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Abstract. A major obstacle to selecting the most appropriate crops and closing the yield gap in many areas
of the world is a lack of site-specific soil information. Accurate information on soil properties is critical for
identifying soil limitations and the management practices needed to improve crop yields. However, acquiring
accurate soil information is often difficult due to the high spatial and temporal variability of soil properties at fine
scales and the cost and inaccessibility of laboratory-based soil analyses. With recent advancements in predictive
soil mapping, there is a growing expectation that soil map predictions can provide much of the information
needed to inform soil management. Yet, it is unclear how accurate current soil map predictions are at scales
relevant to management. The main objective of this study was to address this issue by evaluating the site-specific
accuracy of regional-to-global soil maps, using Ghana as a test case. Four web-based soil maps of Ghana were
evaluated using a dataset of 6514 soil profile descriptions collected on smallholder farms using the LandPKS
mobile application. Results from this study revealed that publicly available soil maps in Ghana lack the needed
accuracy (i.e., correct identification of soil limitations) to reliably inform soil management decisions at the 1–
2 ha scale common to smallholders. Standard measures of map accuracy for soil texture class and rock fragment
class predictions showed that all soil maps had similar performance in estimating the correct property class.
Overall soil texture class accuracies ranged from 8 %–14 % but could be as high as 38 %–64 % after accounting
for uncertainty in the evaluation dataset. Soil rock fragment class accuracies ranged from 26 %–29 %. However,
despite these similar overall accuracies, there were substantial differences in soil property predictions among the
four maps, highlighting that soil map errors are not uniform between maps. To better understand the functional
implications of these soil property differences, we used a modified version of the FAO Global Agro-Ecological
Zone (GAEZ) soil suitability modeling framework to derive soil suitability ratings for each soil data source.
Using a low-input, rain-fed, maize production scenario, we evaluated the functional accuracy of map-based
soil property estimates. This analysis showed that soil map data significantly overestimated crop suitability for
over 65 % of study sites, potentially leading to ineffective agronomic investments by farmers, including cash-
constrained smallholders.
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1 Introduction

Site-specific soil information is urgently needed to address
a variety of critical issues affecting agricultural systems, in-
cluding soil fertility, erosion control, water management, and
climate mitigation (FAO and ITPS et al., 2015). Variability
in both relatively static soil properties (such as clay con-
tent and depth) and current soil health (i.e., status of dy-
namic properties like fertility) is known to affect agricul-
tural productivity. However, the lack of accurate informa-
tion on soil physical and chemical properties has compli-
cated or limited opportunities for smallholder farmers to im-
prove soil health through appropriate soil management prac-
tices (e.g., targeted fertilizer application). Smallholder farm-
ers (i.e., farms < 2 ha) cultivate 24 % of agricultural land
globally yet generate 30 %–34 % of the global food supply
due to a higher percentage of agricultural production devoted
to food crops (Ricciardi et al., 2018). With the development
of improved crop varieties, smallholder farmers in many re-
gions of the world have realized significant yield gains (e.g.,
Asia, Latin America) (Ritchie and Roser, 2013). But other
areas, notably sub-Saharan Africa, have failed to realize ap-
preciable yield increases due to underlying biophysical con-
straints on crop production, principally soil infertility and the
long-term depletion of soil nutrients (Sanchez, 2015).

Smallholder farmers in Ghana are faced with a wide array
of soil management challenges that affect the economic use
of their soils. These challenges include low inherent fertil-
ity status, poor drainage, concretions and stoniness, shallow
rooting depths, aluminum toxicity in acid soils, and suscep-
tibility to both erosion and drought (Obeng, 1976; Obirin-
yarko, 2012). In many of Ghana’s major agricultural ar-
eas, increasing population pressure and inappropriate land
use have contributed to extensive land degradation. Current
agricultural yields in Ghana are far below their production
potential. For example, the average maize yield is around
1.7 t ha−1, approximately one-quarter of the 6.0 t ha−1 target
set by Ghana’s Ministry of Food and Agriculture (Chapoto
and Tetteh, 2014). To overcome these challenges and in-
crease crop yields, farmers must adopt improved production
strategies, including the use of fertilizers, the planting of im-
proved cultivars, and the adoption of good agricultural prac-
tices (Bationo et al., 2018). However, many soils in Ghana
have severe constraints that limit the effectiveness of these
production strategies, and without accurately identifying and
addressing these soil limitations, smallholder farmers may
fail to see a return on their investment. Accurate site-specific
soil data could improve smallholder farmers’ decisions and
actions on sustainable agricultural practices and soil fertility
management and thus lead to higher productivity potential.

A major challenge to obtaining accurate site-specific soil
data is the high spatial and temporal variability of soil prop-
erties in many areas of the world. Soil variability results from

differences in environmental factors (e.g., topography, geol-
ogy, climate) that affect soil property formation over time
(Bouma and Finke, 1993). The spatial scale and intensity at
which these environmental factors vary determine the degree
of soil variability within a landscape. Variation in certain soil
properties can also result from the effects of management
activities. For example, tillage and drainage of agricultural
fields, crop rotation, application of fertilizers, and irrigation
practices can all affect dynamic soil property values (e.g.,
organic matter, pH, plant nutrient availability), particularly
near the surface. Erosion and deposition can also affect what
are typically considered static soil properties, such as texture
and depth (Mulla and McBratney, 2001).

Ideally, smallholder farmers would be able to character-
ize the variability of their soils using laboratory-based phys-
ical and chemical analyses. In reality, high cost, limited ac-
cess, and slow turnaround times have prevented most farmers
from obtaining and using detailed soil laboratory informa-
tion, while limited crop- and soil-specific knowledge have
constrained the use of this information. Soil maps have been
widely viewed as at least a potential solution to this informa-
tion gap, resulting in continued efforts to improve the spatial
resolution and accuracy of soil map information (Brevik et
al., 2015). While recent advancements in soil mapping allow
for the prediction of soil information at management-relevant
scales, the utility of those predictions depends on how ac-
curately they portray fine-scale (i.e., 1–2 ha) soil variability.
Failure to accurately characterize soil variability at the farm
or field scale can severely limit the reliability of land suit-
ability assessments (i.e., fitness for a specific land utiliza-
tion type, e.g., low-input, rain-fed wheat) and thus the ability
to identify soil limitations and/or the conditions suitable for
sustainable agricultural intensification.

Soil maps characterize spatial variability using either con-
ventional or predictive soil mapping techniques. Conven-
tional soil maps partition a landscape into finite circum-
scribed regions (i.e., soil map units), where boundaries
are sharp lines delineating clear differences in soil types
(Heuvelink and Webster, 2001). Conventional soil maps use
empirical, expert-based models to delineate the location and
extent of soil types. These empirical models are often based
on local geomorphology and vegetation patterns and vali-
dated by direct observation. The typical ranges of soil prop-
erties encountered for each soil type are established based on
representative soil profiles and expert knowledge. In contrast,
predictive soil maps characterize soil properties and classes
(i.e., class probabilities) as continuous modeled values at a
fixed grid-cell resolution across a mapping area. Predictive
soil maps are created from numerical or statistical models
based on the relationship among environmental variables and
soil properties or classes. These models often use legacy soil
profile data and remotely sensed environmental covariates
(e.g., slope, normalized difference vegetation index (NDVI))

SOIL, 9, 277–300, 2023 https://doi.org/10.5194/soil-9-277-2023



J. J. Maynard et al.: Accuracy of regional-to-global soil maps 279

that approximate soil forming factors (e.g., topography, cli-
mate, geology, vegetation). Predictive soil maps are driven
by the modeling of spatial data and are therefore limited by
both the point data available for training/validation and the
covariate data used for model development.

For many smallholder farmers, obtaining actionable soil
information from soil maps is an attractive option. Multi-
ple sources of soil map information raise several important
questions for end users, including the following. How accu-
rate are soil maps at my farm? Which soil map product is the
most accurate? And can I use soil map information to inform
my soil management decisions? Answers to these questions
require an understanding of site-specific soil accuracy as it
relates to both the relative accuracy of soil map information
(i.e., compared to soil profile measurements) and the levels
of soil map accuracy required for different land management
applications (i.e., functional assessment).

This study evaluated the site-specific accuracy of four pub-
licly available web-based soil maps of Ghana (Harmonized
World Soil Database, World Inventory of Soil Property Es-
timates, SoilGrids250m, and iSDAsoil) using a dataset of
6514 soil profile descriptions collected on smallholder farms
using the LandPKS mobile application (“app”) (Herrick et
al., 2013). We evaluated three static soil properties (reflect-
ing the long-term potential of the soil): soil texture class
(USDA), rock fragment volume class, and soil depth (i.e.,
depth to bedrock). These properties directly affect agricul-
tural production and can be used to inform farmer decisions
on a variety of management practices such as irrigation fre-
quency and erosion control. They also determine how sus-
ceptible soils are to declines in fertility and how responsive
they are likely to be to different types and amounts of fertil-
izer and organic amendments such as compost and manure.
We used standard measures of classification accuracy to as-
sess the relative accuracy of each soil map. Furthermore, we
conducted a global meta-analysis on the accuracy of field-
based soil texture estimates so that we could derive estima-
tion uncertainties for each USDA/FAO soil texture class and
thus account for potential uncertainty in our field-based soil
texture class evaluation dataset. To help further contextualize
these soil property differences, we used a modified version
of the Global Agro-Ecological Zone (GAEZ) soil suitability
modeling framework to derive soil suitability ratings for each
soil data source (Fischer et al., 2008). Using a low-input,
rain-fed, maize production scenario, we evaluated the func-
tional accuracy of map-based soil property estimates relative
to site-based measurements. The main objective of this study
was to improve our understanding of differences in soil map
products, the relation of these products to field observations,
and the functional accuracy of soil map data for informing
soil management recommendations.

2 Methods

2.1 Study area

The study was conducted in Ghana, West Africa, within the
Northern, Upper West, and Upper East regions in north-
ern Ghana and the Western and Ashanti regions in south-
ern Ghana (Fig. 1). The study area spans four agroecologi-
cal zones: the Guinea Savannah and Sudan Savannah in the
north and Semi-Deciduous Forest and Wet Evergreen Rain-
forest in the south. The northern agroecological zones have
a unimodal rainfall pattern with a mean annual rainfall of
1100 mm, resulting in a single growing season from July to
September. Agroecological zones in the south have a bimodal
rainfall pattern and receive between 1500 and 2200 mm of
rainfall per annum, resulting in a major and minor crop-
ping season. Soils in northern Ghana are predominantly
Plinthosols and Planosols with smaller areas of Lixisols and
Luvisols (Adjei-Gyapong and Asiamah, 2002; Awadzi and
Asiamah, 2002). Soils in southern Ghana are predominantly
Ferralsols and Acrisols, with smaller areas of Lixisols, Al-
isols, and Nitisols. Except for Luvisols in the north and Ni-
tisols in the south, most soil types in Ghana have moderate-
to-severe limitations for crop production, including low fer-
tility (Acrisols, Alisols, Ferralsols, Lixisols), aluminum tox-
icity (Acrisols, Alisols, Planosols), shallow rooting depth
(Plinthosols), high erosion risk (Alisols), and susceptibility
to drought (Acrisols, Alisols, Ferralsols, Plinthosols).

2.2 Soil map acquisition and processing

Four soil-mapping products were evaluated in this study:
two conventional soil maps (i.e., harmonized World Soil
Database v1.21 (HWSD); World Inventory of Soil Emission
Potential 30 arc second map v1 (WISE)) and two predic-
tive soil maps (i.e., SoilGrids250 v2 (SoilGrids); iSDAsoil
v1 (iSDA)) (Table 1). Conventional soil maps do not show
the exact location of a soil type but instead display soil map
units (SMUs), representing distinct areas of a landscape com-
posed of one or more soil types (i.e., soil map unit compo-
nents). A common method for dealing with this spatial un-
certainty is to assign any location within a SMU to its dom-
inant soil component. In our comparisons of soil property
values, we used the property values associated with the dom-
inant SMU component from the HWSD and WISE maps. In
Ghana, HWSD is derived from the FAO-UNESCO Digital
Soil Map of the World (DSMW), which has a map scale of
1 : 5 000 000 (translates to a spatial resolution of ∼ 2.5 km).
HWSD soil property data are derived using soil profile data
from the WISE soil profile database and pedotransfer rules,
producing two aggregated soil depth intervals (0–30 and 30–
100 cm) (Nachtergaele et al., 2009). The WISE soil map is a
recent improvement upon HWSD, where an expanded WISE
soil profile database and new pedotransfer rules were used
to derive soil profile data at seven standardized depth inter-
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Figure 1. Maps of Ghana showing (a) the locations of LandPKS sampling sites underlain by agroecological zones and (b) the yield (kg ha−1)
of maize growing areas.

Table 1. Soil data sources in Ghana.

Soil Version Spatial Scale/ Map-unit Spatial Depth support
data extent resolution∗ support

HWSD 1.21 Global 1 : 5 000 000 Polygon Area 2 layers: 0–30, 30–100 cm
WISE 1.0 Global 1 : 5 000 000 Polygon Area 7 layers: 0–20, 20–40, 40–60, 60–80, 80–100, 100–150, 150–200 cm
SoilGrids 1.0, 2.0 Global 250 m Raster Point 6 layers: 0–5, 5–15, 15–30, 30–60, 60–100, 100–200 cm
iSDA 1.0 Africa 30 m Raster Point 2 layers: 0–20, 20–50 cm
LandPKS 2.1.0 Field < 1 m Point Point 5 layers: 0–1, 1–10, 10–20, 20–50, 50–70 cm

∗ Map scale of 1 : 5 000 000 translates to a spatial resolution of approximately 2.5 km.

vals (0–20, 20–40, 40–60, 60–80, 80–100, 100–150, 150–
200 cm). HWSD and WISE have identical spatial data (map
scale: 1 : 5 000 000; spatial resolution:∼ 2.5 km) but differ in
their soil property data (2 vs. 7 depths for HWSD and WISE,
respectively) (Batjes, 2016a). Predictive soil mapping prod-
ucts (e.g., SoilGrids, iSDA) offer an alternative to conven-
tional soil maps by providing predictions of soil properties
and classes at specific locations. SoilGrids is a global pre-
dictive soil map that predicts soil properties at a 250 m spa-
tial resolution at six standard depths (0–5, 5–15, 15–30, 30–
60, 60–100, and 100–200 cm) (Poggio et al., 2021). iSDA
is a predictive soil map of Africa that predicts soil prop-
erties at a 30 m spatial resolution at two standard depths
(0–20, 20–50 cm) (Hengl et al., 2021). Soil map data were
obtained from online repositories. Soil map predictions for

sand, silt, and clay percentage; rock fragment volume; and
depth to bedrock were extracted from each map at all 6514
sampling locations. For SoilGrids, depth to bedrock values
were extracted from SoilGrids version 1.0 since no new map
predictions were available for version 2.0. Among the soil
data sources, the maximum prediction depth was shallowest
for iSDA at 50 cm (Table 1).

To facilitate comparison between the different soil data
sources, we segmented each soil profile into 1 cm slices and
then aggregated the slices (depth-weighted average) using a
standard set of depth intervals (i.e., 0–10, 10–20, 20–50 cm).
The maximum soil depth for each data source was set at
50 cm to ensure all data sources had soil property values at
each depth interval in our comparison (Fig. 2). The segment-
ing algorithm was implemented using the “aqp” package for
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Figure 2. Soil profile slicing and aggregation method for converting
contrasting soil sampling depths to the standard LandPKS (LPKS)
sampling depths for all properties, showing an example of clay per-
centage.

R (Beaudette et al., 2013). For each re-aggregated soil depth
interval, we calculated soil texture class based on USDA tex-
ture classes and rock fragment volume class based on the
LandPKS rock fragment class intervals (i.e., 0–1, 1–15, 15–
35, 35–60, and > 60 %).

2.3 Field data collection

Soil profiles were sampled as part of two different monitor-
ing and evaluation (M&E) surveys of smallholder farmers
in Ghana: USAID’s Feed the Future (FTF) project (northern
Ghana) and a World Bank-funded research project, Map to
the Future (M2F) (southern Ghana). The FTF project used
a cross-sectional multistage cluster sampling design, using
probability proportional to size sampling to select small-
holder farms (Zereyesus et al., 2014). At each selected farm,
a single representative site (i.e., visually assessed to rep-
resent the average biophysical condition) was selected for
soil sampling (farms/soil profiles= 6289). The M2F project
used a conditioned Latin hypercube sampling design (cLHS)
to select a subset of smallholder farmers participating in
an agricultural advisory pilot project (FarmGrow: Daniel et
al., 2020). Baseline agronomic information (e.g., agricultural
practices, soil condition, annual yield) was used to stratify
the cLHS subsampling. At each selected farm in the M2F
project, three soil profiles were sampled from each farm
field, with sampling locations chosen by the farmer to reflect
within-field soil variability (farms= 75, soil profiles= 225).

Data collection was performed using the LandPKS
mobile app by field crews following standard sampling
protocols (Zalisk et al., 2018; https://landpotential.org/
knowledge-hub/, last access: 27 April 2023). This involved

sampling of soils by either hand auger (northern Ghana) or
from soil pits (southern Ghana) at five standard depth inter-
vals (i.e., 0–1, 1–10, 10–20, 20–50, 50–70 cm). Soil sam-
ples were passed through a 2 mm sieve and analyzed for
soil texture (USDA/FAO textural classification) using the
hand texturing method (Schoeneberger et al., 2012) and rock
fragment volume (i.e., volume percent of rock fragments
< 2 mm) class (i.e., 0 %–1 %, 1 %–15 %, 15 %–35 %, 35 %–
60 %, > 60 %) using visual estimates (USDA-NRCS, 2020).
Depth to bedrock was also recorded if encountered within the
70 cm sampling depth.

While most soil map predictions are derived from
laboratory-based property measurements (e.g., HWSD,
WISE, SoilGrids), several recent studies have shown that
field-estimated soil property values can produce relatively
accurate estimates when compared to laboratory measure-
ments (Salley et al., 2018; Vos et al., 2016a). For exam-
ple, Salley et al. (2018) reported that professional soil sci-
entists and field technicians correctly estimated laboratory-
determined texture classes for 66 % and 41 % of samples, re-
spectively. And when a “correct” prediction also included ad-
jacent textural classes, accuracies increased to 91 % and 78 %
for professionals and field technicians, respectively (Salley et
al., 2018). The compatibility of these different measurement
methodologies was recently demonstrated with the iSDA
soil maps which used both laboratory and field-based mea-
surements to predict soil texture and rock fragment volume
(Hengl et al., 2021).

All data recorded in the LandPKS app were synchro-
nized to a cloud-based data storage system. Soil pro-
file data were downloaded from the LandPKS data portal
(https://landpotential.org/data-portal/, last access: 6 Novem-
ber 2020). Quality control filtering was performed on
LandPKS data to remove incomplete sites. This included re-
moving sites with missing soil property data and sites that
were not sampled at all five depth intervals.

2.4 Soil evaluation datasets

In developing our soil map evaluation procedure, we iden-
tified three potential issues with our evaluation datasets that
needed to be addressed: (1) independence from the soil maps
being evaluated, (2) spatial support of the evaluation data,
and (3) accuracy and precision of the evaluation measure-
ments. The evaluation data from the FTF project (6289 sites)
in northern Ghana was used as part of the iSDA model cal-
ibration/training dataset and therefore could not be used for
independent evaluation of the iSDA map predictions (Hengl
et al., 2021). Additionally, only one location was sampled
within each smallholder farm for the FTF project, thus re-
quiring all evaluation to be done at the point support (i.e.,
individual site value vs. predicted map value). Although
both predictive soil maps used a point prediction support
(i.e., each soil measurement represents a single point on the
ground), previous studies have shown that validating at a
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point support can underrepresent a map’s prediction qual-
ity, and it is therefore preferable to validate at larger spatial
supports (e.g., block support) (Bishop et al., 2015; Piikki et
al., 2021). The M2F study sites, although using a consider-
ably smaller dataset (n= 225) and concentrated in southern
Ghana, were not used in the iSDA model, and each farm was
sampled at three locations, allowing for both an independent
accuracy assessment of iSDA predictions and for accuracy
assessments at both point and field support. To address the is-
sues of evaluation independence and evaluation support, we
evaluated three datasets: (1) the entire dataset at point sup-
port (FTF-M2F-PS: 6514 study sites), (2) the M2F dataset
at point support (M2F-PS: 225 study sites), and (3) the M2F
dataset at field support (M2F-FS: 75 farms). The final issue
relates to accuracy and precision of the evaluation measure-
ments. The FTF and M2F datasets contain field estimates of
soil texture class and rock fragment volume. Rock fragment
volume measurements are commonly estimated in the field
using visual or ocular assessment techniques, and all of the
soil maps evaluated in this study incorporate field-based soil
rock fragment data in their map predictions (Ribeiro et al.,
2020). Additionally, we used broad rock fragment volume
classes which minimized any potential methodological dif-
ferences between our evaluation dataset and the data used
to generate soil map prediction. Soil map predictions of tex-
ture, however, are typically made using laboratory measure-
ments, and thus our evaluation of soil map predictions using
field texture measurements may bias our accuracy assess-
ment. Therefore, to evaluate the compatibility of field and
laboratory texture data, we conducted a global meta-analysis
on the accuracy of field-based soil texture estimates.

2.5 Global meta-analysis of field-based soil texture
estimation uncertainty

To account for potential uncertainty in our soil texture eval-
uation dataset, we conducted a global meta-analysis on the
accuracy of field-based soil texture estimation. Data were
compiled from 10 studies that were reported in 7 peer-
reviewed publications. Eight of the 10 studies used the US-
DA/FAO texture classification (Foss et al., 1975; Levine et
al., 1989; Post et al., 1986; Rawls and Pachepsky, 2002; Sal-
ley et al., 2018), while one used the Australian (Northcote)
classification systems (Minasny et al., 2007) and the other
used the French (AISNE) classification systems (Richer-de-
Forges et al., 2022). Data from the Australian and French
studies were transformed to the USDA/FAO system using
the “texture” R package (Moeys, 2018). Additional details on
the soil texture transformation are found in the Supplement.
The final compiled dataset contained 269 181 hand-textured
and corresponding lab-textured measurements. The majority
of these texture measurements were from the US (USDA-
NRCS: 228 715) (Salley et al., 2018), followed by Australia
(ASRIS/Queensland Government: 17 979) (Minasny et al.,
2007), France (17 388) (Richer-de-Forges et al., 2022), and

5099 samples from the remaining 7 studies, with sample
sizes ranging from 154 to 1724 (Table 2). Two of the studies
only reported texture class accuracies, another two reported
texture class accuracies along with additional information on
misclassified classes, and the remaining 6 studies provided
soil texture class error matrices. For the 8 studies with mis-
classification information (error matrices or reported mis-
classifications), we calculated texture class accuracies that
accounted for class adjacency (PAadj). Weighted mean field
texture class accuracies (PA and PAadj) were calculated for
each texture class, weighted by each studies contribution to
the texture class sample size. To estimate the potential error
associated with the use of field-estimated texture classes rela-
tive to laboratory measurements, we estimated an overall ac-
curacy for each evaluation dataset by calculating a weighted
average (mean± standard deviation) of the individual texture
class accuracy estimates, weighted by the texture class distri-
butions for each evaluation dataset.

2.6 Soil map accuracy assessment at field support

To calculate accuracy measures at field support, we need to
compare the average of site values within a field to the aver-
age of all predicted map values within a field. For the study
sites from the M2F research project in southern Ghana, the
exact boundaries of each field were not available. Conse-
quently, we approximated the area of each field by creating
a convex hull around each set of sampling points (n= 3)
within a field and then applied a 10 m buffer around the
perimeter of each delineated area. Using the approach de-
scribed by Bishop et al. (2015), each buffered area was then
discretized into a 10 m grid, with the center of each grid con-
verted to a point and used for extracting soil map predictions.
A 10 m grid was chosen to ensure representative sampling
of the soil maps across all grid resolutions. The values ex-
tracted at each point were then averaged, giving an approx-
imate area-weighted average for each subfield delineation.
The average measured field values were obtained by averag-
ing values from the three soil profiles within each field.

2.7 Soil map evaluation methods

We evaluated the relative and functional accuracy of the soil
maps using two different methods: (1) matching of soil prop-
erty classes (relative accuracy) and (2) matching of crop-
specific GAEZ soil suitability ratings (functional accuracy).

2.7.1 Soil property class match

The soil property class match approach applies an exact
matching criterion where the measured soil property class at
each site and soil depth is compared to the predicted prop-
erty class in each soil map. Because this approach requires
an exact match, it can result in a high rate of misclassifica-
tion among similar soils and therefore provides a conserva-
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Table 2. Accuracy of field-estimated USDA/FAO soil texture classes.

Research Soil texture class accuracy (%)a

study N∗S S LS SL SC SCL L SiL CL SiCL SiC C Si

Foss et al. 598 74 35 68 – 44 36 63 18 19 – 73 –
(1975) (89) (73) (83) – (44) (58) (73) (46) (44) – (80) –

Post et al. 900 86 46 69 – 30 26 59 – 47 36 – –
(1986) (97) (85) (98) – (87) (81) (92) – (95) (84) – –

Levine et al. 1725 81 46 47 – 19 21 19 50 41 47 48 –
(1989) (WK3) – – – – – – – – – – – –

Levine et al. 810 96 55 57 – 35 27 17 – 33 31 47 –
(1989) (EOS) – – – – – – – – – – – –

Rawls and Pachepsky 576 24 24 73 – 15 46 64 16 44 32 58 –
(2002) (60) (100) (99) – (93) (97) (99) (100) (84) (87) (82) –

Minasny et al. 17 979 62 33 24 13 14 29 10 6 73 6 64 14
(2007) (94) (91) (67) (51) (53) (70) (30) (24) (93) (84) (93) (55)

Salley et al. 228 715 73 42 61 28 49 58 81 57 70 59 74 16
(2018) (USDA) (88) (94) (93) (90) (91) (94) (99) (86) (95) (93) (92) (94)

Salley et al. 154 43 44 55 – 25 5 26 33 44 – 40 –
(2018) (western USA) (71) (100) (89) – (100) (65) (77) (83) (78) – (40) –

Salley et al. 336 45 32 24 – 0 0 10 – – – – –
(2018) (Namibia) (80) (59) (47) – (100) (0) (90) – – – – –

Richer-de-Forges 17 388 95 82 66 76 73 61 61 68 66 75 82 92
et al. (2022) (100) (99) (98) (98) (97) (92) (96) (95) (96) (98) (99) (99)

PA 73± 7 45± 12 57± 11 28± 22 41± 19 54± 10 79± 8 57± 7 69± 4 59± 7 74± 4 19± 16
Nb

TC 269 181 15 116 9805 36 425 3033 13 385 36 470 55 292 21 058 33 004 16 094 27 184 2 314
PAadj 89± 3 94± 3 91± 8 71± 21 81± 18 91± 8 98± 6 86± 8 95± 3 93± 2 93± 2 80± 19
Nb

TC-adj 266 646 15 060 9469 35 702 3033 13 118 35 895 55 213 21 012 32 833 15 992 27 004 2314

a Values in parentheses are class-adjacent producer’s accuracies from each study. b NS, sample size of individual studies; NTC, sample size of individual soil texture classes used to calculate PA; NTC-adj, sample size
of individual soil texture classes used to calculate PAadj. S: sand; LS: loamy sand; SL: sandy loam; SC: sandy clay; SCL: sandy clay loam; L: loam; SiL: silt loam; CL: clay loam; SiCL: silty clay loam; SiC: silty
clay; C: clay; Si: silt; PA: producer’s accuracy; PAadj: class-adjacent producer’s accuracy; WK3: week 3 dataset; EOS: end of semester dataset.

tive measure of map accuracy. We addressed this with a sec-
ond measure that also considers all adjacent property classes
to be correct. For this method, we evaluated map accuracy
for soil texture and rock fragment volume classes.

Map performance was evaluated using overall map accu-
racy, adjacent-overall accuracy, producer’s accuracy, user’s
accuracy, and balanced error rate. Overall map accuracy
(OA) is the proportion of all observation points at which the
map predicts the correct soil property class (i.e., soil texture
class, rock fragment volume class). Adjacent-overall accu-
racy (OAadj) includes all property classes adjacent to the cor-
rect class as a “correct” prediction. Producer’s accuracy (PA)
and user’s accuracy (UA) are calculated separately for each
class. PA is the probability that a ground reference test sam-
ple is classified correctly in the map (e.g., what proportion
of clay loam reference samples were correctly classified on
the map (True positive/(True positive+False negative))). UA
is the probability that a sample from a map actually repre-
sents that category on the ground (e.g., what proportion of
reference samples mapped as clay loam were truly clay loam
(True positive/(True positive+False positive)). The balanced
error rate (BER) is the average of the errors in each property
class. This includes both errors associated with a failure to

predict the correct class (false negative or Type II error) and
the error associated with allocating a sample or site to the
wrong class (false positive or Type I error). BER is calcu-
lated by taking the average of the false negative rate (FNR)
(i.e., (False negative/(False negative+True positive))) and
the false positive rate (FPR) (i.e., (False positive/(False pos-
itive+True negative))):

BER= (FPR+FNR)/2, (1)

Using the average of the FNR and FPR, BER is sensitive to
problems of class imbalance, where models that overpredict
the dominant class will receive a higher value (e.g., close to
1.0).

2.7.2 Global Agro-Ecological Zone soil suitability

Assessing map accuracy based on the soil property class
match rate fails to account for when the predicted class is
functionally similar to the measured class. In other words,
sometimes misclassification of a soil property simply does
not matter much for management. For example, a sand tex-
ture misclassified as a loamy sand would be functionally
more similar than a sand texture misclassified as a sandy clay.
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To account for these relative differences, we evaluated the
functional similarity between data sources using a simplified
version of the GAEZ soil suitability modeling framework.
The GAEZ framework, developed by the Food and Agricul-
ture Organization of the United Nations (FAO) and the In-
ternational Institute for Applied Systems Analysis (IIASA),
uses soil data and detailed agronomic knowledge to quan-
tify land productivity and crop-specific agronomic potential
(Tóth et al., 2012). GAEZ soil suitability calculations follow
a two-step approach, where (1) cropping system-specific re-
sponses (i.e., unique combination of crop type, management
level, and water supply) to individual soil properties are com-
bined into soil quality ratings, and (2) individual soil qual-
ity ratings are combined to calculate management-specific
soil suitability ratings. The soil suitability ratings serve as a
functional metric for comparing differences in the soil prop-
erty predictions between the different soil maps. The GAEZ
soil quality framework uses multiple soil properties to cal-
culate each of the soil quality indices, including soil nutrient
availability, SQN = f (soil texture, organic carbon, pH, and
total exchangeable bases); soil rooting conditions, SQR= f

(soil depth, soil phases); and soil workability, SQW= f (soil
depth, texture, rock fragments, soil phases, vertic soil prop-
erties).

Our modified GAEZ framework used a low-input, rain-
fed, maize production scenario to translate soil property in-
formation at each site into crop-specific soil suitability rat-
ings for each soil data source. We calculated simplified soil
quality indices using soil texture class, rock fragment class,
and soil depth as input properties. We used maize as our mod-
eled crop due to its widespread cultivation throughout Ghana
(Fig. 1), and our selection of input soil properties was limited
by those properties common to all data sources. Soil prop-
erty values at each site were used to calculate three different
soil quality indices (SQs): soil nutrient availability (SQN),
soil rooting conditions (SQR), and soil workability (SQW).
Each soil quality index has its own unique set of soil property
ratings based on their relative influence. SQs: SQN has soil
texture, organic carbon, pH, and total exchangeable bases;
SQR= soil depth and soil phases; and SQW has soil depth,
texture, rock fragments, soil phases, and vertic soil proper-
ties. We limited the calculation of SQs to the soil properties
common among all five soil sources, which were soil texture,
rock fragments, and soil depth.

The natural availability of soil nutrients is critical for crop
productivity in low-input farming systems. Soil texture class
was used as an indicator of rock-derived nutrient availabil-
ity, with finer textured soils (e.g., clay) typically having
higher nutrient availability than coarse textured soils (e.g.,
sand). The rock-derived nutrients include phosphorus, micro-
nutrients, and base cations, and many of these nutrients are
associated with specific mineralogy and tend to be less con-
centrated in sandy soils (Sollins et al., 1988). In contrast,
nitrogen is substantially influenced by nitrogen fixation and
soil organic matter content. Soil nutrient availability was cal-

culated as

SQN = STR, (2)

where STR is the soil texture class rating.
Soil rooting condition assesses the effective soil depth and

volume for crop roots by accounting for the effects of soil
depth, soil texture, and rock fragment volume. The soil root-
ing condition index was calculated as

SQR = SDR ·min(STR,RFR), (3)

where SDR is the soil depth rating, STR is the soil texture
rating, and RFR is the rock fragment rating.

Soil workability or ease of tillage is affected by both phys-
ical hindrances to cultivation (e.g., bedrock, rock fragments)
and limitations imposed by soil texture. Soil workability was
calculated as

SQW =

Xjo+ 0.5
∑

j 6=jo
Xj

2
, (4)

where X is the soil property rating (i.e., SDR, STR, RFR),
and jo denotes the soil property with the lowest rating, such
that SRjo ≤ SRj , j = 1 : 3.

The three soil quality indices were combined to calculate
the soil suitability rating (SR):

SR= SQN ·SQR ·SQW. (5)

3 Results

3.1 Soil property distributions

While the spatial distribution of surface soil texture classes
differed among the four soil maps, they all displayed a gen-
eral trend of coarser soil textures in the north and finer soil
texture in the south (Fig. 3). Furthermore, all four maps
showed similarities in the relative distribution of certain soil
texture classes, with sandy loam, loam, sandy clay loam,
and clay loam dominant within most maps (Fig. 4a–d). The
WISE soil map predicted the highest diversity of soil texture
classes (i.e., classes≥ 1 % map area) with six texture classes,
followed by HWSD and SoilGrids with five texture classes,
and iSDA with four texture classes (Fig. 4). LandPKS field-
based measurements spanned the widest range of textures,
with a total of 11 classes (Fig. 4e). This is not surprising
given the natural variability of soil texture at fine spatial
scales. For WISE, HWSD, and SoilGrids, both the diver-
sity of soil property classes and their relative distributions
across the 6514 study sites (Fig. 4f–h), which comprised a
total of 19 542 soil layers, were similar to the soil property
maps (Fig. 4a–c). In contrast, iSDA soil property distribu-
tions were markedly different at the study sites (Fig. 4i), ex-
hibiting a higher diversity of property classes relative to their
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Figure 3. Soil map comparison of surface soil (0–10 cm) texture classes. Texture classes are ordered by mean particle-size diameter.

depth-wise areal distributions across Ghana (Fig. 4d), likely
a result of the influence of the FTF sites on iSDA model pre-
dictions. This contrasted with the M2F dataset (independent
of iSDA model predictions), where the distribution of iSDA
texture predictions was more closely aligned with the depth-
wise areal distributions across Ghana.

LandPKS sites are predominantly coarse textured soils
with 71 % of soil layers classified as sandy loam or coarser.
In contrast, SoilGrids predicted only 8 % and HWSD 21 % of
soil layers as sandy loam or coarser. WISE was more similar
with 51 % of soil layers, and the predictions from iSDA were
the most similar with 77 % of soil layers classified as sandy
loam or coarser. Figure 5 shows the distribution of soil rock
fragment classes for the LandPKS sites and corresponding

soil map values. LandPKS sites showed a range of soil rock
fragment classes in the FTF-M2F dataset, with an almost
equal distribution among the first four classes. WISE and
SoilGrids had high percentages in several of the higher rock
fragment classes, which more closely aligned with LandPKS
values, while HWSD predicted low rock fragment classes
across the majority of sites (97 % in the 1 %–15 % class). For
the M2F sites, LandPKS values were spread across multiple
rock fragment classes (Fig. 5j), in contrast to HWSD, WISE,
and iSDA, which predicted almost all sites in the 1 %–15 %
class (Fig. 5).
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Figure 4. Distribution of soil texture classes based on (a–d) areal map coverage across Ghana, (e–i) distribution across the FTF-M2F
dataset, and (j–n) distribution across the M2F dataset (point support) at LandPKS depths. Class proportions account for all LandPKS soil
depths ≥ 50 cm (i.e., 0–10, 10–20, 20–50 cm), with equal weight assigned to each depth interval regardless of its total depth.

3.2 Uncertainty of field-based soil texture estimates

Results from the meta-analysis of field-based soil texture
uncertainty are shown in Table 2. In general, results from
these studies showed that very coarse (e.g., sand) and very
fine (e.g., clay) soil texture classes were estimated with
higher accuracies and lower variability relative to medium
texture classes (e.g., loam). For example, average accuracies
were 73± 7 % for sand and 74± 15 % for clay compared
to 41± 19 % for sand clay loam among 10 different stud-

ies (Foss et al., 1975; Levine et al., 1989; Minasny et al.,
2007; Post et al., 1986; Rawls and Pachepsky, 2002; Richer-
de-Forges et al., 2022; Salley et al., 2018). Additionally, tex-
ture classes with the lowest sample sizes generally had lower
estimation accuracies and higher variability, e.g., the sandy
clay (28±22 %) and silt (19±16 %) classes which each rep-
resent ∼ 1 % of compiled dataset.
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Figure 5. Distribution of soil rock fragment volume classes based on (a–d) areal map coverage across Ghana, (e–i) distribution across
the FTF-M2F dataset, and (j–n) distribution across the M2F dataset (point support) at LandPKS depths. Class proportions account for all
LandPKS soil depths ≥ 50 cm (i.e., 0–10, 10–20, 20–50 cm), with equal weight assigned to each depth interval regardless of its total depth.
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Table 3. Accuracy of soil map predictions for texture class and rock
fragment volume class from the three evaluation datasets.

HWSD WISE SoilGrids iSDA

Soil texture class

FTF-M2F-PS

OA 0.09 0.14 0.08 0.39a

OAadj 0.40 0.49 0.39 0.85a

BER 0.91 0.91 0.90 0.76a

OA-Pb 0.41–0.55 0.46–0.64 0.38–0.54 0.71–0.91a

OAadj-Pb 0.45–0.55 0.54–0.64 0.44–0.54 0.90–1.00a

M2F-PS

OA 0.27 0.16 0.33 0.28
OAadj 0.74 0.82 0.81 0.81
BER 0.90 0.95 0.80 0.88
OA-Pb 0.63–0.85 0.52–0.74 0.69–0.91 0.64–0.86
OAadj-Pb 0.78–0.99 0.86–1.00 0.85–1.00 0.85–1.00

M2F-FS

OA 0.28 0.15 0.35 0.32
OAadj 0.80 0.85 0.84 0.90
BER 0.87 0.94 0.75 0.84
OA-Pb 0.64–0.86 0.51–0.73 0.71–0.93 0.68–0.90
OAadj-Pb 0.84–1.00 0.89–1.00 0.88–1.00 0.94–1.00

Rock fragment volume class

FTF-M2F-PS

OA 0.27 0.29 0.26 0.33a

OAadj 0.72 0.73 0.73 0.91a

BER 0.83 0.81 0.83 0.78a

M2F-PS

OA 0.59 0.59 0.33 0.59
OAadj 0.87 0.87 0.88 0.87
BER 0.80 0.80 0.83 0.79

M2F-FS

OA 0.56 0.56 0.37 0.56
OAadj 0.89 0.89 0.93 0.89
BER 0.80 0.80 0.82 0.80

a iSDA accuracy statistics for the “FTF-M2F-PS” dataset (shown in italics) are not
reliable due to the partial use of this dataset (i.e., LandPKS Feed the Future sites) in
iSDA model training/validation. OA, overall accuracy; OAadj, overall accuracy when
accounting for class adjacency to the correct property class; BER, balanced error rate;
FTF-M2F-PS, dataset containing all LandPKS sites in Ghana at point support (6514
sites, 19 542 soil layers); M2F-PS, LandPKS Map to the Future dataset at
point support (225 sites; 675 soil layers); M2F-FS, LandPKS Map to the Future
dataset at field support (75 sites; 225 soil layers). b Potential overall accuracy (OA-P)
and potential overall class-adjacent accuracy (OAadj-P) account for potential
uncertainty in the evaluation data. The reported range represents the potential increase
in OA-P and OAadj-P due to potential error in evaluation class labels.

3.3 Evaluation of soil map accuracy

3.3.1 Soil property class match

Overall accuracy of soil property maps was low, with soil tex-
ture classes ranging from 9 %–14 % for FTF-M2F and 15 %–
35 % for M2F, and soil rock fragment classes ranging from
26 % to 29 % for FTF-M2F and 33 %–59 % for M2F (Ta-
ble 3). While overall accuracies were slightly higher in south-
ern Ghana (M2F dataset) for both texture and rock fragments,
these higher accuracies were likely due to the overprediction
of the dominant classes. For example, in the M2F dataset,
WISE, SoilGrids, and iSDA soil maps predicted 99 %–100 %
of the sites in the 1 %–15 % rock fragment class, which
was the most dominant measured class (i.e., 59 % of sites;
Fig. 5j). This resulted in higher model accuracy but low sen-
sitivity for all other classes (Figs. 6, 7). The balanced error
rate was high across all maps, ranging from 75 % to 95 % for
soil texture class and from 79 % to 83 % for soil rock frag-
ment class.

Due to potential inaccuracies in field-estimated soil tex-
ture classes, we estimated the agreement between field- and
laboratory-measured texture classes using a global meta-
analysis of soil field texture measurement accuracy. Esti-
mated agreement (± standard deviation) between field and
laboratory values was 58± 10 % and 53± 11 % for the
FTF-M2F and M2F evaluation datasets, respectively. Esti-
mated agreement increased to 90± 5 % for FTF-M2F and
86± 11 % for M2F when allowing for class adjacency
(OAadj). Thus, the potential error rate of our soil texture class
evaluation datasets ranged from 32 %–52 % for FTF-M2F
and 36 %–58 % for M2F for an exact match, which decreases
to 5 %–15 % for FTF-M2F and 3 %–25 % for M2F for ad-
jacent class matches. Using these potential error rates, we
adjusted the soil texture map accuracies to reflect potential
accuracy if all errors in the evaluation dataset corresponded
to the misclassifications in the map dataset. Moderate-to-
high uncertainty in both our evaluation datasets and the soil
map predictions makes it difficult to assign a realistic upper
bound for the potential accuracies of soil map predictions
(i.e., map accuracies adjusted for evaluation data uncertainty:
OA-P). However, these upper bounds should not exceed the
potential adjacent texture class accuracies (OAadj-P), which
have more constrained uncertainty estimates and thus more
realistic estimates of potential map accuracy. Thus, when-
ever the estimated upper bound of OA-P exceeded the upper
bound of OAadj-P, it was truncated to match OAadj-P (Ta-
ble 3). These adjustments resulted in potential soil map tex-
ture class accuracies ranging 41 %–64 % for an exact match
and ranging 44 %–64 % for an adjacent match for the FTF-
M2F dataset, and the ranges were 52 %–93 % for an exact
match and 78 %–100 % for an adjacent match for the M2F
dataset (Table 3).
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Figure 6. Soil texture class and soil rock fragment volume class as well as producer’s accuracy for the four soil maps based on the FTF-M2F
dataset.

For the M2F dataset, there was little-to-no difference be-
tween the soil map accuracies calculated at point support
(M2F-PS) relative to accuracies calculated at field support
(M2F-FS) (Table 3). The average farm size across the 75
farms was 2.4 ha (SD± 2.0), and our delineation procedure
captured, on average, 48 % of a field’s area, with a range of
8 % to 100 %. On average these delineated areas intersected
1.8 SoilGrids pixels (range: 1–4 pixels) and 8.6 iSDA pixels
(range: 2–24). Due to the large size of HWSD and WISE map
unit polygons in Ghana, all farms fell within a single map
unit and thus were attributed with the dominant component
property value for both the point-support and field-support
cases.

When we expanded our measure of prediction accuracy
to include adjacent classes (i.e., OAadj), classification accu-
racy increased to 39 %–85 % for soil texture and 73 %–93 %
for rock fragment volume (Table 3). Individual soil texture
class and rock fragment class producer accuracies for the
FTF-M2F-PS and M2F-PS datasets are show in Figs. 6 and
7, respectively. Although 51 % of LandPKS site-based tex-
ture measurements were either sand or loamy sand, none of

the web-based soil maps predicted these classes at any of the
sampling sites, and they were predicted at only < 1 % across
all of Ghana (Fig. 4). Soil texture classes with higher predic-
tion accuracies included sandy clay loam, sandy loam, loam,
and clay loam, which corresponded to the most common tex-
ture classes predicted among the four maps (Figs. 4, 6, 7).
A similar trend occurred for rock fragment volume class
(Figs. 4, 6, 7).

3.3.2 Agroecological zone soil suitability

The distributions of maize soil suitability ratings and classes
calculated using LandPKS site-based data and soil map data
are shown in Fig. 8. Soil suitability ratings were notice-
ably different between LandPKS and the soil maps, with
LandPKS values being substantially lower than those of the
soil maps. Furthermore, the range of suitability ratings for
LandPKS was significantly wider than that of the soil maps
for both datasets (Fig. 8a, b). While iSDA appears to cap-
ture these lower suitability ratings (Fig. 8a), when we look
at the independent test dataset (M2F) we see that iSDA fails

https://doi.org/10.5194/soil-9-277-2023 SOIL, 9, 277–300, 2023



290 J. J. Maynard et al.: Accuracy of regional-to-global soil maps

Figure 7. Soil texture class and soil rock fragment volume class as well as producer’s accuracy for the four soil maps based on the M2F
dataset.

to detect these lower-suitability-rating soils (Fig. 8b). When
suitability ratings are translated to suitability classes, these
differences are further emphasized, with sampling sites clas-
sified in the top two suitability classes for the soil maps,
whereas sampling sites for LandPKS were more evenly dis-
tributed across the suitability classes (Fig. 8c, d). While both
the predictive and conventional soil maps were classified
in either the “No constraint” or “Slight constraint” classes,
65 % of sampling sites (17 % of M2F sites) were classified
as having moderate to very severe soil constraints based on
LandPKS site-specific data (Fig. 8c, d). OA values for the
GAEZ suitability classes were similar for all four soil maps,
at just 15 %–18 % for the complete dataset and 27 %–61 %
for the M2F datasets (Table 4). High PA for the “No con-
straint” suitability class and low-to-zero percent accuracies
for the other suitability classes further show the overpredic-
tion of the “No constraint” suitability class among the four
maps (Table 4). A PA of zero for a suitability class means
that the maps did not correctly predict any of the field ob-
servations of that class. UA results that fail to return a value

indicate that the map failed to predict any values of that class
(Table 4).

Analysis of the individual soil quality indices revealed that
most sites were limited by their availability of soil nutrients,
with 50 % of LandPKS sites having a moderate to very se-
vere constraint (Fig. 9a). Far fewer sites were constrained by
rooting conditions or workability, with only 15 % and 2 % of
LandPKS sites having a moderate to very severe constraint
for rooting conditions (Fig. 9b) and workability (Fig. 9c), re-
spectively. Nutrient availability was a main source of limita-
tions identified for HWSD but not for either WISE or Soil-
Grids. HWSD and WISE also had limitations identified for
soil rooting conditions in a small subset of sites. No limita-
tions were identified for workability by any of the soil maps
(Fig. 9c).
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Figure 8. Distribution of GAEZ soil suitability ratings (a, b) and classes (c, d) for the FTF-M2F and M2F soil sampling sites based on the
five different soil data sources.

4 Discussion

4.1 Evaluation of soil map accuracy

The utility of a soil map depends on its intended use and the
level of accuracy required for that use. When applied at a re-
gional scale, current soil maps have been used effectively to
inform agronomic and environmental policies. However, less
is known about the accuracy of soil maps at the farm/field
scale or whether soil map data at this scale are sufficiently ac-
curate to inform site-specific land management. Differences
in soil properties between sites, like pH or texture, can result
in highly different management requirements. For example,
many essential plant nutrients become increasingly unavail-
able in soils at low pH (e.g., < 4.5), making any efforts to
fertilize acidic soils ineffective. Acidic soils require the ap-
plication of amendments (e.g., lime) to raise the soil pH be-
fore any inherent nutrient deficiencies can be addressed. Ac-
curately identifying these site-specific soil differences is crit-
ical for addressing the soil limitations that currently inhibit

crop yields. Results from this study show that publicly avail-
able web-based soil maps of Ghana lack the needed accuracy
to reliably inform soil management decisions on smallholder
farms (i.e., 1–2 ha). Standard measures of map accuracy for
the class-based soil properties (i.e., texture class, rock frag-
ment class) showed that all the soil maps were equally in-
accurate in estimating the correct property class, predicting
the wrong texture class 6–9 times out of 10 and the wrong
rock fragment class 4–7 times out of 10. A similar study
in Namibia evaluated the accuracy of surface soil texture
estimates from seven soil maps (including HWSD, WISE,
and SoilGrids) (Buenemann et al., 2023). This study found
that soil maps in Namibia predicted the correct topsoil tex-
ture class in only 13 % to 42 % of test sites, indicating that
none of the maps were sufficiently accurate for most site-
specific management applications. Another study in Rwanda
evaluated the accuracy of soil organic carbon (SOC) and
pH predictions from AfsoilGrids250 maps (Söderström et
al., 2017). Söderström et al. (2017) found that the Afsoil-
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Table 4. Accuracy of soil map predictions for agroecological zone soil suitability classes.

HWSD WISE SoilGrids iSDA

Suitability classes PA UA PA UA PA UA PA UA

FTF-M2F-PS

No constraint 0.69 0.14 0.83 0.18 0.94 0.15 0.84∗ 0.43∗

Slight constraint 0.21 0.17 0.26 0.18 0.02 0.28 0.40∗ 0.27∗

Moderate constraint 0.00 – 0.00 – 0.00 0.00 0.43∗ 0.45∗

Severe constraint 0.00 – 0.00 – 0.00 – 0.16∗ 0.34∗

Very severe constraint 0.00 – 0.00 – 0.00 – 0.09∗ 0.92∗

Not suitable 0.00 – 0.00 – 0.00 – 0.00∗ –
OA 0.15 – 0.18 – 0.15 – 0.39∗ –

M2F-PS

No constraint 0.39 0.40 1.00 0.56 0.52 0.58 1.00 0.56
Slight constraint 0.19 0.11 0.00 – 0.52 0.28 0.00 –
Moderate constraint 0.00 – 0.00 – 0.00 – 0.00 –
Severe constraint 0.00 – 0.00 – 0.00 – 0.00 –
Very severe constraint 0.00 – 0.00 – 0.00 – 0.00 –
Not suitable – – – – – – – –
OA 0.27 – 0.56 – 0.43 – 0.56 –

M2F-FS

No constraint 0.39 0.44 1.00 0.61 0.50 0.61 1.00 0.61
Slight constraint 0.21 0.12 0.00 – 0.53 0.27 0.00 –
Moderate constraint 0.00 – 0.00 – 0.00 – 0.00 –
Severe constraint 0.00 – 0.00 – 0.00 – 0.00 –
Very severe constraint – – – – – – – –
Not suitable – – – – – – – –
OA 0.29 – 0.61 – 0.44 – 0.61 –

∗ iSDA accuracy statistics for the FTF-M2F-PS dataset (shown in italics) are not reliable due to the partial use of
this dataset (i.e., LandPKS Feed the Future sites) in iSDA model training/validation.

Grids250 soil map predictions in Rwanda were poorly corre-
lated to an independent validation dataset, with coefficients
of determination of 0.05 and 0.11 for SOC and pH, respec-
tively.

Accuracy assessments based on exact matching of soil
classes, however, can underrepresent the functional accuracy
of soil properties. For example, two soils with the same clay
content (15 %) but slightly different sand contents (51 vs.
53 % sand) would fall into two different soil texture classes
(sandy loam and loam, respectively) due to their proximity
to the texture class boundary (Fig. 10a). If we predicted both
soils to be sandy loam, our accuracy would only be 50 % even
though both soils may function like a sandy loam. Account-
ing for class adjacency in the overall accuracy evaluation ac-
counts for these “near misses”, providing a less restrictive as-
sessment of map accuracy. However, although class-adjacent
accuracies in this study were higher than overall accuracies
for texture across all soil maps, they only increased to 39 %–
49 % for the FTF-M2F dataset, indicating that 50 %–60 % of
map-based soil texture estimates were considerably differ-
ent (i.e., greater than one texture class difference) than site-

based estimates. Furthermore, even after accounting for po-
tential inaccuracies in our evaluation dataset, texture class
accuracies only increased to 38 %–64 % for the FTF-M2F
dataset. A similar result was found in Namibia, where topsoil
texture predictions were often more than one textural class
away from the site-based classes (Buenemann et al., 2023).
In the smaller M2F dataset, class-adjacent soil texture accu-
racies were considerably higher (OAadj: 74 %–90 %; OAadj-
P: 78 %–100 %) at both point support and field support, most
likely due to the higher proportion of finer textured soils
which were more accurately predicted by the soil maps in
these areas. (Table 3, Fig. 1).

While comparing relative differences in soil property val-
ues can provide insight into the accuracy of map-based es-
timates, it is often difficult to interpret the functional im-
plications of those differences. Modeling frameworks like
GAEZ provide a way to translate soil property differences
into crop-specific soil quality indices and soil suitability rat-
ings that can compare soil functional differences. Addition-
ally, the GAEZ framework provides a more holistic means
of comparing soils since each soil suitability rating is calcu-
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Figure 9. Distribution of GAEZ soil quality index classes for (a) soil nutrient availability, (b) soil rooting conditions, and (c) soil workability
for the FTF-M2 dataset (6514 soil sampling sites) based on the five different soil data sources.

lated based on all soil properties and across all soil depths at
a site, providing a single functional measure at each location.
This contrasts with standard measures of map accuracy that
are based on a single soil property at only one soil depth.

In our application of the GAEZ framework (low-input,
rain-fed maize), the soil property rating criteria were based
on two different levels of soil property generalization. The
first was based on the grouping of soil property values into
soil property classes (Figs. 6, 7), and the second was the
broad grouping of soil classes into soil suitability ratings
(e.g., Fig. 10). This means that in many cases soil property
differences resulting from either measurement or prediction
error will be minimized due to these large within-group prop-
erty ranges. This is not the case, however, within certain re-
gions of the soil property space. For example, in the GAEZ
system, soil texture poses no limitations to nutrient avail-
ability for all texture classes except the three classes with
the highest sand content (sandy loam, loamy sand, sand),
which pose increasing limitations with increasing sand con-
tent (Fig. 10). Thus, to accurately assess this limitation, one
must accurately differentiate a sand, loamy sand, or sandy
loam from any texture finer than a sandy loam. On the other
end of the soil texture triangle, the clay texture class nega-
tively impacts the soil quality ratings for rooting condition
and workability, while all other texture classes do not pose
any limitations. Despite these relatively narrow soil property
ranges for identifying crop constraints, 65 % of sites were

classified as having moderate to very severe soil constraints,
while the soil maps all failed to predict these high constraint
classes at any of the study sites. The low functional accu-
racy of soil maps in Ghana based on our modified GAEZ
framework was due to several contributing factors: (1) con-
straints on maize soil suitability were largely confined to
coarse textured soils (i.e., sand, loamy sand, sandy loam),
(2) 71 % of site-based texture estimates were in coarse tex-
ture classes, and (3) soil maps had low prediction accuracy
for the coarse texture classes. In areas dominated by medium-
to-fine textured soils, functional accuracies would likely be
much higher due to the wide range of texture classes (e.g.,
sandy clay loam vs. silty clay) that are rated functionally sim-
ilar (Fig. 10a).

4.2 Estimating site-based soil properties: potential
sources of error

4.2.1 Sources of field sampling error

When evaluating the accuracy of soil map predictions, two
sources of error can occur from the field sampling protocol:
the first originating from the sampling design and the sec-
ond from the sampling methodology. Several recent studies
have shown that unbiased assessments of soil map accuracy
require independent test datasets that have been generated
using probability-based sampling designs (Brus et al., 2011;
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Piikki et al., 2021). The datasets used in this study were pur-
posive, focusing on smallholder farmers in Ghana, and spa-
tially clustered in northern Ghana, with only a small subset of
farms in southern Ghana. However, within this specific land
use type, probability-based sampling methods were used to
select sites from a larger population of smallholder farms.
Therefore, this assessment should only be viewed in the con-
text of utilizing soil maps to help inform smallholder farm-
ers and not their utility for informing other land use types
(e,g., forestry, grazing lands) which may provide more accu-
rate soil predictions.

Field sampling error can also occur due to differences in
sampling methodology. This study used field-estimated soil
property values as reference data for evaluating the accuracy
of soil map predictions. However, soil map predictions of
texture (i.e., sand, silt, and clay mass fractions) are typically
made using laboratory measurements for input data. While
field estimation of soil texture using simple dichotomous
keys has been shown to produce relatively accurate estimates
when compared to laboratory measurements (Minasny et al.,
2007; Richer-de-Forges et al., 2022; Salley et al., 2018; Vos
et al., 2016b), an explicit quantification of field texture esti-
mation uncertainty is needed to assess the feasibility of us-
ing field texture data to evaluate soil map predictions. Our
global meta-analysis of field texture estimation uncertainty
revealed generally good agreement between field and labo-
ratory measurements for very coarse and very fine texture
classes (e.g., sand and clay) and lower agreement for medium
texture classes (e.g., silty clay loam and loam) (Table 2). The
overall accuracy of our soil texture class evaluation datasets
was moderate (OA: 42 %–68 %) but increased substantially
when accounting for adjacent texture class matches (OAadj:
75 %–97 %). This higher uncertainty in estimating an exact
match (i.e., field texture equals lab texture) made it diffi-
cult to estimate realistic ranges for the potential accuracy
of soil map predictions. However, the lower uncertainty in
the adjacent class match allowed us to estimate a more con-
strained and thus likely more realistic range of potential map
accuracy when matching to adjacent classes (OAadj-P). Our
higher confidence in the estimated range of OAadj-P and the
similarity in estimated accuracy ranges for OA-P and OAadj-
P suggests that the actual range for OA-P is likely lower than
what was estimated based on the estimated uncertainty of our
evaluation datasets.

In evaluating the utility of field-based evaluation datasets,
it is important to recognize that laboratory measurements
have their own inherent sources of error. For example, in
the sixth Forest Soil Coordinating Centre (FSCC) interlab-
oratory comparison it was reported that clay content was one
of the most difficult properties to consistently measure, with
a coefficient of variation (CV) of 32 % among 50 partici-
pating laboratories (Cools and De Vos, 2010). Additionally,
a recent interlaboratory comparison among three soil labo-
ratories in Ghana revealed significant variation in soil tex-
ture measurements, with a CV of 47 % for clay based on

Figure 10. GAEZ soil nutrient availability ratings for the different
soil texture and rock fragment volume classes based on a rain-fed,
low-input maize production system.

10 soils with contrasting textures (2020, unpublished data).
Such high interlaboratory variability may result from the fact
that some soils, due to their mineralogy or chemical makeup,
are not well suited for laboratory particle-size analysis; in
which case field-based estimates may be considered more re-
liable than lab data (Landon, 1988). This is true for highly
weathered oxide-rich tropical soils where traditional labora-
tory techniques often underestimate clay content due to the
soil’s resistance to dispersion (Silva et al., 2015). These types
of highly weathered and/or oxide-rich soils (Plinthosols, Fer-
ralsols, Acrisols) are common throughout our study area. It
is therefore important to be cognizant of the potential un-
certainties associated with laboratory soil texture measure-
ments, especially in tropical regions, and the implication of
these uncertainties on the use of field texture estimates.

When evaluating soil data uncertainty, it is important to de-
termine the level of measurement precision needed to inform
a particular outcome. For example, while soil particle-size
mass fractions (high measurement precision) are often re-
quired for soil modeling, soil texture classes (lower measure-
ment precision) are generally sufficient for on-farm soil man-
agement. Lowering the level of measurement precision (e.g.,
using soil texture classes in place of particle-size fractions)
also minimizes the uncertainty associated with different data
sources (e.g., laboratory, field). Functional soil assessments
often require even lower levels of measurement precision as
demonstrated by the GAEZ framework, where the soil suit-
ability ratings and classes have relatively low measurement
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precision (Fig. 10), which in turn further minimizes the in-
herent uncertainty associated with both lab and field-based
measurements. Furthermore, in our evaluation of functional
accuracy using the modified GAEZ framework, functional
differences for soil texture only occur for textural classes
either high in sand (sand, loamy sand, sandy loam) (SQN,
Fig. 10) or high in clay (clay) (SQW). The generally higher
accuracy of hand-textured estimates in these regions of soil
texture space decreases the probability of sampling error in
our functional accuracy evaluation.

4.2.2 Sources of map error: spatial uncertainty

Soil maps are created at defined spatial scales, producing
map information (e.g., field data, assigned classes, spatial
delineations, interpretations) that is constrained by the pat-
terns and characteristics of those scales (Soil Survey Divi-
sion Staff, 2017). Both conventional and predictive soil maps
account for spatial uncertainty in different ways. For con-
ventional soil maps, the mapping scale determines the size
and purity of soil map units, where small map scales (e.g.,
1 : 5 000 000) contain large map units comprised of multi-
ple soil components, while large map scales (e.g., 1 : 12 000)
contain smaller map units that are often comprised of a single
soil component. The small map scale of HWSD and WISE
(1 : 5 000 000) resulted in individual map unit polygons rang-
ing in area from 61 to 17 947 km2. Across these vast areas,
each map unit is only attributed with a few soil components
whose spatial delineation within each polygon is unspecified.
The most common approach to deal with this spatial uncer-
tainty is to attribute each polygon to its dominant soil com-
ponent, as was done in this study. Depending on the number
of soil components in a map unit and their areal extents, it
is possible for the dominant component to comprise only a
small percentage (e.g., 20 %) of a large map unit area. Given
the large spatial extent of the map unit polygons in the study
area and our generalization of map units based on dominant
component, it is not surprising that these map products re-
sulted in low site-specific accuracies.

Predictive soil maps are faced with a different set of chal-
lenges relating to spatial uncertainty. Since predictive soil
maps use raster-based environmental data as their predictive
covariates, the spatial resolution of covariate data determines
the spatial scale of the resulting soil map, which imparts an
implied level of precision to the end user. The accuracy of
predictive soil maps, however, depends on the characteristics
of both the soil point data and covariate data used to build
the models. An important characteristic of the soil point data
is how well hey represent the variability of covariate data
across the entire inference space. Predictive soil maps often
use existing field data from soil surveys that were conducted
at different spatial scales to train and validate their models,
and therefore they may not adequately represent the full co-
variate information space. This can result in cases where the
global model accuracy is high but local model accuracies

are low, because certain geographic regions within the pre-
diction area are poorly represented in covariate space. This
was seen in the case of iSDA where global prediction accu-
racies (Concordance Correlation Coefficient) for sand, silt,
and clay ranged from 0.78–0.85 (Hengl et al., 2021), yet
texture class prediction accuracies in Ghana were low (OA:
0.28–0.32). Similarly, SoilGrids global prediction accuracies
(model efficiency coefficient) for sand, silt, and clay ranged
from 0.40–0.70 (Poggio et al., 2021), while SoilGrids texture
class prediction accuracies in Ghana were low (OA: 0.08–
0.35). While these map products were not able to provide
sufficiently accurate soil property predictions for site-specific
management within the study area, high global prediction ac-
curacies for many of the modeled soil properties indicate that
these maps have higher accuracies across larger spatial/vari-
ance scales.

In predictive soil modeling, model error is composed of
two components: bias, which relates to model accuracy, and
variance, which relates to model precision or uncertainty.
SoilGrids and iSDA maps both employ ensemble modeling
approaches to calculate spatial predictions of model uncer-
tainty (SoilGrids: quantile random forest; iSDA: ensemble
bootstrapping). Ensemble models are effective at increas-
ing model accuracy and are often implemented using some
form of model averaging (Polikar, 2012). Assuming that the
different soil models produce different errors at each loca-
tion, averaging the model outputs generally reduces the error
(model bias) by averaging out the error components. A down-
side of model averaging is that it has a smoothing (variance-
reducing) effect which can remove valid information from
the outer ranges of the soil property distribution. There are
many cases where the ability to predict these “extreme” val-
ues is crucial, for example, at the smallholder farm scale
where the risk or cost associated with incorrectly identify-
ing soil constraints can be high for cash-constrained farmers.
Depending on the soil management scenario, there are finan-
cial costs associated with both false negative results (i.e., fail-
ure to detect constraint – Type 2 error, e.g., failure to lime a
very strongly acidic soil before applying fertilizer) and false
positive results (i.e., false detection of constraint – Type 1 er-
ror, e.g., applying lime to a neutral soil). While the mean or
median predicted soil values may not indicate the presence
of soil constraints, spatial predictions of model uncertainty
can be used to determine where constraints have a predicted
probability of occurrence. Future research is needed to eval-
uate information on soil map uncertainty and how this in-
formation can be effectively communicated and incorporated
into smallholder agronomic decision-making.

The increasing availability of higher spatial resolution en-
vironmental covariates has led to expanded efforts to produce
finer spatial resolution soil predictions. However, the rela-
tionship between each soil property or class and the covariate
data can be scale dependent, meaning that the spatial scale
(i.e., grid resolution and spatial extent) at which a covari-
ate is calculated can affect the strength of its relationship to
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the modeled property. Thus, higher spatial resolution covari-
ates do not always translate to more accurate fine-scale model
predictions, and in some cases model accuracy may decrease
due to the scale dependency of the predictor–covariate re-
lationships. Several studies have demonstrated these spatial
scaling effects for terrain attributes, where the highest model
accuracies did not correspond to the terrain attributes calcu-
lated at the finest spatial scales (Kim and Zheng, 2011; May-
nard and Johnson, 2014; Roecker and Thompson, 2010).

Growing recognition of the need for site-specific soil data
has prompted efforts to produce finer spatial resolution soil
data from existing soil maps. For example, disaggregation
techniques are being used to delineate the location of soil
map unit components within conventional soil maps (Häring
et al., 2012; Nauman and Thompson, 2014; Vincent et al.,
2018), and predictive soil maps are using higher spatial res-
olution covariates to make higher spatial resolution predic-
tions (e.g., iSDA). However, it is important to recognize that
the primary data (e.g., map unit polygons, point data), meta-
data, and inherent decisions made at the original soil map-
ping scale remain determinate, where those original biases
persist across scales. These initial biases can be compensated
for through targeted sampling to expand and refine the model
inference space (Soil Survey Division Staff, 2017). For ex-
ample, Stumpf et al. (2017) used model uncertainty to guide
additional sampling efforts for model refinement, while other
studies have used additional sampling to refine regional-to-
continental-scale soil map predictions within a localized area
for farm-scale applications (Piikki et al., 2017; Söderström et
al., 2017).

4.2.3 Sources of map error: temporal uncertainty

Current soil maps provide models of soil spatial variation that
ignore temporal changes in soil properties. Conventional soil
maps are created over years to decades and populated with
soil data that represent the modal concept of soil types. Pre-
dictive soil maps use soil profile datasets collected over mul-
tiple decades which are correlated to environmental covari-
ates that often represent either a single point in time or some
aggregate value calculated from a fixed time interval. If sig-
nificant soil degradation occurs sometime after the soil pro-
file data were collected, the covariate data at that site may no
longer correspond to the original soil property values. This
can weaken or introduce confusion into the modeled rela-
tionship between soil property data and environmental co-
variates, which in turn can negatively impact the accuracy
of model predictions (Owusu et al., 2020). Our evaluation of
soil map accuracy in this study focused on static soil proper-
ties, which in theory should provide more accurate map esti-
mates relative to measures of soil health (e.g., soil nutrients)
that change in response to land use and management over
short timescales (i.e., years to decades). However, in high
erosional or depositional environments these static proper-
ties can also change over relatively short timescales, which

may have contributed to the low map accuracy for these static
soil properties in this study. Furthermore, these results sug-
gest that efforts to map more dynamic properties using either
conventional or predictive mapping approaches would likely
produce estimates with even greater uncertainty.

4.3 Implications for site-specific soil management

To close existing yield gaps, smallholder farmers must iden-
tify the factors that constrain productivity. Many yield-
limiting factors are directly or indirectly soil related, includ-
ing nutrient deficiencies, susceptibility to drought, soil com-
paction, waterlogging, high erosion risk, etc. Obtaining ac-
curate site-specific soil data is a first step towards uncov-
ering soil-based limitations and implementing management
practices that can mitigate these production constraints. Cur-
rent web-based soil maps of Ghana fail to meet the accu-
racy requirements for site-specific farm management or even
for farm-level land use planning. Field-based texture assess-
ments like the ones used in this study, coupled with ongoing
advancements in soil mapping and on-site verification tech-
nologies like proximal sensors (Piikki et al., 2016; Viscarra
Rossel et al., 2011) and smartphone-based decision support
tools (Herrick et al., 2013; O’Geen et al., 2017), can help
constrain the uncertainty associated with site-based soil map
predictions.

There is a need for improved technologies that can assist
farmers in identifying their soil characteristics and match-
ing those characteristics to appropriate inputs and technolo-
gies that can enhance the long-term production capacity of
their soils (Berkhout et al., 2015). A useful conceptual model
employed by conventional soil maps is the grouping of soils
into soil types based on both field-described morphology data
and laboratory analysis. Soil types convey information on the
general range of soil behavior a land manager can expect
in response to management actions and disturbance effects.
Through identifying the soil type at a location, smallholder
farmers can gain a better understanding of potential soil lim-
itations and the most appropriate management strategies for
improving soil health and crop yields. The concept for each
soil type is based on a set of reference soils which define the
representative soil property distributions for each soil type.
Soil types that have been intensively managed over long pe-
riods of time, however, can deviate significantly from these
representative property ranges. Thus, in addition to under-
standing the soil type, information on a site’s management
history and current resource allocation are needed to bet-
ter assess general soil health and possible soil-related limi-
tations.

To make soil information actionable for smallholder farm-
ers, soil information needs to be contextualized for their in-
tended land use. For example, a maize farmer needs to know
how their soil texture, rock fragment content, and soil depth
will affect crop growth. Based on their soil type and manage-
ment history, farmers also need to know what type of fertil-
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izer to apply, in what amount, and when to apply it for op-
timal crop uptake. This study demonstrated how downscal-
ing the GAEZ soil suitability framework provides a way to
interpret site-specific soil information for crop-specific soil
management. While this study applied a modified version of
GAEZ based on static soil properties, this approach could
also incorporate dynamic soil properties that influence soil
nutrient availability as well as other soil quality indices.

5 Conclusions

Many agronomic constraints are directly or indirectly soil
related; therefore, accurate site-specific soil information is
needed to address these limitations. Technological advance-
ments are facilitating the creation of soil maps at high spa-
tial resolutions which impart an implied level of precision.
The accuracy, and thus utility, of these maps for applications
at large spatial scales is often unknown. This study evalu-
ated both the relative and functional accuracy of four pub-
licly available web-based soil maps of Ghana and found that
in most cases these map products are not accurate enough
to inform site-specific soil management. We found that over-
all accuracies for soil texture and rock fragment predictions
ranged from 8 %–14 % and 26 %–29 %, respectively. How-
ever, when accounting for potential uncertainty in the evalu-
ation dataset, soil texture class accuracies could be as high as
38 %–64 %. Overall accuracies that allow for class adjacency
increased for both soil texture (39 %–49 % or 44 %–64 % af-
ter adjusting for evaluation uncertainty) and for rock frag-
ments (72 %–73 %). Traditional measures of map accuracy,
however, can be misleading since small differences in soil
property values, while technically different, may be function-
ally similar. To account for this, we used a modified version
of the GAEZ soil suitability framework to evaluate the func-
tional accuracy of the soil map predictions. This functional
assessment confirmed the results from the standard accuracy
assessment, with overall accuracies for soil suitability classes
ranging from 15 %–61 %. Results from this study highlight
the variable site-specific accuracy of current soil map infor-
mation and the potential implications for on-farm decision-
making. The urgent need for reliable soil information, i.e.,
information with a specified accuracy and precision for a tar-
geted objective (e.g., attainable crop yield), has become in-
creasingly clear, and many areas of research are being ad-
vanced to address this global challenge. Among these is the
continued improvement of soil maps, particularly through
the advancement of predictive soil mapping technologies, in-
cluding improved predictive algorithms, expanded soil train-
ing/testing datasets, and advancements in the quantification
of model uncertainty. For example, both predictive soil maps
evaluated in this study (SoilGrids, iSDA) provide uncertainty
maps, and future work is needed to utilize this information
for large-scale site-specific analysis. There is also a need for
the training of more soil scientists to expand the characteri-

zation and sampling of soil landscapes with high information
uncertainty resulting from a lack of ground-truthed samples
and/or poorly understood soil landscape relationships. Soil
scientists can also assist in the training of specialists (e.g.,
field enumerators, citizen scientists), who, with the help of
on-site verification technologies like smartphone-based de-
cision support tools (e.g., LandPKS) and proximal sensors
(e.g., VisNIR), can collect high-quality field-based soil data.
This information can then be used both directly to inform
site-specific decision-making (e.g., smallholder fertilizer ap-
plication rates) and indirectly to improve soil map predic-
tions, as demonstrated by the iSDA soil map which used
LandPKS field data to generate model predictions. All these
advancements can help constrain the uncertainty associated
with site-based soil map predictions and help provide access
to accurate soil property information so urgently needed by
smallholder farmers to improve soil health and enhance the
long-term production capacity of their soils.
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