Articles | Volume 9, issue 1
https://doi.org/10.5194/soil-9-277-2023
https://doi.org/10.5194/soil-9-277-2023
Original research article
 | 
26 May 2023
Original research article |  | 26 May 2023

Accuracy of regional-to-global soil maps for on-farm decision-making: are soil maps “good enough”?

Jonathan J. Maynard, Edward Yeboah, Stephen Owusu, Michaela Buenemann, Jason C. Neff, and Jeffrey E. Herrick

Related subject area

Pedometrics
Reference soil groups map of Ethiopia based on legacy data and machine learning-technique: EthioSoilGrids 1.0
Ashenafi Ali, Teklu Erkossa, Kiflu Gudeta, Wuletawu Abera, Ephrem Mesfin, Terefe Mekete, Mitiku Haile, Wondwosen Haile, Assefa Abegaz, Demeke Tafesse, Gebeyhu Belay, Mekonen Getahun, Sheleme Beyene, Mohamed Assen, Alemayehu Regassa, Yihenew G. Selassie, Solomon Tadesse, Dawit Abebe, Yitbarek Wolde, Nesru Hussien, Abebe Yirdaw, Addisu Mera, Tesema Admas, Feyera Wakoya, Awgachew Legesse, Nigat Tessema, Ayele Abebe, Simret Gebremariam, Yismaw Aregaw, Bizuayehu Abebaw, Damtew Bekele, Eylachew Zewdie, Steffen Schulz, Lulseged Tamene, and Eyasu Elias
SOIL, 10, 189–209, https://doi.org/10.5194/soil-10-189-2024,https://doi.org/10.5194/soil-10-189-2024, 2024
Short summary
Insights into the prediction uncertainty of machine-learning-based digital soil mapping through a local attribution approach
Jeremy Rohmer, Stephane Belbeze, and Dominique Guyonnet
EGUsphere, https://doi.org/10.5194/egusphere-2024-323,https://doi.org/10.5194/egusphere-2024-323, 2024
Short summary
Shapley values reveal the drivers of soil organic carbon stock prediction
Alexandre M. J.-C. Wadoux, Nicolas P. A. Saby, and Manuel P. Martin
SOIL, 9, 21–38, https://doi.org/10.5194/soil-9-21-2023,https://doi.org/10.5194/soil-9-21-2023, 2023
Short summary
How well does digital soil mapping represent soil geography? An investigation from the USA
David G. Rossiter, Laura Poggio, Dylan Beaudette, and Zamir Libohova
SOIL, 8, 559–586, https://doi.org/10.5194/soil-8-559-2022,https://doi.org/10.5194/soil-8-559-2022, 2022
Short summary

Cited articles

Adjei-Gyapong, T. and Asiamah, R. D.: The interim Ghana soil classification system and its relation with the World Reference Base for Soil Resources, Quatorzième réunion du Sous-Comité ouest Cent. africain corrélation des sols, 98, 9–13, 2002. 
Awadzi, T. W. and Asiamah, R. D.: Soil Survey in Ghana, Soil Horizons, 43, 44, https://doi.org/10.2136/sh2002.2.0044, 2002. 
Bationo, A., Fening, J. O., and Kwaw, A.: Assessment of soil fertility status and integrated soil fertility management in Ghana, in: Improving the Profitability, Sustainability and Efficiency of Nutrients Through Site Specific Fertilizer Recommendations in West Africa Agro-Ecosystems, Vol. 1, 93–138, 2018. 
Batjes, N. H.: Harmonized soil property values for broad-scale modelling (WISE30sec) with estimates of global soil carbon stocks, Geoderma, 269, 61–68, https://doi.org/10.1016/j.geoderma.2016.01.034, 2016a. 
Batjes, N. H.: Harmonised soil property values for broad-scale modelling (WISE30sec) with estimates of global soil carbon stocks, [data set] https://data.isric.org/geonetwork/srv/eng/catalog.search#/metadata/dc7b283a-8f19-45e1-aaed-e9bd515119bc (last access: 8 May 2023), 2016b. 
Download
Short summary
Accurate information on soil properties is critical for identifying soil limitations and the management practices needed to improve crop yields on smallholder farms. This study evaluated the accuracy of soil map information for agronomic decision-making. Based on four publicly available soil maps in Ghana, we found that soil map data significantly overestimated crop suitability, potentially leading to ineffective agronomic investments by smallholder farmers.