Articles | Volume 8, issue 2
https://doi.org/10.5194/soil-8-717-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/soil-8-717-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Biocrust-linked changes in soil aggregate stability along a climatic gradient in the Chilean Coastal Range
Nicolás Riveras-Muñoz
CORRESPONDING AUTHOR
Department of Geosciences, Soil Science and Geomorphology, University of Tübingen, Rümelinstr. 19–23, 72070 Tübingen, Germany
Steffen Seitz
Department of Geosciences, Soil Science and Geomorphology, University of Tübingen, Rümelinstr. 19–23, 72070 Tübingen, Germany
Kristina Witzgall
Soil Science,Technical University of Munich, Emil-Ramann-Str. 2, 85354 Freising, Germany
Victoria Rodríguez
GFZ German Research Centre for Geosciences, Section 5.3 Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany
Peter Kühn
Department of Geosciences, Soil Science and Geomorphology, University of Tübingen, Rümelinstr. 19–23, 72070 Tübingen, Germany
Carsten W. Mueller
Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
Rómulo Oses
Centro Regional de Investigación y Desarrollo Sustentable de Atacama (CRIDESAT), Universidad de Atacama, Copayapu 485, Copiapó, Chile
Oscar Seguel
Facultad de Ciencias Agronómicas, Universidad de Chile, Av. Santa Rosa #11315, La Pintana, 8820808 Santiago, Chile
Dirk Wagner
GFZ German Research Centre for Geosciences, Section 5.3 Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany
Institute of Geosciences, University of Potsdam, Karl-Liebknecht-Str. 24–25, 14476 Potsdam, Germany
Thomas Scholten
Department of Geosciences, Soil Science and Geomorphology, University of Tübingen, Rümelinstr. 19–23, 72070 Tübingen, Germany
Related authors
No articles found.
Mathias Bellat, Mjahid Zebari, Benjamin Glissman, Tobias Rentschler, Paola Sconzo, Nafiseh Kakhani, Ruhollah Taghizadeh-Mehrjardi, Pegah Kohsravani, Bekas Brifany, Peter Pfälzner, and Thomas Scholten
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-418, https://doi.org/10.5194/essd-2025-418, 2025
Preprint under review for ESSD
Short summary
Short summary
This dataset presents the first soil maps for the region produced using digital mapping techniques. It includes predictions for ten major physical and chemical soil properties at various depths, plus a map of total soil depth. For each property, we selected the most accurate models and key environmental drivers. In Southwestern Asia and many arid or semi-arid regions, detailed soil data are often missing. This dataset fills that gap, supporting agriculture, research, planning, and local policy.
Kay D. Seufferheld, Pedro V. G. Batista, Hadi Shokati, Thomas Scholten, and Peter Fiener
EGUsphere, https://doi.org/10.5194/egusphere-2025-3391, https://doi.org/10.5194/egusphere-2025-3391, 2025
This preprint is open for discussion and under review for SOIL (SOIL).
Short summary
Short summary
Soil erosion by water threatens food security, but soil conservation practices can help protect arable land. We tested a soil erosion model that simulates sediment yields in micro-scale watersheds with soil conservation in place. The model captured the very low sediment yields but showed limited accuracy on an annual time scale. However, it performed well when applied to larger areas over longer timeframes, demonstrating its suitability for strategic long-term soil conservation planning.
Hadi Shokati, Kay D. Seufferheld, Peter Fiener, and Thomas Scholten
EGUsphere, https://doi.org/10.5194/egusphere-2025-3146, https://doi.org/10.5194/egusphere-2025-3146, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
Floods threaten lives and property and require rapid mapping. We compared two artificial intelligence approaches on aerial imagery: a fine‑tuned Segment Anything Model (SAM) guided by point or bounding box prompts, and a U‑Net network with ResNet‑50 and ResNet‑101 backbones. The point‑based SAM was the most accurate with precise boundaries. Faster and more reliable flood maps help rescue teams, insurers, and planners to act quickly.
Kerstin Rau, Katharina Eggensperger, Frank Schneider, Michael Blaschek, Philipp Hennig, and Thomas Scholten
EGUsphere, https://doi.org/10.5194/egusphere-2025-166, https://doi.org/10.5194/egusphere-2025-166, 2025
Short summary
Short summary
Uneven data collection can make it hard to predict soil properties accurately in new areas. We developed a method to show where predictions are reliable and where more data is needed. By training a model in one region and applying it to another, we found that our approach effectively recognized river patterns but was biased toward overrepresented soil types. This tool can guide smarter data collection, helping improve predictions and make better use of resources for soil management.
Fedor Scholz, Manuel Traub, Christiane Zarfl, Thomas Scholten, and Martin V. Butz
EGUsphere, https://doi.org/10.5194/egusphere-2024-4119, https://doi.org/10.5194/egusphere-2024-4119, 2025
Short summary
Short summary
We present a neural network model that estimates river discharge based on gridded elevation, precipitation, and solar radiation. Some instances of our model produce more accurate forecasts than the European Flood Awareness System (EFAS) when simulating discharge with lead times of over 100 days on the Neckar river network in Germany. It consists of multiple components that are designed to model distinct sub-processes. We show that this makes the model behave in a more physically realistic way.
Corinna Gall, Silvana Oldenburg, Martin Nebel, Thomas Scholten, and Steffen Seitz
SOIL, 11, 199–212, https://doi.org/10.5194/soil-11-199-2025, https://doi.org/10.5194/soil-11-199-2025, 2025
Short summary
Short summary
Soil erosion is a major issue in vineyards due to often steep slopes and fallow interlines. While cover crops are typically used for erosion control, moss restoration has not yet been explored. In this study, moss restoration reduced surface runoff by 71.4 % and sediment discharge by 75.8 % compared with bare soil, similar to cover crops. Mosses could serve as ground cover where mowing is impractical, potentially reducing herbicide use in viticulture, although further research is needed.
Wanjun Zhang, Thomas Scholten, Steffen Seitz, Qianmei Zhang, Guowei Chu, Linhua Wang, Xin Xiong, and Juxiu Liu
Hydrol. Earth Syst. Sci., 28, 3837–3854, https://doi.org/10.5194/hess-28-3837-2024, https://doi.org/10.5194/hess-28-3837-2024, 2024
Short summary
Short summary
Rainfall input generally controls soil water and plant growth. We focus on rainfall redistribution in succession sequence forests over 22 years. Some changes in rainwater volume and chemistry in the throughfall and stemflow and drivers were investigated. Results show that shifted open rainfall over time and forest factors induced remarkable variability in throughfall and stemflow, which potentially makes forecasting future changes in water resources in the forest ecosystems more difficult.
Violeta Tolorza, Christian H. Mohr, Mauricio Zambrano-Bigiarini, Benjamín Sotomayor, Dagoberto Poblete-Caballero, Sebastien Carretier, Mauricio Galleguillos, and Oscar Seguel
Earth Surf. Dynam., 12, 841–861, https://doi.org/10.5194/esurf-12-841-2024, https://doi.org/10.5194/esurf-12-841-2024, 2024
Short summary
Short summary
We calculated disturbances and landscape-lowering rates across various timescales in a ~ 406 km2 catchment in the Chilean Coastal Range. Intensive management of exotic tree plantations involves short rotational cycles (planting and harvesting by replanting clear-cuts) lasting 9–25 years, dense forestry road networks (increasing connectivity), and a recent increase in wildfires. Concurrently, persistent drought conditions and the high water demand of fast-growing trees reduce water availability.
Ayumi Katayama, Kazuki Nanko, Seonghun Jeong, Tomonori Kume, Yoshinori Shinohara, and Steffen Seitz
Earth Surf. Dynam., 11, 1275–1282, https://doi.org/10.5194/esurf-11-1275-2023, https://doi.org/10.5194/esurf-11-1275-2023, 2023
Short summary
Short summary
Even under forests, soil is eroded by rainfall. This is particularly true when human impact damages vegetation layers. We found that the erosion risk can be greatly increased by structural drip points at branches forming large drops under the tree canopy in the foliated and non-foliated seasons. Our measurements with sand-filled splash cups in Japanese beech forests showed drop energies up to 50 times greater than under freefall precipitation, indicating locally severe sediment detachment.
Corinna Gall, Martin Nebel, Dietmar Quandt, Thomas Scholten, and Steffen Seitz
Biogeosciences, 19, 3225–3245, https://doi.org/10.5194/bg-19-3225-2022, https://doi.org/10.5194/bg-19-3225-2022, 2022
Short summary
Short summary
Soil erosion is one of the most serious environmental challenges of our time, which also applies to forests when forest soil is disturbed. Biological soil crusts (biocrusts) can play a key role as erosion control. In this study, we combined soil erosion measurements with vegetation surveys in disturbed forest areas. We found that soil erosion was reduced primarily by pioneer bryophyte-dominated biocrusts and that bryophytes contributed more to soil erosion mitigation than vascular plants.
Fabian Kalks, Gabriel Noren, Carsten W. Mueller, Mirjam Helfrich, Janet Rethemeyer, and Axel Don
SOIL, 7, 347–362, https://doi.org/10.5194/soil-7-347-2021, https://doi.org/10.5194/soil-7-347-2021, 2021
Short summary
Short summary
Sedimentary rocks contain organic carbon that may end up as soil carbon. However, this source of soil carbon is overlooked and has not been quantified sufficiently. We analysed 10 m long sediment cores with three different sedimentary rocks. All sediments contain considerable amounts of geogenic carbon contributing 3 %–12 % to the total soil carbon below 30 cm depth. The low 14C content of geogenic carbon can result in underestimations of soil carbon turnover derived from 14C data.
Sascha Scherer, Benjamin Höpfer, Katleen Deckers, Elske Fischer, Markus Fuchs, Ellen Kandeler, Jutta Lechterbeck, Eva Lehndorff, Johanna Lomax, Sven Marhan, Elena Marinova, Julia Meister, Christian Poll, Humay Rahimova, Manfred Rösch, Kristen Wroth, Julia Zastrow, Thomas Knopf, Thomas Scholten, and Peter Kühn
SOIL, 7, 269–304, https://doi.org/10.5194/soil-7-269-2021, https://doi.org/10.5194/soil-7-269-2021, 2021
Short summary
Short summary
This paper aims to reconstruct Middle Bronze Age (MBA) land use practices in the northwestern Alpine foreland (SW Germany, Hegau). We used a multi-proxy approach including biogeochemical proxies from colluvial deposits in the surroundings of a MBA settlement, on-site archaeobotanical and zooarchaeological data and off-site pollen data. From our data we infer land use practices such as plowing, cereal growth, forest farming and use of fire that marked the beginning of major colluvial deposition.
Cited articles
Abed, R. M. M., Tamm, A., Hassenrück, C., Al-Rawahi, A. N., Rodríguez-Caballero, E., Fiedler, S., Maier, S., and Weber, B.:
Habitat-dependent composition of bacterial and fungal communities in biological soil crusts from Oman, Sci. Rep.-UK, 9, 6468, https://doi.org/10.1038/s41598-019-42911-6, 2019.
Allison, L. E. and Richards, L. A.:
Diagnosis and improvement of saline and alkali soils (No. 60), Soil and Water Conservative Research Branch, Agricultural Research Service, US Department of Agriculture, https://www.ars.usda.gov/ARSUserFiles/20360500/hb60_pdf/hb60complete.pdf (last access: 30 November 2022), 1954.
Armesto, J. J., Arroyo, M. T., and Hinojosa Opazo, L.:
The Mediterranean environment of central Chile, in: The Physical Geography of South America, edited by: Veblen, T., Young, K., and Orme, A., Oxford University Press, 184–199, https://doi.org/10.1093/oso/9780195313413.003.0019, 2007.
Bachar, A., Al-Ashhab, A., Soares, M. I. M., Sklarz, M. Y., Angel, R., Ungar, E. D., and Gillor, O.:
Soil Microbial Abundance and Diversity Along a Low Precipitation Gradient, Microb. Ecol., 60, 453–461, https://doi.org/10.1007/s00248-010-9727-1, 2010.
Barger, N. N., Weber, B., Garcia-Pichel, F., Zaady, E., and Belnap, J.:
Patterns and controls on nitrogen cycling of biological soil crusts, in: Biological soil crusts: an organizing principle in drylands, edited by: Weber, B., Büdel, B., and Belnap, J., Springer, 257–285, https://doi.org/10.1007/978-3-319-30214-0_14, 2016.
Baumann, K., Jung, P., Samolov, E., Lehnert, L. W., Büdel, B., Karsten, U., Bendix, J., Achilles, S., Schermer, M., Matus, F., Oses, R., Osses, P., Morshedizad, M., Oehlschläger, C., Hu, Y., Klysubun, W., and Leinweber, P.:
Biological soil crusts along a climatic gradient in Chile: Richness and imprints of phototrophic microorganisms in phosphorus biogeochemical cycling, Soil Biol. Biochem., 127, 286–300, https://doi.org/10.1016/j.soilbio.2018.09.035, 2018.
Belnap, J. and Büdel, B.:
Biological soil crusts as soil stabilizers, in: Biological soil crusts: an organizing principle in drylands, edited by: Weber, B., Büdel, B., and Belnap, J., Springer, 305–320, https://doi.org/10.1007/978-3-319-30214-0_16, 2016.
Belnap, J. and Lange, O. L. (Eds.): Biological soil crusts: structure, function, and management, 1, Ecological Studies, Springer, Berlin Heidelberg, https://doi.org/10.1007/978-3-642-56475-8, 2003.
Belnap, J., Weber, B., and Büdel, B. (Eds.): Biological soil crusts as an organizing principle in drylands, in: Biological soil crusts: an organizing principle in drylands, Springer, 3–13, https://doi.org/10.1007/978-3-319-30214-0_1, 2016.
Bernhard, N., Moskwa, L.-M., Schmidt, K., Oeser, R. A., Aburto, F., Bader, M. Y., Baumann, K., von Blanckenburg, F., Boy, J., van den Brink, L., Brucker, E., Büdel, B., Canessa, R., Dippold, M. A., Ehlers, T. A., Fuentes, J. P., Godoy, R., Jung, P., Karsten, U., Köster, M., Kuzyakov, Y., Leinweber, P., Neidhardt, H., Matus, F., Mueller, C. W., Oelmann, Y., Oses, R., Osses, P., Paulino, L., Samolov, E., Schaller, M., Schmid, M., Spielvogel, S., Spohn, M., Stock, S., Stroncik, N., Tielbörger, K., Übernickel, K., Scholten, T., Seguel, O., Wagner, D., and Kühn, P.:
Pedogenic and microbial interrelations to regional climate and local topography: New insights from a climate gradient (arid to humid) along the Coastal Cordillera of Chile, CATENA, 170, 335–355, https://doi.org/10.1016/j.catena.2018.06.018, 2018.
Bowker, M. A., Maestre, F. T., Eldridge, D., Belnap, J., Castillo-Monroy, A., Escolar, C., and Soliveres, S.:
Biological soil crusts (biocrusts) as a model system in community, landscape and ecosystem ecology, Biodiversity and Conservation, 23, 1619–1637, https://doi.org/10.1007/s10531-014-0658-x, 2014.
Bowker, M. A., Belnap, J., Büdel, B., Sannier, C., Pietrasiak, N., Eldridge, D. J., and Rivera-Aguilar, V.:
Controls on Distribution Patterns of Biological Soil Crusts at Micro- to Global Scales, in: Biological Soil Crusts: An Organizing Principle in Drylands, edited by: Weber, B., Büdel, B., and Belnap, J., Springer International Publishing, Cham, 173–197, https://doi.org/10.1007/978-3-319-30214-0_10, 2016.
Brust, G. E.:
Chapter 9 – Management Strategies for Organic Vegetable Fertility, in: Safety and Practice for Organic Food, edited by: Biswas, D. and Micallef, S. A., Academic Press, 193–212, https://doi.org/10.1016/B978-0-12-812060-6.00009-X, 2019.
Chamizo, S., Belnap, J., Eldridge, D. J., Cantón, Y., and Issa, O. M.:
The role of biocrusts in arid land hydrology, in: Biological soil crusts: An organizing principle in drylands, edited by: Weber, B., Büdel, B., Belnap, J., Vol. 226, Springer, Cham., 321–346, https://doi.org/10.1007/978-3-319-30214-0_17, 2016.
Chen, J., Blume, H.-P., and Beyer, L.:
Weathering of rocks induced by lichen colonization – a review, CATENA, 39, 121–146, https://doi.org/10.1016/S0341-8162(99)00085-5, 2000.
Chen, N., Wang, X., Zhang, Y., Yu, K., and Zhao, C.:
Ecohydrological effects of biological soil crust on the vegetation dynamics of restoration in a dryland ecosystem, J. Hydrol., 563, 1068–1077, https://doi.org/10.1016/j.jhydrol.2018.06.076, 2018.
Chen, N., Yu, K., Jia, R., Teng, J., and Zhao, C.:
Biocrust as one of multiple stable states in global drylands, Science Advances, 6, eaay3763, https://doi.org/10.1126/sciadv.aay3763, 2020.
Colesie, C., Green, T. A., Haferkamp, I., and Buedel, B.:
Habitat stress initiates changes in composition, CO 2 gas exchange and C-allocation as life traits in biological soil crusts, ISME J., 8, 2104–2115, https://doi.org/10.1038/ismej.2014.47, 2014.
Corwin, D. L.:
Climate change impacts on soil salinity in agricultural areas, Eur. J. Soil Sci., 72, 842–862, https://doi.org/10.1111/ejss.13010, 2021.
Cox, D. R.:
Causality: Some Statistical Aspects, J. R. Stat. Soc. A Stat., 155, 291–301, https://doi.org/10.2307/2982962, 1992.
Cuvertino, J., Ardiles, V., Osorio, F., and Romero, X.:
New records and additions to the Chilean bryophyte flora, Ciencia e investigación agraria, 39, 245–254, https://doi.org/10.4067/S0718-16202012000200001, 2012.
Drahorad, S. L., Steckenmesser, D., Felix-Henningsen, P., Lichner, L'., and Rodný, M.:
Ongoing succession of biological soil crusts increases water repellency—a case study on Arenosols in Sekule, Slovakia, Biologia, 68, 1089–1093, https://doi.org/10.2478/s11756-013-0247-6, 2013.
Dunn, P. K.:
Tweedie: Evaluation of Tweedie Exponential Family Models (2.3.0), R package version 2.3.5, https://cran.r-project.org/package=tweedie (last access: 30 November 2022), 2017.
Elbert, W., Weber, B., Burrows, S., Steinkamp, J., Büdel, B., Andreae, M. O., and Pöschl, U.:
Contribution of cryptogamic covers to the global cycles of carbon and nitrogen, Nat. Geosci., 5, 459–462, https://doi.org/10.1038/ngeo1486, 2012.
Eldridge, D. J., Zaady, E., and Shachak, M.:
Infiltration through three contrasting biological soil crusts in patterned landscapes in the Negev, Israel, CATENA, 40, 323–336, https://doi.org/10.1016/S0341-8162(00)00082-5, 2000.
Eldridge, D. J., Reed, S., Travers, S. K., Bowker, M. A., Maestre, F. T., Ding, J., Havrilla, C., Rodriguez-Caballero, E., Barger, N., Weber, B., Antoninka, A., Belnap, J., Chaudhary, B., Faist, A., Ferrenberg, S., Huber-Sannwald, E., Malam Issa, O., and Zhao, Y.:
The pervasive and multifaceted influence of biocrusts on water in the world's drylands, Glob. Change Biol., 26, 6003–6014, https://doi.org/10.1111/gcb.15232, 2020.
Ewing, S. A., Sutter, B., Owen, J., Nishiizumi, K., Sharp, W., Cliff, S. S., Perry, K., Dietrich, W., McKay, C. P., and Amundson, R.:
A threshold in soil formation at Earth's arid–hyperarid transition, Geochim. Cosmochim. Ac., 70, 5293–5322, https://doi.org/10.1016/j.gca.2006.08.020, 2006.
Fariña, V. and Ardiles, M.:
Flora no vascular de la Región de Arica y Parinacota, Chile: nuevos registros y consideraciones biogeográficas, Boletín del Museo Nacional de Historia Natural, Chile, 63, 213–223, 2014.
Fischer, T., Yair, A., and Veste, M.:
Microstructure and hydraulic properties of biological soil crusts on sand dunes: a comparison between arid and temperate climates, Biogeosciences Discuss., 9, 12711–12734, https://doi.org/10.5194/bgd-9-12711-2012, 2012.
Fischer, T., Yair, A., Veste, M., and Geppert, H.:
Hydraulic properties of biological soil crusts on sand dunes studied by 13C-CP/MAS-NMR: A comparison between an arid and a temperate site, CATENA, 110, 155–160, https://doi.org/10.1016/j.catena.2013.06.002, 2013.
Galloway, D. J. and Quilhot, W.:
Checklist of Chilean lichen-forming and lichenicolous fungi, Gayana Bot., 55, 111–185, 2009.
Gao, L., Bowker, M. A., Xu, M., Sun, H., Tuo, D., and Zhao, Y.:
Biological soil crusts decrease erodibility by modifying inherent soil properties on the Loess Plateau, China, Soil Biol. Biochem., 105, 49–58, https://doi.org/10.1016/j.soilbio.2016.11.009, 2017.
Garcia-Pichel, F., Felde, V. J. M. N. L., Drahorad, S. L., and Weber, B.:
Microstructure and weathering processes within biological soil crusts, in: Biological soil crusts: an organizing principle in drylands, edited by: Weber, B., Büdel, B., and Belnap, J., Springer, 237–255, https://doi.org/10.1007/978-3-319-30214-0_13, 2016.
Gardner, W. R.:
Representation of Soil Aggregate-Size Distribution by a Logarithmic-Normal Distribution, Soil Sci. Soc. Am. J., 20, 151–153, https://doi.org/10.2136/sssaj1956.03615995002000020003x, 1956.
Goebes, P., Seitz, S., Kühn, P., Li, Y., Niklaus, P. A., Oheimb, G. v., and Scholten, T.:
Throughfall kinetic energy in young subtropical forests: Investigation on tree species richness effects and spatial variability, Agr. Forest Meteorol., 213, 148–159, https://doi.org/10.1016/j.agrformet.2015.06.019, 2015.
Govers, G.:
Selectivity and transport capacity of thin flows in relation to rill erosion, CATENA, 12, 35–49, https://doi.org/10.1016/S0341-8162(85)80003-5, 1985.
Grote, E. E., Belnap, J., Housman, D. C., and Sparks, J. P.:
Carbon exchange in biological soil crust communities under differential temperatures and soil water contents: implications for global change, Glob. Change Biol., 16, 2763–2774, https://doi.org/10.1111/j.1365-2486.2010.02201.x, 2010.
Hartge, K. H. and Horn, R.: Die physikalische Untersuchung von Böden, 4th Edn., Schweizerbart Science Publishers, https://www.schweizerbart.de/publications/detail/isbn/9783510652464/Die-physikalische-Untersuchung-von-Bden (last access: 30 November 2022), 2009.
Hatch, T. and Choate, S. P.:
Statistical description of the size properties of non uniform particulate substances, J. Frankl. Inst., 207, 369–387, https://doi.org/10.1016/S0016-0032(29)91451-4, 1929.
He, S.:
A checklist of the mosses of Chile, J. Hattori Bot. Lab., 85, 103–189, 1998.
Hooper, D. U. and Johnson, L.:
Nitrogen limitation in dryland ecosystems: Responses to geographical and temporal variation in precipitation, Biogeochemistry, 46, 247–293, https://doi.org/10.1023/A:1006145306009, 1999.
Hulton, N. R. J., Purves, R. S., McCulloch, R. D., Sugden, D. E., and Bentley, M. J.:
The Last Glacial Maximum and deglaciation in southern South America, Quaternary Sci. Rev., 21, 233–241, https://doi.org/10.1016/S0277-3791(01)00103-2, 2002.
Jahn, R., Blume, H., Asio, V., Spaargaren, O., and Schad, P.:
Guidelines for soil description, 4th Edn., FAO, https://edepot.wur.nl/27622 (last access: 30 November 2022), 2006.
Jung, P., Emrich, D., Briegel-Williams, L., Schermer, M., Weber, L., Baumann, K., Colesie, C., Clerc, P., Lehnert, L. W., Achilles, S., Bendix, J., and Büdel, B.:
Ecophysiology and phylogeny of new terricolous and epiphytic chlorolichens in a fog oasis of the Atacama Desert, MicrobiologyOpen, 8, e894, https://doi.org/10.1002/mbo3.894, 2019.
Jung, P., Baumann, K., Emrich, D., Springer, A., Felde, V. J. M. N. L., Dultz, S., Baum, C., Frank, M., Büdel, B., and Leinweber, P.:
Lichens Bite the Dust – A Bioweathering Scenario in the Atacama Desert, iScience, 23, 101647, https://doi.org/10.1016/j.isci.2020.101647, 2020a.
Jung, P., Baumann, K., Lehnert, L. W., Samolov, E., Achilles, S., Schermer, M., Wraase, L. M., Eckhardt, K.-U., Bader, M. Y., Leinweber, P., Karsten, U., Bendix, J., and Büdel, B.:
Desert breath—How fog promotes a novel type of soil biocenosis, forming the coastal Atacama Desert's living skin, Geobiology, 18, 113–124, https://doi.org/10.1111/gbi.12368, 2020b.
Kemper, W. and Rosenau, R.:
Aggregate stability and size distribution, Methods of soil analysis: Part 1 Physical and mineralogical methods, Agronomy Monograph, 5, 425–442, 1986.
Kleber, M., Sollins, P., and Sutton, R.:
A conceptual model of organo-mineral interactions in soils: self-assembly of organic molecular fragments into zonal structures on mineral surfaces, Biogeochemistry, 85, 9–24, https://doi.org/10.1007/s10533-007-9103-5, 2007.
Köhn, M.:
Korngrößenanalyse vermittels Pipettanalyse, Tonindustrie-Zeitung, 53, 729–731, 1929.
Lange, O. L. and Belnap, J.:
How Biological Soil Crusts Became Recognized as a Functional Unit: A Selective History, in: Biological Soil Crusts: An Organizing Principle in Drylands, edited by: Weber, B., Büdel, B., and Belnap, J., Springer International Publishing, Cham, 15–33, https://doi.org/10.1007/978-3-319-30214-0_2, 2016.
Lewin, R. A.:
EXTRACELLULAR POLYSACCHARIDES OF GREEN ALGAE, Can. J. Microbiol., 2, 665–672, https://doi.org/10.1139/m56-079, 1956.
Li, J., Okin, G. S., Alvarez, L., and Epstein, H.:
Effects of wind erosion on the spatial heterogeneity of soil nutrients in two desert grassland communities, Biogeochemistry, 88, 73–88, https://doi.org/10.1007/s10533-008-9195-6, 2008.
Liang, T., Shi, X., Guo, T., and Peng, S.:
Arbuscular mycorrhizal fungus mediate changes in mycorrhizosphere soil aggregates, Agr. Sci. China, 6, 1455, https://doi.org/10.4236/as.2015.612141, 2015.
Lichner, L'., Holko, L., Zhukova, N., Schacht, K., Rajkai, K., Fodor, N., and Sándor, R.:
Plants and biological soil crust influence the hydrophysical parameters and water flow in an aeolian sandy soil/Vplyv rastlín a biologického pôdneho pokryvu na hydrofyzikálne parametre a prúdenie vody v piesoènatej pôde, J. Hydrol. Hydromech., 60, 309–318, https://doi.org/10.2478/v10098-012-0027-y, 2012.
Lightowlers, P.:
A synoptic flora of South Georgian mosses: Tortula, Scientific reports-British Antarctic Survey, 41–77, https://nora.nerc.ac.uk/id/eprint/523404 (last access: 30 November 2022), 1985.
Liu, M.-Y., Chang, Q.-R., Qi, Y.-B., Liu, J., and Chen, T.:
Aggregation and soil organic carbon fractions under different land uses on the tableland of the Loess Plateau of China, CATENA, 115, 19–28, https://doi.org/10.1016/j.catena.2013.11.002, 2014.
Loaiza Puerta, V., Pujol Pereira, E. I., Wittwer, R., van der Heijden, M., and Six, J.:
Improvement of soil structure through organic crop management, conservation tillage and grass-clover ley, Soil Till. Res., 180, 1–9, https://doi.org/10.1016/j.still.2018.02.007, 2018.
Maestre, F. T., Escolar, C., de Guevara, M. L., Quero, J. L., Lázaro, R., Delgado-Baquerizo, M., Ochoa, V., Berdugo, M., Gozalo, B., and Gallardo, A.:
Changes in biocrust cover drive carbon cycle responses to climate change in drylands, Glob. Change Biol., 19, 3835–3847, https://doi.org/10.1111/gcb.12306, 2013.
Malam Issa, O., Trichet, J., Défarge, C., Couté, A., and Valentin, C.:
Morphology and microstructure of microbiotic soil crusts on a tiger bush sequence (Niger, Sahel), CATENA, 37, 175–196, https://doi.org/10.1016/S0341-8162(99)00052-1, 1999.
Mazurak, A. P.:
Effect of gaseous phase on water-stable synthetic aggregates, Soil Sci., 69, 135–148, https://doi.org/10.1097/00010694-195002000-00005, 1950.
Mutz, S. G., Ehlers, T. A., Werner, M., Lohmann, G., Stepanek, C., and Li, J.:
Estimates of late Cenozoic climate change relevant to Earth surface processes in tectonically active orogens, Earth Surf. Dynam., 6, 271–301, https://doi.org/10.5194/esurf-6-271-2018, 2018.
Oades, J. M. and Waters, A. G.:
Aggregate hierarchy in soils, Soil Res., 29, 815–828, https://doi.org/10.1071/SR9910815, 1991.
Ochyra, R. and Matteri, C. M.:
Bryophyta, Musci: Amblystegiaceae, in: Flora Criptogámica de Tierra del Fuego, edited by: Guarrera, S. A., Gamundi de Amos, I., and Matteri, C., Consejo Nacional de Investigaciones Científicas y Técnicas de al Republica Argentina, Buenos Aires, 14, 1–96, 2001.
Oeser, R. A., Stroncik, N., Moskwa, L.-M., Bernhard, N., Schaller, M., Canessa, R., van den Brink, L., Köster, M., Brucker, E., and Stock, S.:
Chemistry and microbiology of the Critical Zone along a steep climate and vegetation gradient in the Chilean Coastal Cordillera, CATENA, 170, 183–203, https://doi.org/10.1016/j.catena.2018.06.002, 2018.
Oliver, M. J., Velten, J., and Mishler, B. D.:
Desiccation Tolerance in Bryophytes: A Reflection of the Primitive Strategy for Plant Survival in Dehydrating Habitats?, Integr. Comp. Biol., 45, 788–799, https://doi.org/10.1093/icb/45.5.788, 2005.
Orchard, V. A. and Cook, F. J.:
Relationship between soil respiration and soil moisture, Soil Biol. Biochem., 15, 447–453, https://doi.org/10.1016/0038-0717(83)90010-X, 1983.
Porada, P., Weber, B., Elbert, W., Pöschl, U., and Kleidon, A.:
Estimating impacts of lichens and bryophytes on global biogeochemical cycles, Global Biogeochem. Cy., 28, 71–85, https://doi.org/10.1002/2013GB004705, 2014.
R Core Team: R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, 2 pp., 2018.
Rillig, M. C.:
Arbuscular mycorrhizae, glomalin, and soil aggregation, Can. J. Soil Sci., 84, 355–363, https://doi.org/10.4141/s04-003, 2004.
Rosenbaum, P. R.:
Sensitivity analysis in observational studies, in: Encyclopedia of statistics in behavioral science, edited by: Everitt, B. S. and Howell, D. C., https://doi.org/10.1002/0470013192.bsa606, 2005.
Rosentreter, R., Eldridge, D. J., Westberg, M., Williams, L., and Grube, M.:
Structure, composition, and function of biocrust lichen communities, in: Biological soil crusts: An organizing principle in drylands, edited by: Weber, B., Büdel, B., and Belnap, J., Springer, 121–138, https://doi.org/10.1007/978-3-319-30214-0_7, 2016.
Rundel, P. W. and Weisser, P. J.:
La Campana, a new national park in central Chile, Biol. Conserv., 8, 35–46, https://doi.org/10.1016/0006-3207(75)90077-4, 1975.
Samolov, E., Baumann, K., Büdel, B., Jung, P., Leinweber, P., Mikhailyuk, T., Karsten, U., and Glaser, K.:
Biodiversity of Algae and Cyanobacteria in Biological Soil Crusts Collected Along a Climatic Gradient in Chile Using an Integrative Approach, Microorganisms, 8, 1047, https://doi.org/10.3390/microorganisms8071047, 2020.
Scholten, T. and Seitz, S.:
Soil Erosion and Land Degradation, Soil Systems, 3, 68, https://doi.org/10.3390/soilsystems3040068, 2019.
Seitz, S., Goebes, P., Song, Z., Bruelheide, H., Härdtle, W., Kühn, P., Li, Y., and Scholten, T.:
Tree species and functional traits but not species richness affect interrill erosion processes in young subtropical forests, SOIL, 2, 49–61, https://doi.org/10.5194/soil-2-49-2016, 2016.
Seitz, S., Nebel, M., Goebes, P., Käppeler, K., Schmidt, K., Shi, X., Song, Z., Webber, C. L., Weber, B., and Scholten, T.:
Bryophyte-dominated biological soil crusts mitigate soil erosion in an early successional Chinese subtropical forest, Biogeosciences, 14, 5775–5788, https://doi.org/10.5194/bg-14-5775-2017, 2017.
Six, J., Paustian, K., Elliott, E. T., and Combrink, C.:
Soil Structure and Organic Matter I. Distribution of Aggregate-Size Classes and Aggregate-Associated Carbon, Soil Sci. Soc. Am. J., 64, 681–689, https://doi.org/10.2136/sssaj2000.642681x, 2000.
Six, J., Bossuyt, H., Degryze, S., and Denef, K.:
A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics, Soil Till. Res., 79, 7–31, https://doi.org/10.1016/j.still.2004.03.008, 2004.
Slessarev, E. W., Lin, Y., Bingham, N. L., Johnson, J. E., Dai, Y., Schimel, J. P., and Chadwick, O. A.:
Water balance creates a threshold in soil pH at the global scale, Nature, 540, 567–569, https://doi.org/10.1038/nature20139, 2016.
Steven, B., Gallegos-Graves, L. V., Belnap, J., and Kuske, C. R.:
Dryland soil microbial communities display spatial biogeographic patterns associated with soil depth and soil parent material, FEMS Microbiol. Ecol., 86, 101–113, https://doi.org/10.1111/1574-6941.12143, 2013.
Thielen, S., Gall, C., Ebner, M., Nebel, M., Scholten, T., and Seitz, S.:
Water's path from moss to soil: A multi-methodological study on water absorption and evaporation of soil-moss combinations, J. Hydrol. Hydromech., 69, 421–435, https://doi.org/10.2478/johh-2021-0021, 2021.
Totsche, K. U., Amelung, W., Gerzabek, M. H., Guggenberger, G., Klumpp, E., Knief, C., Lehndorff, E., Mikutta, R., Peth, S., Prechtel, A., Ray, N., and Kögel-Knabner, I.:
Microaggregates in soils, J. Plant Nutr. Soil Sc., 181, 104–136, https://doi.org/10.1002/jpln.201600451, 2018.
Van Bavel, C.:
Mean weight-diameter of soil aggregates as a statistical index of aggregation, Soil Sci. Soc. Am. J., 14, 20–23, https://doi.org/10.2136/sssaj1950.036159950014000C0005x, 1950.
Wagner, S., Cattle, S. R., and Scholten, T.:
Soil-aggregate formation as influenced by clay content and organic-matter amendment, J. Plant Nutr. Soil Sc., 170, 173–180, https://doi.org/10.1002/jpln.200521732, 2007.
Whitney, K. M., Vivoni, E. R., Duniway, M. C., Bradford, J. B., Reed, S. C., and Belnap, J.:
Ecohydrological role of biological soil crusts across a gradient in levels of development, Ecohydrology, 10, e1875, https://doi.org/10.1002/eco.1875, 2017.
Wickham, H.:
ggplot2: Elegant Graphics for Data Analysis, Use R!, Springer International Publishing, https://doi.org/10.1007/978-3-319-24277-4, 2016.
Zhang, Z.-S., Song, X.-L., Lu, X.-G., and Xue, Z.-S.:
Ecological stoichiometry of carbon, nitrogen, and phosphorus in estuarine wetland soils: influences of vegetation coverage, plant communities, geomorphology, and seawalls, J. Soil. Sediment., 13, 1043–1051, https://doi.org/10.1007/s11368-013-0693-3, 2013.
Short summary
Biological soil crusts (biocrusts) stabilize the soil surface mainly in arid regions but are also present in Mediterranean and humid climates. We studied this stabilizing effect through wet and dry sieving along a large climatic gradient in Chile and found that the stabilization of soil aggregates persists in all climates, but their role is masked and reserved for a limited number of size fractions under humid conditions by higher vegetation and organic matter contents in the topsoil.
Biological soil crusts (biocrusts) stabilize the soil surface mainly in arid regions but are...