Articles | Volume 8, issue 2
https://doi.org/10.5194/soil-8-699-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/soil-8-699-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Improving models to predict holocellulose and Klason lignin contents for peat soil organic matter with mid-infrared spectra
Henning Teickner
CORRESPONDING AUTHOR
ILÖK, Ecohydrology and Biogeochemistry Group, University of Münster, Heisenbergstr. 2, 48149 Münster, Germany
Klaus-Holger Knorr
ILÖK, Ecohydrology and Biogeochemistry Group, University of Münster, Heisenbergstr. 2, 48149 Münster, Germany
Related authors
Henning Teickner and Klaus-Holger Knorr
EGUsphere, https://doi.org/10.5194/egusphere-2025-4955, https://doi.org/10.5194/egusphere-2025-4955, 2025
This preprint is open for discussion and under review for SOIL (SOIL).
Short summary
Short summary
We developed models that predict physical and chemical peat properties from mid-infrared spectra (MIRS). These peat properties are necessary for modeling peatland dynamics. Compared to direct measurements of these properties, measurements of MIRS require less sample material and save time. Unlike existing models that focus on peat, the models developed here are openly available, relatively easy to use and have basic quality checks and estimates for prediction errors.
Henning Teickner, Edzer Pebesma, and Klaus-Holger Knorr
Earth Syst. Dynam., 16, 891–914, https://doi.org/10.5194/esd-16-891-2025, https://doi.org/10.5194/esd-16-891-2025, 2025
Short summary
Short summary
The Holocene Peatland Model (HPM) is a widely used peatland model to understand and predict long-term peatland dynamics. Here, we test whether the HPM can predict Sphagnum litterbag decomposition rates from oxic to anoxic conditions. Our results indicate that decomposition rates change more gradually from oxic to anoxic conditions and may be underestimated under anoxic conditions, possibly because the effect of water table fluctuations on decomposition rates is not considered.
Henning Teickner, Edzer Pebesma, and Klaus-Holger Knorr
Biogeosciences, 22, 417–433, https://doi.org/10.5194/bg-22-417-2025, https://doi.org/10.5194/bg-22-417-2025, 2025
Short summary
Short summary
Decomposition rates for Sphagnum mosses, the main peat-forming plants in northern peatlands, are often derived from litterbag experiments. Here, we estimate initial leaching losses from available Sphagnum litterbag experiments and analyze how decomposition rates are biased when initial leaching losses are ignored. Our analyses indicate that initial leaching losses range between 3 to 18 mass-% and that this may result in overestimated mass losses when extrapolated to several decades.
Henning Teickner and Klaus-Holger Knorr
EGUsphere, https://doi.org/10.5194/egusphere-2025-4955, https://doi.org/10.5194/egusphere-2025-4955, 2025
This preprint is open for discussion and under review for SOIL (SOIL).
Short summary
Short summary
We developed models that predict physical and chemical peat properties from mid-infrared spectra (MIRS). These peat properties are necessary for modeling peatland dynamics. Compared to direct measurements of these properties, measurements of MIRS require less sample material and save time. Unlike existing models that focus on peat, the models developed here are openly available, relatively easy to use and have basic quality checks and estimates for prediction errors.
Henning Teickner, Edzer Pebesma, and Klaus-Holger Knorr
Earth Syst. Dynam., 16, 891–914, https://doi.org/10.5194/esd-16-891-2025, https://doi.org/10.5194/esd-16-891-2025, 2025
Short summary
Short summary
The Holocene Peatland Model (HPM) is a widely used peatland model to understand and predict long-term peatland dynamics. Here, we test whether the HPM can predict Sphagnum litterbag decomposition rates from oxic to anoxic conditions. Our results indicate that decomposition rates change more gradually from oxic to anoxic conditions and may be underestimated under anoxic conditions, possibly because the effect of water table fluctuations on decomposition rates is not considered.
Henning Teickner, Edzer Pebesma, and Klaus-Holger Knorr
Biogeosciences, 22, 417–433, https://doi.org/10.5194/bg-22-417-2025, https://doi.org/10.5194/bg-22-417-2025, 2025
Short summary
Short summary
Decomposition rates for Sphagnum mosses, the main peat-forming plants in northern peatlands, are often derived from litterbag experiments. Here, we estimate initial leaching losses from available Sphagnum litterbag experiments and analyze how decomposition rates are biased when initial leaching losses are ignored. Our analyses indicate that initial leaching losses range between 3 to 18 mass-% and that this may result in overestimated mass losses when extrapolated to several decades.
Carrie L. Thomas, Boris Jansen, Sambor Czerwiński, Mariusz Gałka, Klaus-Holger Knorr, E. Emiel van Loon, Markus Egli, and Guido L. B. Wiesenberg
Biogeosciences, 20, 4893–4914, https://doi.org/10.5194/bg-20-4893-2023, https://doi.org/10.5194/bg-20-4893-2023, 2023
Short summary
Short summary
Peatlands are vital terrestrial ecosystems that can serve as archives, preserving records of past vegetation and climate. We reconstructed the vegetation history over the last 2600 years of the Beerberg peatland and surrounding area in the Thuringian Forest in Germany using multiple analyses. We found that, although the forest composition transitioned and human influence increased, the peatland remained relatively stable until more recent times, when drainage and dust deposition had an impact.
Laura Clark, Ian B. Strachan, Maria Strack, Nigel T. Roulet, Klaus-Holger Knorr, and Henning Teickner
Biogeosciences, 20, 737–751, https://doi.org/10.5194/bg-20-737-2023, https://doi.org/10.5194/bg-20-737-2023, 2023
Short summary
Short summary
We determine the effect that duration of extraction has on CO2 and CH4 emissions from an actively extracted peatland. Peat fields had high net C emissions in the first years after opening, and these then declined to half the initial value for several decades. Findings contribute to knowledge on the atmospheric burden that results from these activities and are of use to industry in their life cycle reporting and government agencies responsible for greenhouse gas accounting and policy.
Matthias Koschorreck, Klaus Holger Knorr, and Lelaina Teichert
Biogeosciences, 19, 5221–5236, https://doi.org/10.5194/bg-19-5221-2022, https://doi.org/10.5194/bg-19-5221-2022, 2022
Short summary
Short summary
At low water levels, parts of the bottom of rivers fall dry. These beaches or mudflats emit the greenhouse gas carbon dioxide (CO2) to the atmosphere. We found that those emissions are caused by microbial reactions in the sediment and that they change with time. Emissions were influenced by many factors like temperature, water level, rain, plants, and light.
Cordula Nina Gutekunst, Susanne Liebner, Anna-Kathrina Jenner, Klaus-Holger Knorr, Viktoria Unger, Franziska Koebsch, Erwin Don Racasa, Sizhong Yang, Michael Ernst Böttcher, Manon Janssen, Jens Kallmeyer, Denise Otto, Iris Schmiedinger, Lucas Winski, and Gerald Jurasinski
Biogeosciences, 19, 3625–3648, https://doi.org/10.5194/bg-19-3625-2022, https://doi.org/10.5194/bg-19-3625-2022, 2022
Short summary
Short summary
Methane emissions decreased after a seawater inflow and a preceding drought in freshwater rewetted coastal peatland. However, our microbial and greenhouse gas measurements did not indicate that methane consumers increased. Rather, methane producers co-existed in high numbers with their usual competitors, the sulfate-cycling bacteria. We studied the peat soil and aimed to cover the soil–atmosphere continuum to better understand the sources of methane production and consumption.
Liam Heffernan, Maria A. Cavaco, Maya P. Bhatia, Cristian Estop-Aragonés, Klaus-Holger Knorr, and David Olefeldt
Biogeosciences, 19, 3051–3071, https://doi.org/10.5194/bg-19-3051-2022, https://doi.org/10.5194/bg-19-3051-2022, 2022
Short summary
Short summary
Permafrost thaw in peatlands leads to waterlogged conditions, a favourable environment for microbes producing methane (CH4) and high CH4 emissions. High CH4 emissions in the initial decades following thaw are due to a vegetation community that produces suitable organic matter to fuel CH4-producing microbes, along with warm and wet conditions. High CH4 emissions after thaw persist for up to 100 years, after which environmental conditions are less favourable for microbes and high CH4 emissions.
Ramona J. Heim, Andrey Yurtaev, Anna Bucharova, Wieland Heim, Valeriya Kutskir, Klaus-Holger Knorr, Christian Lampei, Alexandr Pechkin, Dora Schilling, Farid Sulkarnaev, and Norbert Hölzel
Biogeosciences, 19, 2729–2740, https://doi.org/10.5194/bg-19-2729-2022, https://doi.org/10.5194/bg-19-2729-2022, 2022
Short summary
Short summary
Fires will probably increase in Arctic regions due to climate change. Yet, the long-term effects of tundra fires on carbon (C) and nitrogen (N) stocks and cycling are still unclear. We investigated the long-term fire effects on C and N stocks and cycling in soil and aboveground living biomass.
We found that tundra fires did not affect total C and N stocks because a major part of the stocks was located belowground in soils which were largely unaltered by fire.
Cited articles
Aerts, R., Verhoeven, J. T. A., and Whigham, D. F.: Plant-Mediated Controls
on Nutrient Cycling in Temperate Fens and Bogs, Ecology, 80,
2170–2181, https://doi.org/10.1890/0012-9658(1999)080[2170:PMCONC]2.0.CO;2, 1999. a, b, c
Ågren, G. I., Bosatta, E., and Agren, G. I.: Quality: A Bridge between
Theory and Experiment in Soil Organic Matter Studies, Oikos, 76,
522–528, https://doi.org/10.2307/3546345, 1996. a
Allaire, J., Xie, Y., Wickham, H., Vaidyanathan, R.,
Boettiger, C., Broman, K., Mueller, K., Quast, B., Pruim, R.,
Marwick, B., Wickham, C., Keyes, O., Yu, M., Emaasit, D., Onkelinx, T.,
Gasparini, A., Desautels, M.-A., Leutnant, D.,
Öğreden, O., Hance, D., Nüst, D., Uvesten, P., Campitelli, E.,
Muschelli, J., Kamvar, Z. N., Ross, N., Cannoodt, R., Luguern, D., and
Kaplan, D. M.: rticles: Article Formats for R Markdown, Version 0.14, CRAN, https://cran.r-project.org/web/packages/rticles/index.html
(last access: 7 March 2022), 2020. a
Artz, R. R., Chapman, S. J., Jean Robertson, A., Potts, J. M.,
Laggoun-Défarge, F., Gogo, S., Comont, L., Disnar, J.-R., and Francez,
A.-J.: FTIR Spectroscopy Can Be Used as a Screening Tool for Organic
Matter Quality in Regenerating Cutover Peatlands, Soil Biol.
Biochem., 40, 515–527, https://doi.org/10.1016/j.soilbio.2007.09.019, 2008. a
Bauer, I. E.: Modelling Effects of Litter Quality and Environment on Peat
Accumulation over Different Time-Scales: Peat
Accumulation over Different Time-Scales, J. Ecol., 92, 661–674,
https://doi.org/10.1111/j.0022-0477.2004.00905.x, 2004. a
Baysinger, M. R., Wilson, R. M., Hanson, P. J., Kostka, J. E., and Chanton,
J. P.: Compositional Stability of Peat in Ecosystem-Scale Warming Mesocosms,
PLOS ONE, 17, e0263994, https://doi.org/10.1371/journal.pone.0263994, 2022. a
Bengtsson, F., Rydin, H., and Hájek, T.: Biochemical Determinants of Litter
Quality in 15 Species of Sphagnum, Plant Soil, 425, 161–176,
https://doi.org/10.1007/s11104-018-3579-8, 2018. a, b
Biester, H., Knorr, K.-H., Schellekens, J., Basler, A., and Hermanns, Y.-M.:
Comparison of Different Methods to Determine the Degree of Peat Decomposition
in Peat Bogs, Biogeosciences, 11, 2691–2707, https://doi.org/10.5194/bg-11-2691-2014,
2014. a, b, c
Bockheim, J. G.: Importance of Cryoturbation in Redistributing Organic
Carbon in Permafrost-Affected Soils, Soil Sci. Soc. Am.
J., 71, 1335–1342, https://doi.org/10.2136/sssaj2006.0414N, 2007. a
Broder, T., Blodau, C., Biester, H., and Knorr, K. H.: Peat Decomposition
Records in Three Pristine Ombrotrophic Bogs in Southern Patagonia,
Biogeosciences, 9, 1479–1491, https://doi.org/10.5194/bg-9-1479-2012, 2012. a
Bürkner, P.-C.: brms: An R Package for Bayesian Multilevel Models
Using Stan, J. Stat. Softw., 80, 1–28,
https://doi.org/10.18637/jss.v080.i01, 2017. a
Bürkner, P.-C.: Advanced Bayesian Multilevel Modeling with the R
Package brms, R J., 10, 395–411, https://doi.org/10.32614/RJ-2018-017, 2018. a
Chen, C., Duan, C., Li, J., Liu, Y., Ma, X., Zheng, L., Stavik, J., and Ni, Y.:
Cellulose (Dissolving Pulp) Manufacturing Processes and Properties: A
Mini-Review, BioResources, 11, 5553–5564, https://doi.org/10.15376/biores.11.2.Chen,
2016. a
Cocozza, C., D'Orazio, V., Miano, T. M., and Shotyk, W.: Characterization of
Solid and Aqueous Phases of a Peat Bog Profile Using Molecular Fluorescence
Spectroscopy, ESR and FT-IR, and Comparison with Physical Properties,
Organic Geochemistry, 34, 49–60, https://doi.org/10.1016/S0146-6380(02)00208-5, 2003. a, b, c, d
Cong, J., Gao, C., Han, D., Li, Y., and Wang, G.: Stability of the Permafrost
Peatlands Carbon Pool under Climate Change and Wildfires during the Last 150
Years in the Northern Great Khingan Mountains, China, Sci.
Total Environ., 712, 136476, https://doi.org/10.1016/j.scitotenv.2019.136476,
2020. a
Cong, J., Gao, C., Xing, W., Han, D., Li, Y., and Wang, G.: Historical Chemical
Stability of Carbon Pool in Permafrost Peatlands in Northern Great Khingan
Mountains (China) during the Last Millennium, and Its
Paleoenvironmental Implications, CATENA, 209, 105853,
https://doi.org/10.1016/j.catena.2021.105853, 2022. a
Cowling, E. B. and Merrill, W.: Nitrogen in Wood and Its Role in Wood
Deterioration, Can. J. Bot., 44, 1539–1554,
https://doi.org/10.1139/b66-167, 1966. a, b
Douma, J. C. and Weedon, J. T.: Analysing Continuous Proportions in Ecology and
Evolution: A Practical Introduction to Beta and Dirichlet Regression,
Method. Ecol. Evol., 10, 1412–1430,
https://doi.org/10.1111/2041-210X.13234, 2019. a
Elle, O., Richter, R., Vohland, M., and Weigelt, A.: Fine Root Lignin Content
Is Well Predictable with Near-Infrared Spectroscopy, Sci. Rep., 9,
6396, https://doi.org/10.1038/s41598-019-42837-z, 2019. a, b, c
Gabry, J. and Mahr, T.: bayesplot: Plotting for Bayesian Models, CRAN, https://cran.r-project.org/web/packages/bayesplot/index.html (last access: 7 March 2022), 2020. a
Gelman, A., Vehtari, A., Simpson, D., Margossian, C. C., Carpenter, B., Yao,
Y., Kennedy, L., Gabry, J., Bürkner, P.-C., and Modrák, M.: Bayesian
Workflow, arXiv, arXiv:2011.01808 [stat], https://doi.org/10.48550/arXiv.2011.01808, 2020. a
Harris, L. I., Moore, T. R., Roulet, N. T., and Pinsonneault, A. J.: Limited
Effect of Drainage on Peat Properties, Porewater Chemistry, and Peat
Decomposition Proxies in a Boreal Peatland, Biogeochemistry, 151, 43–62,
https://doi.org/10.1007/s10533-020-00707-1, 2020. a
Hayes, D., Hayes, M., and Leahy, J.: Analysis of the Lignocellulosic Components
of Peat Samples with Development of near Infrared Spectroscopy Models for
Rapid Quantitative Predictions, Fuel, 150, 261–268,
https://doi.org/10.1016/j.fuel.2015.01.094, 2015. a, b
Hodgkins, S. B., Richardson, C. J., Dommain, R., Wang, H., Glaser, P. H.,
Verbeke, B., Winkler, B. R., Cobb, A. R., Rich, V. I., Missilmani, M.,
Flanagan, N., Ho, M., Hoyt, A. M., Harvey, C. F., Vining, S. R., Hough,
M. A., Moore, T. R., Richard, P. J. H., De La Cruz, F. B., Toufaily, J.,
Hamdan, R., Cooper, W. T., and Chanton, J. P.: Tropical Peatland Carbon
Storage Linked to Global Latitudinal Trends in Peat Recalcitrance, Nat.
Commun., 9, 3640, https://doi.org/10.1038/s41467-018-06050-2, 2018. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, aa, ab, ac, ad, ae, af, ag, ah, ai, aj, ak, al, am, an, ao, ap, aq, ar, as, at, au, av, aw, ax, ay
Koven, C., Friedlingstein, P., Ciais, P., Khvorostyanov, D., Krinner, G., and
Tarnocai, C.: On the Formation of High-Latitude Soil Carbon Stocks:
Effects of Cryoturbation and Insulation by Organic Matter in a Land
Surface Model, Geophys. Res. Lett., 36, L21501,
https://doi.org/10.1029/2009GL040150, 2009. a
Kubo, S. and Kadla, J. F.: Hydrogen Bonding in Lignin: A Fourier
Transform Infrared Model Compound Study, Biomacromolecules, 6, 2815–2821,
https://doi.org/10.1021/bm050288q, 2005. a, b, c
Lehmann, J. and Kleber, M.: The Contentious Nature of Soil Organic Matter,
Nature, 528, 60–68, https://doi.org/10.1038/nature16069, 2015. a
Leifeld, J., Steffens, M., and Galego-Sala, A.: Sensitivity of Peatland
Carbon Loss to Organic Matter Quality, Geophys. Res. Lett., 39,
L14704, https://doi.org/10.1029/2012GL051856, 2012. a, b
Loisel, J., Yu, Z., Beilman, D. W., Camill, P., Alm, J., Amesbury, M. J.,
Anderson, D., Andersson, S., Bochicchio, C., Barber, K., Belyea, L. R.,
Bunbury, J., Chambers, F. M., Charman, D. J., De Vleeschouwer, F.,
Fiałkiewicz-Kozieł, B., Finkelstein, S. A., Gałka, M., Garneau,
M., Hammarlund, D., Hinchcliffe, W., Holmquist, J., Hughes, P., Jones, M. C.,
Klein, E. S., Kokfelt, U., Korhola, A., Kuhry, P., Lamarre, A., Lamentowicz,
M., Large, D., Lavoie, M., MacDonald, G., Magnan, G., Mäkilä, M.,
Mallon, G., Mathijssen, P., Mauquoy, D., McCarroll, J., Moore, T. R.,
Nichols, J., O'Reilly, B., Oksanen, P., Packalen, M., Peteet, D., Richard,
P. J., Robinson, S., Ronkainen, T., Rundgren, M., Sannel, A. B. K., Tarnocai,
C., Thom, T., Tuittila, E.-S., Turetsky, M., Väliranta, M., van der
Linden, M., van Geel, B., van Bellen, S., Vitt, D., Zhao, Y., and Zhou,
W.: A Database and Synthesis of Northern Peatland Soil Properties and
Holocene Carbon and Nitrogen Accumulation, The Holocene, 24, 1028–1042,
https://doi.org/10.1177/0959683614538073, 2014. a
Moore, T. R., Knorr, K.-H., Thompson, L., Roy, C., and Bubier, J. L.: The
Effect of Long-Term Fertilization on Peat in an Ombrotrophic Bog, Geoderma,
343, 176–186, https://doi.org/10.1016/j.geoderma.2019.02.034, 2019. a
Peltre, C., Thuriès, L., Barthès, B., Brunet, D., Morvan, T.,
Nicolardot, B., Parnaudeau, V., and Houot, S.: Near Infrared Reflectance
Spectroscopy: A Tool to Characterize the Composition of Different Types
of Exogenous Organic Matter and Their Behaviour in Soil, Soil Biol.
Biochem., 43, 197–205, https://doi.org/10.1016/j.soilbio.2010.09.036, 2011. a
Piironen, J. and Vehtari, A.: Comparison of Bayesian Predictive Methods for
Model Selection, Stat. Comput., 27, 711–735,
https://doi.org/10.1007/s11222-016-9649-y, 2017a. a, b
Piironen, J. and Vehtari, A.: On the Hyperprior Choice for the Global
Shrinkage Parameter in the Horseshoe Prior, arXiv, arXiv:1610.05559 [stat], https://doi.org/10.48550/arXiv.1610.05559,
2017b. a
Piironen, J., Paasiniemi, M., and Vehtari, A.: Projective Inference in
High-Dimensional Problems: Prediction and Feature Selection, Electron.
J. Stat., 14, 2155–2197, https://doi.org/10.1214/20-EJS1711, 2020. a
Piñeiro, G., Perelman, S., Guerschman, J. P., and Paruelo, J. M.: How to
Evaluate Models: Observed vs. Predicted or Predicted vs. Observed?,
Ecol. Model., 216, 316–322, https://doi.org/10.1016/j.ecolmodel.2008.05.006,
2008. a
R Core Team: R: A Language and Environment for Statistical Computing, R
Foundation for Statistical Computing, Vienna, Austria, https://www.r-project.org/ (last access: 7 March 2022), 2020. a
Raftery, A. E. and Zheng, Y.: Discussion: Performance of Bayesian Model
Averaging, J. Am. Stat. Assoc., 98, 931–938,
https://doi.org/10.1198/016214503000000891, 2003. a
Reich, P. B. and Oleksyn, J.: Global Patterns of Plant Leaf N and P in
Relation to Temperature and Latitude, P. Natl. Acad.
Sci. USA, 101, 11001–11006, https://doi.org/10.1073/pnas.0403588101, 2004. a, b
Scharlemann, J. P., Tanner, E. V., Hiederer, R., and Kapos, V.: Global Soil
Carbon: Understanding and Managing the Largest Terrestrial Carbon Pool,
Carbon Manag., 5, 81–91, https://doi.org/10.4155/cmt.13.77, 2014. a
Schellekens, J., Bindler, R., Martínez-Cortizas, A., McClymont, E. L.,
Abbott, G. D., Biester, H., Pontevedra-Pombal, X., and Buurman, P.:
Preferential Degradation of Polyphenols from Sphagnum –
4-Isopropenylphenol as a Proxy for Past Hydrological Conditions in
Sphagnum-dominated Peat, Geochim. Cosmochim. Ac., 150, 74–89,
https://doi.org/10.1016/j.gca.2014.12.003, 2015. a
Shipley, B. and Tardif, A.: Causal Hypotheses Accounting for Correlations
between Decomposition Rates of Different Mass Fractions of Leaf Litter,
Ecology, 102, e03196, https://doi.org/10.1002/ecy.3196, 2021. a, b
Stan Development Team: RStan: The R Interface to Stan, 2020. a
Stan Development Team: Stan Modeling Language Users Guide and Reference
Manual, Stan Development Team, https://mc-stan.org/docs/stan-users-guide/index.html (last access: 11 November 2022), 2021. a
Sun, B., Liu, J., Liu, S., and Yang, Q.: Application of FT-NIR-DR and
FT-IR-ATR Spectroscopy to Estimate the Chemical Composition of Bamboo
(Neosinocalamus Affinis Keng), Holzforschung, 65, 689–696,
https://doi.org/10.1515/hf.2011.075, 2011. a
Teickner, H.: ir: A Simple Package to Handle and Preprocess Infrared
Spectra, Zenodo [code], https://doi.org/10.5281/zenodo.5747170, 2020. a
Teickner, H. and Hodgkins, S. B.: irpeat: Simple Functions to Analyse Mid
Infrared Spectra of Peat Samples, Zenodo [code], https://doi.org/10.5281/zenodo.7262744, 2020. a, b, c, d
Teickner, H. and Knorr, K.-H.: hklmirs: Reproducible Research Compendium for “Improving Models to Predict Holocellulose and Klason Lignin Contents for Peat Soil Organic Matter with Mid Infrared Spectra” and “Comment on Hodgkins et al. (2018): Predicting Absolute Holocellulose and Klason Lignin Contents for Peat Remains Challenging” (v0.2.0), Zenodo [code], https://doi.org/10.5281/zenodo.7255108, 2022. a, b, c
Teickner, H., Estop-Aragonés, C., and Zając, K.: Elevated
Nitrogen Deposition Resulted in Enhanced Peat Decomposition Across
Europe During the 20th Century, Tech. rep., 36, EGU2019-5778, 2019. a
Teickner, H., Gao, C., and Knorr, K.-H.: Electrochemical Properties of
Peat Particulate Organic Matter on a Global Scale: Relation to
Peat Chemistry and Degree of Decomposition, Global Biogeochem.
Cy., 36, e2021GB007160, https://doi.org/10.1029/2021GB007160, 2022. a, b
Tfaily, M. M., Cooper, W. T., Kostka, J. E., Chanton, P. R., Schadt, C. W.,
Hanson, P. J., Iversen, C. M., and Chanton, J. P.: Organic Matter
Transformation in the Peat Column at Marcell Experimental Forest:
Humification and Vertical Stratification: Organic Matter Dynamics,
J. Geophys. Res.-Biogeo., 119, 661–675,
https://doi.org/10.1002/2013JG002492, 2014. a, b
Vehtari, A., Gabry, J., Magnusson, M., Yao, Y., Bürkner, P.-C., Paananen,
T., Gelman, A., Goodrich, B., and Piironen, J.: loo: Efficient
Leave-One-out Cross-Validation and WAIC for Bayesian Models, CRAN, https://cran.r-project.org/web/packages/loo/index.html (last access: 7 March 2022), 2019. a, b, c
Verbeke, B. A., Lamit, L. J., Lilleskov, E. A., Hodgkins, S. B., Basiliko, N.,
Kane, E. S., Andersen, R., Artz, R. R. E., Benavides, J. C., Benscoter,
B. W., Borken, W., Bragazza, L., Brandt, S. M., Bräuer, S. L., Carson,
M. A., Charman, D., Chen, X., Clarkson, B. R., Cobb, A. R., Convey, P.,
Águila Pasquel, J., Enriquez, A. S., Griffiths, H., Grover, S. P.,
Harvey, C. F., Harris, L., Hazard, C., Hodgson, D., Hoyt, A. M., Hribljan,
J., Jauhiainen, J., Juutinen, S., Knorr, K.-H., Kolka, R. K.,
Könönen, M. T., Larmola, T., McCalley, C. K., McLaughlin, J., Moore,
T. R., Mykytczuk, N., Normand, A. E., Rich, V., Roulet, N., Royles, J.,
Rutherford, J., Smith, D. S., Svenning, M. M., Tedersoo, L., Thu, P. Q.,
Trettin, C. C., Tuittila, E.-S., Urbanová, Z., Varner, R. K., Wang, M.,
Wang, Z., Warren, M., Wiedermann, M. M., Williams, S., Yavitt, J. B., Yu,
Z.-G., Yu, Z., and Chanton, J. P.: Latitude, Elevation, and Mean Annual
Temperature Predict Peat Organic Matter Chemistry at a Global Scale, Global
Biogeochem. Cy., 36, e2021GB007057, https://doi.org/10.1029/2021GB007057, 2022. a
Viscarra Rossel, R., Walvoort, D., McBratney, A., Janik, L., and Skjemstad, J.:
Visible, near Infrared, Mid Infrared or Combined Diffuse Reflectance
Spectroscopy for Simultaneous Assessment of Various Soil Properties,
Geoderma, 131, 59–75, https://doi.org/10.1016/j.geoderma.2005.03.007, 2006.
a
Wadoux, A. M.-C., Malone, B., Minasny, B., Fajardo, M., and McBratney, A. B.:
Soil Spectral Inference with R: Analysing Digital Soil Spectra
Using the R Programming Environment, Progress in Soil Science,
Springer International Publishing, Cham, ISBN 978-3-030-64896-1, https://doi.org/10.1007/978-3-030-64896-1,
2021. a, b, c, d
Workman, J. J.: A Review of Calibration Transfer Practices and
Instrument Differences in Spectroscopy, Appl. Spectros., 72,
340–365, https://doi.org/10.1177/0003702817736064, 2018. a
Worrall, F., Moody, C. S., Clay, G. D., Burt, T. P., and Rose, R.: The Flux of
Organic Matter through a Peatland Ecosystem: The Role of Cellulose,
Lignin, and Their Control of the Ecosystem Oxidation State: Flux of
Organic Matter Through a Peat, J. Geophys. Res.-Biogeo., 122, 1655–1671, https://doi.org/10.1002/2016JG003697, 2017. a
Xiaobo, Z., Jiewen, Z., Povey, M. J., Holmes, M., and Hanpin, M.: Variables
Selection Methods in Near-Infrared Spectroscopy, Anal. Chim. Ac., 667,
14–32, https://doi.org/10.1016/j.aca.2010.03.048, 2010. a, b
Short summary
The chemical quality of biomass can be described with holocellulose (relatively easily decomposable by microorganisms) and Klason lignin (relatively recalcitrant) contents. Measuring both is laborious. In a recent study, models have been proposed which can predict both quicker from mid-infrared spectra. However, it has not been analyzed if these models make correct predictions for biomass in soils and how to improve them. We provide such a validation and a strategy for their improvement.
The chemical quality of biomass can be described with holocellulose (relatively easily...