative and terrain covariates at different spatial resolutions in modelling soil and watertable depth (for digital soil mapping), Geoderma, 193–194, 83–93, 2013.
Tempesta, T., Giancristofaro, R. A., Corain, L., Salmaso, L., Tomasi, D., and Boatto, V.: The importance of landscape in wine quality perception: An integrated approach using choice-based conjoint analysis and combination-based permutation tests, Food Qual. Prefer., 21, 827–836, 2010.
Thornton, P. E., Running, S. W., and White, M. A.: Generating surfaces of daily meteorology variables over large regions of complex terrain, J. Hydrol., 190, 214–251, 1997.
Tisseyre, B. and McBratney, A. B.: A technical opportunity index based on mathematical morphology for site-specific management: an application to viticulture, Precis. Agric., 9, 101–103, 2008.
Tisseyre, B., Mazzoni, C., and Fonta, H.: Within-field temporal stability of some parameters in viticulture: potential toward a site specific management, J. Int. Sci. Vigne Vin, 42, 27–39, 2008.
Tomasi, D., Gaiotti, F., and Jones, G. V.: The power of the terroir: the case study of Prosecco wine, Springer, Basel, 2013.
Trought, M. C. T. and Bramley, R. G. V.: Vineyard variability in Malborough, New Zealand: characterizing spatial and temporal changes in fruit composition and juice quality in the vineyard, Aust. J. Grape Wine R., 17, 79–89, 2011.
Trubek, A. B.: Taste of Place: A Cultural Journey into Terroir, University of California Press, Berkeley and Los Angeles, California, 2008.
Tucker, C. J.: Red and photographic infrared linear combinations for monitoring vegetation, Remote Sens. Environ., 8, 127–150, 1979.
Unamunzaga, O., Besga, G., Castellón, A., Usón, M. A., Chéry, P., Gallejones, P., and Aizpurua, A.: Spatial and vertical analysis of soil properties in a Mediterranean vineyard soil, Soil Use Manage., 30, 285–296, https://doi.org/10.1111/sum.12110, 2014.
Unwin, T.: Vine and the wine: an historical geography of viticulture and the wine trade, Routledge, London, 1991.
Urdanoz, V. and Aragüés, R.: Three-year field response of drip-irrigated grapevine (Vitis vinifera L., cv. Tempranillo) to soil salinity, Plant Soil, 324, 219–230, 2009.
Urretavizcaya, I., Santesteban, L. G., Tisseyre, B., Guillaume, S., Miranda, C., and Royo, J. B.: Oenological significance of vineyard management zones delineated using early grape sampling, Precis. Agric., 9, 101–103, 2013.
Van Leeuwen, C. and Seguin, G.: The concept of terroir in viticulture, J. Wine Res., 17, 1–10, 2006.
Van Leeuwen, C., Friant, P., Choné, X., Tregoat, O., Koundouras, S., and Dubourdieu, D.: The influence of climate, soil and cultivar on terroir, Am. J. Enol. Viticult., 55, 207–217, 2004.
Vaudour, E.: The quality of grapes and wine in relation to geography: notions of terroir at various scales, J. Wine Res., 13, 117–141, 2002.
Vaudour E.: Les terroirs viticoles, Dunod, Paris, 2003 (in French).
Vaudour, E.: Remote sensing of Red Mediterranean soils: a case study in the viticultural Southern Rhone Valley (France) using SPOT satellite imagery, Geocarto Int., 23, 197–216, 2008.
Vaudour, E. and Boulay, T.: Towards a spatial analysis of ancient viticultural areas: the case study of Amos (Turkey), Food History, 11, 157–176, 2013.
Vaudour, E., Girard, M. C., Brémond, L. M., and Lurton, L.: Caractérisation spatiale et constitution des raisins en AOC Côtes-du-Rhône méridionales (Bassin de Nyons-Valréas), J. Int. Sci. Vigne Vin, 32, 169–182, 1998.
Vaudour, E., Carey, V. A., and Gilliot, J. M.: Digital zoning of South African viticultural terroirs using bootstrapped decision trees on morphometric data and multitemporal SPOT images, Remote Sens. Environ., 114, 2940–2950, 2010.
Vaudour, E., Carey, V. A., and Gilliot, J. M.: Multidate remote sensing approaches for digital zoning of terroirs at regional scales: case studies revisited and perspectives, Geophys. Res. Abstr., EGU2014-11533, EGU General Assembly 2014, Vienna, Austria, 2014a.
Vaudour, E., Gilliot, J. M., Bel, L., Bréchet, L., Hadjar, D., Hamiache, J., and Lemonnier, Y.: Uncertainty of soil reflectance retrieval from SPOT and RapidEye multispectral satellite images using a per-pixel bootstrapped empirical line atmospheric correction over an agricultural region, Int. J. Appl. Earth Obs., 26, 217–234, 2014b.
Vega-Avila, A. D., Gumiere, T., Andrade, P. A. M., Lima-Perim, J. E., Durrer, A., Baigori, M., Vazquez, F., and Andreote, F. D.: Bacterial communities in the rhizosphere of Vitis vinifera L. cultivated under distinct agricultural practices in Argentina, Antonie van Leeuwenhoek, 107, 575–588, https://doi.org/10.1007/s10482-014-0353-7, 2015.
Verger, A., Vigneau, N., Chéron, C., Gilliot, J. M., Comar, A., and Baret, F.: Green area index from an unmanned aerial system over wheat and rapeseed crops, Remote Sens. Environ., 152, 654–664, 2014.
Vincent, L. and Soille, P.: Watershed in digital spaces – An efficient algorithm based on immersion simulations, IEEE T. Pattern Anal., 13, 583–598, 1991.
Vogel, T. M., Simonet, P., Jansson, J. K., Hirsch, P. R., Tiedje, J. M., Van Elsas, J. D., Bailey, M. J., Nalin, R., and Philippot, L.: TerraGenome: a consortium for the sequencing of a soil metagenome, Nat. Rev. Microbiol., 7, 252, https://doi.org/10.1038/nrmicro2119, 2009.
Walker, R. R., Blackmore, D. H., Clingeleffer, D. R., and Correll, R. L.: Rootstock effects on salt tolerance of irrigated field-grown grapevines (Vitis vinifera L. cv. Sultana). 1. Yield and vigour inter-relationships, Aust. J. Grape Wine R., 8, 3–14, 2002.
Warner, T. A. and Steinmaus, K.: Spatial classification of orchards and vineyards with high spatial resolution panchromatic imagery, Photogramm. Eng. Rem. S., 71, 179–187, 2005.
Wassenaar, T., Robbez-Masson, J. M., Andrieux, P., and Baret, F.: Vineyard identification and description of spatial crop structure by per-field frequency analysis, Int. J. Remote Sens., 23, 3311–3325, 2002.
Wassenaar, T., Andrieux, P., Baret, F., and Robbez-Masson, J. M.: Soil surface infiltration capacity classification based on the bi-directional reflectance distribution function sampled by aerial photographs. The case of vineyards in a Mediterranean area, Catena, 62, 94–110, 2005.
Werban, U., Bartholomeus, H., Dietrich, P., Grandjean, G., and Zacharias, S.: Digital soil mapping: approaches to integrate sensing techniques to the prediction of key soil properties, Vadose Zone J., Special section: Digital soil mapping, 12, 1–4, https://doi.org/10.2136/vzj2013.10.0178, 2013.
Wezel, A., Casagrande, M., Celette, F., Vian, J. F., Ferrer, A., and Peigné, J.: Agroecological practices for sustainable agriculture. A review, Agron. Sustain. Dev., 34, 1–20, 2014.
Wightwick, A. M., Mollah, M. R., Partington, D. L., and Allinson, G.: Copper fungicide residues in Australian vineyard soils, J. Agr. Food Chem., 56, 2457–2464, 2008.
White, R., Balachandra, L., Edis, R., and Chen, D.: The soil component of terroir, J. Int. Sci. Vigne Vin, 41, 9–18, 2007.
Zarco-Tejada, P. J., Berjón, A., López-Lozano, R., Miller, J. R., Martín, P., Cachorro, V., González, M. R., and de Frutos, A.: Assessing vineyard condition with hyperspectral indices: leaf and canopy reflectance simulation on, a row-structured discontinuous canopy, Remote Sens. Environ., 99, 271–287, 2005.
Zarco-Tejada, P. J., Guillén-Climent, M. L., Hernández-Clemente, R., Catalina, A., González, M. R., and Martín, P.: Estimating leaf carotenoid content in vineyards using high resolution hyperspectral imagery acquired from an unmanned aerial vehicle (UAV), Agr. Forest. Meteorol., 171–172, 281–294, 2013.
Zornoza, R., Acosta, J. A., Bastida, F., Domínguez, S. G., Toledo, D. M., and Faz, A.: Identification of sensitive indicators to assess the interrelationship between soil quality, management practices and human health, SOIL, 1, 173–185, https://doi.org/10.5194/soil-1-173-2015, 2015.
Short summary
Terroir chemical and biological footprinting and geospatial technologies are promising for the management of terroir units, particularly remote and proxy data in conjunction with spatial statistics. In practice, the managed zones will be updatable and the effects of viticultural and/or soil management practices might be easier to control. The prospect of facilitated terroir spatial monitoring makes it possible to address the issue of terroir sustainability.
Terroir chemical and biological footprinting and geospatial technologies are promising for the...