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Abstract. To understand global soil organic matter (SOM) chemistry and its dynamics, we need tools to ef-
ficiently quantify SOM properties, for example, prediction models using mid-infrared spectra. However, the
advantages of such models rely on their validity and accuracy. Recently, Hodgkins et al. (2018) developed mod-
els to quantitatively predict peat holocellulose and Klason lignin contents, two indicators of SOM stability and
major fractions of organic matter. The models may help to understand large-scale SOM gradients and have been
used in various studies.

A research gap to fill is that these models have not been validated in detail yet. What are their limitations and
how can we improve them? This study provides a validation with the aim to identify concrete steps to improve
these models. As a first step, we provide several improvements using the original training data.

The major limitation we identified is that the original training data are not representative for a range of diverse
peat samples. This causes both biased estimates and extrapolation uncertainty under the original models. In ad-
dition, the original models can in practice produce unrealistic predictions (negative values or values > 100 mass-
%). Our improved models partly reduce the observed bias, have a better predictive performance for the training
data, and avoid such unrealistic predictions. Finally, we provide a proof of concept that holocellulose contents
can also be predicted for mineral-rich samples (e.g., peat with mineral admixtures or potentially mineral soils).

A key step to improve the models will be to collect training data that are representative for SOM formed under
various conditions. This study opens directions to develop operational models to predict SOM holocellulose and
Klason lignin contents from mid-infrared spectra.

1 Introduction

Understanding soil organic matter chemistry and how it
changes is important to understand future global carbon dy-
namics. The chemistry of soil organic matter (SOM) con-
trols how fast it can be decomposed (Bengtsson et al., 2018;
Shipley and Tardif, 2021). To understand and predict these
processes, we therefore need to measure SOM chemistry on
a global scale. A challenge is that soils develop under di-
verse and changing environmental conditions which also af-
fect SOM quality (Scharlemann et al., 2014; Lehmann and
Kleber, 2015). As a consequence, spatially and temporally

resolved measurements on a global scale are needed. For this,
we need methods to measure SOM chemistry efficiently.

Mid-infrared spectra (MIRS)-based models to predict
SOM properties are a promising high-throughput approach
which can replace more labor intensive or costly measure-
ments (Viscarra Rossel et al., 2006). For example, MIRS
have been used to predict elemental contents which other-
wise are measured using e.g., combustion and gas chromato-
graphic analysis of resulting gases. However, all the advan-
tages of MIRS-based models rely on the accuracy of the com-
puted models. This makes model validation a crucial step
during model development.
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Soil and plant OM is often characterized by step-wise
chemical fractionation into holocellulose (acid soluble) – a
proxy for polysaccharides – and lignin (acid insoluble) – a
proxy for aromatics – (De la Cruz et al., 2016; Elle et al.,
2019), and these variables are often important indicators for
the chemical quality of OM in studies and models analyzing
decomposition of SOM (Leifeld et al., 2012; Biester et al.,
2014; Worrall et al., 2017; Hodgkins et al., 2018; Bengtsson
et al., 2018; Ågren et al., 1996; Bauer, 2004; Shipley and
Tardif, 2021). If these fractions can be predicted from MIRS,
it may be possible to understand decomposition across larger
scales and at higher spatial resolution.

Several models to predict holocellulose and lignin contents
in different OM types have been developed (some based on
near infrared spectra) (summarized for lignin by Elle et al.,
2019; for holocellulose see e.g., Peltre et al., 2011; Sun et al.,
2011). Most of these models consider only wood, material
from few woody and non-woody species, or only specific
vegetation organs (Elle et al., 2019). Another problem is that
most of these models cannot be easily reproduced and used
since the raw data and code have not been published.

Recently, Hodgkins et al. (2018) developed models to pre-
dict Klason lignin and holocellulose contents from attenuated
total reflectance MIRS. The models have several advantages
over existing approaches. The training data comprise several
different OM types, such as paper products (cardboard, office
paper, magazines, newspaper), leaves from diverse species
(trees and graminoids), and wood samples (De la Cruz et al.,
2016; Hodgkins et al., 2018). Moreover, both raw data and
model code are publicly available (Hodgkins et al., 2018; Te-
ickner and Hodgkins, 2020). For this reason, the models are
particularly suitable for application in other studies (Teick-
ner et al., 2019; Moore et al., 2019; Harris et al., 2020; Cong
et al., 2020, 2022), most recently in Verbeke et al. (2022) and
Baysinger et al. (2022), and for future developments, e.g., by
including additional data.

A major problem is that neither Hodgkins et al. (2018),
nor any later study which was cited above and which used
the models, provided a thorough validation of the models. To
compute the models, Hodgkins et al. (2018) developed a pro-
cedure to extract peaks which are indicative for specific OM
fractions, such as holocellulose and Klason lignin (Fig. 1),
from the MIRS. In the procedure, the peaks are baseline cor-
rected, their maximum height computed, and normalized –
divided by the sum of absorbance values in the spectra. In
Hodgkins et al. (2018), these values were used to calibrate
the prediction models. As model validation, only the linear-
ity between the target variables and predictors was assessed
(Supplement to Hodgkins et al., 2018), but not, for example,
how predicted values match measured values. Moreover, no
information has been provided whether the training data are
representative for SOM, particularly the peat samples ana-
lyzed in the study. Furthermore, it is unclear if pre-selecting
peaks may reduce the predictive accuracy of the models.
Many of these concerns have also been raised by an anony-

mous reviewer of the paper (Supplement to Hodgkins et al.,
2018). Thus, an important research gap to fill is to validate
the models and to provide concrete strategies for further im-
provements.

Our goals are to identify limitations in the original mod-
els and to give concrete recommendations for improvements.
Moreover, we use the original data from Hodgkins et al.
(2018) to provide improvements on the original models
where possible. To this end, we conducted an exploratory
analysis using the peat and peat-forming vegetation data pro-
vided by Hodgkins et al. (2018). Our exploratory analysis
was guided by the following research questions.

1. Is the normal distribution reasonable to predict holo-
cellulose and Klason lignin contents for peat samples?
Klason lignin and holocellulose contents as actually
measured for the training data set in Hodgkins et al.
(2018) cannot be negative or larger than 100 mass-%.
For this reason, predictions and prediction uncertainties
of the models should be in the interval [0, 100] mass-
%. Yet, the original models assume a normal distribu-
tion which does not entail any lower or upper bound for
predicted values. This can potentially result in unreal-
istic predictions. However, if no unrealistic predictions
occur for “representative” peat samples, using a model
with normal distribution can be justifiable in practice. In
contrast, if unrealistic predictions occur, it is more rea-
sonable to use a distribution for which assumptions are
consistent with knowledge on the data-generating pro-
cess. For example, the beta distribution assumes a lower
and upper bound which can be mapped to the interval
(0, 100) mass-%. It can be used as replacement for the
normal sampling distribution used in ordinary linear re-
gression models, such as the original models. For this
reason, we were interested if and under which condi-
tions the original models may produce unrealistic pre-
dictions for the peat and vegetation samples.

2. Can the predictive accuracy of the models be improved?
The original models were parameterized with manu-
ally selected variables (normalized peak heights from
the extraction procedure) (Hodgkins et al., 2018): the
peak carb (∼ 1090 cm−1) for holocellulose and the
sum of the peaks arom15 (∼ 1515 cm−1) and arom16
(∼ 1650 cm−1) (arom15arom16) for Klason lignin.
Whilst there is both a strong causal rationale behind this
decision and it may support the robustness of the models
(Hodgkins et al., 2018), it is also under risk of underfit-
ting – excluding informative variables and thus missing
an opportunity to improve predictive accuracy. For this
reason, we were interested if including more variables
extracted from the MIRS results in models with a better
predictive accuracy.

3. Is the prediction domain of the training data represen-
tative for peat samples? If a model extrapolates outside
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Figure 1. Sample spectrum with the peaks and troughs, their heights, and their baselines (green) as detected by the script developed by
Hodgkins et al. (2018). The plot was created with the data and code from Hodgkins et al. (2018) as implemented in ir and irpeat, respectively.

the prediction domain – the range of predictor variable
values in the training data set (Wadoux et al., 2021)
– it is unclear if the predictions are valid. An advan-
tage of the independent reference sample set used by
Hodgkins et al. (2018) is that the model is applicable to
various OM types and, for example, does not depend
on obviously material-specific spectral characteristics
(Hodgkins et al., 2018). For example, in peat, holo-
cellulose content is controlled by decomposition, and
other structures also controlled by decomposition might
therefore provide information on holocellulose contents
(Leifeld et al., 2012; Biester et al., 2014). However, this
does not have to be the case for other samples, e.g., peat-
forming vegetation. A potential advantage is therefore
the potential generality of the training data set Hodgkins
et al. (2018) used. However, since it does not include
peat samples, it is questionable if the prediction domain
formed by the training samples covers peat samples and
peat-forming vegetation in general, and this can result
in overlooking prediction failures due to extrapolation.
For this reason, we were interested if the training data
(its prediction domain, Wadoux et al., 2021) is represen-
tative for peat and peat-forming vegetation.

4. Do predictions of the improved models differ and, if so,
why? Computing modified models enables us to com-
pare their predictions to those of the original models us-
ing the same training data and to the actually measured
contents. Model comparison often reveals detailed in-
sights into the mechanics of a model and may provide
hints to which model makes more correct predictions.
We therefore were interested in analyzing differences
between the computed models, what factors may cause
differences in predictions, and if there are indications of
which models make more correct predictions.

5. Can holocellulose contents also be predicted for sam-
ples with mineral interferences? During model calibra-
tion, Hodgkins et al. (2018) omitted some samples. For
prediction of holocellulose, old magazine samples were

omitted because the carb peak suffered from mineral
interference from the samples’ clay coatings (Hodgkins
et al., 2018). This decision is sensible, but since there
are many organic soils with mineral admixtures – for ex-
ample, due to volcanic ash, in base layers, or due to cry-
oturbation) (e.g., Broder et al., 2012; Bockheim, 2007;
Koven et al., 2009; Loisel et al., 2014) – we think that
it is useful to have a model to predict holocellulose con-
tents that includes mineral-rich samples. We therefore
wanted to investigate if a suitable model can be com-
puted by including the previously omitted old magazine
samples during calibration. This is no replacement for a
model using more training data, but it is a test whether
it is at least in principle possible for MIRS to contain
sufficient information to predict holocellulose contents
of relatively diverse samples.

In investigating these issues, our main goals are to pro-
vide a concrete plan for how to improve the original models.
Moreover, we want to analyze under which conditions it may
not be appropriate to use the original or modified models.
Where possible, using the original data, we want to provide
improved models which we hope can be further improved in
the future. In addition, this study provides general guidance
for pitfalls during validation of spectral prediction models.
With this, we want to contribute to the development of mod-
els to predict SOM holocellulose and Klason lignin contents
which are important to provide diverse data to fit SOM de-
composition models and to understand how environmental
change affects global soil carbon dynamics.

2 Methods

We conducted a series of statistical analyzes to query each of
our research questions listed in the introduction. During this,
we also computed improved models using the same training
data that were used to compute the original models. Since
we used these improved models to uncover and analyze the
limitations in the original models, we first describe the steps
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of how we improved the original models and then how we
analyzed the limitations.

We use the data and models collected and developed
by Hodgkins et al. (2018). The training data used to cali-
brate the original models consist of various organic materials
and comprise measured values for holocellulose and Klason
lignin (De la Cruz et al., 2016). The data are accessible from
the Supplement of Hodgkins et al. (2018). In addition, we
used a data set consisting of MIRS for 14 peat cores (300
samples in total) and 39 vegetation samples collected at the
same sites which are also provided by Hodgkins et al. (2018).
We used these peat and vegetation data to evaluate the per-
formance of the original and improved models for peat and
peat-forming vegetation in general. We assume that the peat
samples are representative for a wide range of peat OM be-
cause they cover a large latitudinal range and a wide range
of degrees of decomposition, and were formed by different
vegetation (Hodgkins et al., 2018).

We computed all models as Bayesian models. This al-
lowed us to consider parameter uncertainty in predictions
and to compute models with good predictive performance
(Raftery and Zheng, 2003; Piironen and Vehtari, 2017a). For
this reason, to facilitate model comparison, we also recom-
puted the original models as Bayesian models with weakly
informative priors. With weakly informative priors, we mean
here priors which result in approximately the same predic-
tion intervals as the original frequentist models (Supplement
Fig. S1). Whenever we refer to “original model”, we mean
these Bayesian translations, and otherwise refer to “origi-
nal non-Bayesian models”. To check that we did not intro-
duce any of the identified weaknesses using the Bayesian ap-
proach, we compared the predictions of the Bayesian models
to the original non-Bayesian models (Supplement Fig. S1).

All analyzes were performed in R (version 4.0.1,
6 June 2020) (R Core Team, 2020). Spectra were prepro-
cessed using ir (0.0.0.9000) (Teickner, 2020). The orig-
inal script used by Hodgkins et al. (2018) to extract
peaks (https://github.com/shodgkins/FTIRbaselines, last ac-
cess: 11 November 2022) as implemented in irpeat
(0.0.0.9000) (Teickner and Hodgkins, 2020) was used to
recompute the original models and extract peaks from
MIRS. Bayesian models were computed using rstanarm
(2.19.3) (Goodrich et al., 2020) and brms (2.13.0) (Bürkner,
2017, 2018) which are interfaces to Stan (2.21.0) (Stan
Development Team, 2020, 2021). All predictor variables
were z-transformed. Markov chain Monte Carlo (MCMC)
sampling was validated in addition using bayesplot (1.7.2)
(Gabry and Mahr, 2020). The out-of-sample predictive per-
formance of the models was estimated using the expected log
predictive density (ELPD) estimated using Pareto smoothed
importance sampling leave-one-out cross-validation (PSIS-
LOO) (Vehtari et al., 2017) using the loo package (2.2.0)
(Vehtari et al., 2019). PSIS-LOO ELPD is an universal mea-
sure to compare the predictive performance of models and
−2 ·PSIS-LOO ELPD is the deviance (Vehtari et al., 2017).

2.1 Normal versus beta regression models

Above, we mentioned that assuming a model with normal
distribution can result in unrealistic predictions outside the
interval [0, 100] mass-%. We were interested if and under
which conditions unrealistic predictions can occur. Here, we
differentiate two ways in which a prediction can be unreal-
istic: it can be either an unrealistic point estimate (median
predictions), or the prediction interval can cover values out-
side [0, 100] mass-%, even though the median prediction can
be within [0, 100] mass-%.

For our analysis, we first computed a sequence of normal-
ized carb and arom15arom16 peak heights such that the
original model predicts values which completely covered the
interval [0, 100] mass-% for holocellulose and Klason lignin,
respectively. For these simulated peak heights, we computed
median model predictions and 90 % prediction intervals us-
ing the original models (“original Gaussian models”). Fi-
nally, we identified unrealistic predictions in terms of the
point estimates and 90 % prediction intervals and the carb
and arom15arom16 peak heights under which these occur.
We used these values as thresholds to decide if the models
make unrealistic predictions in practice. To relate these val-
ues to real data, we computed median predictions and 90 %
prediction intervals also for the peat and vegetation samples
and identified unrealistic predictions as for the simulation
analysis.

After identifying conditions under which unrealistic pre-
dictions occur, we compared this to the behavior of a model
with assumptions in line with the data generating process.
Beta regression models assume all values of the dependent
variable to be in (0, 100) mass-% which is a reasonable as-
sumption given how the actual data are generated. Therefore,
we repeated the previous analyses, but now using beta regres-
sion models. We used the same model structure and priors
for intercept and slopes as the original models (“original beta
models”).

To facilitate practical comparison between the modeling
approaches, we compared the predictions of all models for
the peat samples by plotting predicted values versus depths
of the peat samples. Altogether, this allowed us to identify
unrealistic predictions of the original models and to analyze
how the improved models (beta regression models) perform
in comparison.

2.2 Reducing underfitting with more variables

The original approach of Hodgkins et al. (2018) was to in-
clude only manually selected variables which may result in
underfitting and consequently relatively low predictive accu-
racy. We wanted to investigate if the predictive accuracy can
be improved by including more variables in the models. Two
approaches with complementary advantages and disadvan-
tages were tested:
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1. We used all peak heights and trough heights returned
by the peak identification algorithm of Hodgkins et al.
(2018) (Fig. 1). The advantage is that this makes the pre-
diction model probably more robust against calibration
transfer issues in comparison to the second approach
(a hypothesis that remains to be tested). The disadvan-
tage is that additional information contained within the
spectra cannot be fully exploited if these are not con-
tained within the extracted peak heights. To avoid over-
fitting, we computed models using priors implying dif-
ferent amounts of regularization – shrinking coefficients
to 0 with the aim to avoid overfitting – of model coeffi-
cients (standard deviation of 1 and 0.5, respectively) in
addition to the default weakly informative prior which
we derived from rstanarm (2.19.3) (standard deviation
of 2.5) (Goodrich et al., 2020).

2. We used all variables in the spectra and Bayesian reg-
ularization (Piironen et al., 2020), similar to Teickner
et al. (2022). The advantage is that this approach can
more fully exploit the information contained within the
spectra because it is not restricted to specific peaks, re-
sulting potentially in a better predictive performance.
The disadvantage is that this approach may be more
prone to calibration transfer issues. To reduce redun-
dancy in the variables and impact of noise, we binned
the spectra, testing bin widths of 10, 20, 30, 50, and
100 cm−1. As regularizing priors, we used the regu-
larized horseshoe prior with a parameterization as de-
scribed in Piironen and Vehtari (2017b), assuming a
number of relevant variables of eight.

An alternative popular approach to approach 2 would be
dimension reduction, for example, via partial least squares
regression, principal component regression, or variants of
these (Xiaobo et al., 2010). In general, there are many alter-
native approaches which could be tested to use more infor-
mation contained within the spectra than the original models,
and many of these probably would result in similar predic-
tive performances as approach 2 (regularization), especially
when sample sizes are small (Xiaobo et al., 2010; Teickner
et al., 2022). An advantage of regularization is that model
coefficients are estimated more independently than in dimen-
sion reduction approaches, which makes it more straightfor-
ward to interpret model coefficients. The key is that the ap-
proaches we chose are suitable to analyze our research ques-
tions.

Out-of-sample model performance was estimated with
PSIS-LOO ELPD as described above (Vehtari et al.,
2017, 2019). If a model has a larger PSIS-LOO ELPD than
another model fitted on the same data, it has a larger (leave-
one-out cross-validation) predictive accuracy, so models with
larger PSIS-LOO ELPD are preferred (Vehtari et al., 2017).
To compare models, one typically computes the posterior
distribution of the difference in PSIS-LOO ELPD between
the model with the largest PSIS-LOO ELPD and the other

models, such that one can evaluate the probability of a cer-
tain predictive advantage of the best model in comparison to
the other models (Vehtari et al., 2017, 2019).

To further validate and interpret the models using binned
spectra, we visually identified the most important bins in the
models (largest absolute median coefficients ≥ 0.2) with a
bin width of 20 cm−1 (which are among the models with
the best predictive accuracy; see below) and linked these to
molecular structures and causal relations that most probably
result in the correlation with holocellulose and Klason lignin,
respectively.

Based on the model validation, we defined the follow-
ing set of models used in the subsequent analyses: “best
all peaks” denotes the models for holocellulose and Klason
lignin with best average predictive accuracy of approach 1
described above. “Best binned spectra” denotes the models
for holocellulose and Klason lignin with nearly the best aver-
age predictive accuracy of approach 2 described above. With
“nearly the best predictive accuracy” we mean here that we
used the models using binned spectra with a bin width of
20 cm−1. This was the model with best average predictive
accuracy for Klason lignin, but not holocellulose (Sect. 3.2).
However, the model for holocellulose had a predictive per-
formance very similar to the on average better model using
a bin width of 10 cm−1 (Sect. 3.2), and to keep the follow-
ing analyses compact and easier to follow, we decided to use
a bin width of 20 cm−1 in all cases. These models are the
models used during the subsequent analyses.

2.3 Assessing the prediction domain of the training data

Are the training data used to compute the models representa-
tive for the spectral properties of peat and peat-forming veg-
etation? To answer this question, we needed to compare the
spectral properties of the training samples to those of the peat
and vegetation samples (Wadoux et al., 2021): if for a sam-
ple the value of a spectral variable included in a model ex-
ceeds the range of values for the same variable in the train-
ing data, the model extrapolates if applied to the sample
(Wadoux et al., 2021). If extrapolation occurs, it is unclear
if the predictions are valid estimates for holocellulose and
Klason lignin contents.

For the original models, the prediction domain is sim-
ply the range of area normalized heights of the carb and
arom15arom16 peak, respectively (Hodgkins et al., 2018).
Therefore, we could directly compare the area normalized
heights of the carb and arom15arom16 peak of the peat
and vegetation samples to the range of area normalized
heights of the same peaks for the training data.

For the improved models using binned spectra, the pre-
dictor variables form a multivariate prediction domain. We
therefore created plots with which we could compare the
value ranges for each bin for the training data with the respec-
tive values in the peat and vegetation spectra. This allowed us
to identify for which spectral variables extrapolation is an is-
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sue. Finally, by identifying the most important variables in
the improved models, we could qualitatively summarize how
large the risk of this extrapolation is.

Since models with a bin width of 20 cm−1 were among the
best models, we performed this analysis only for these mod-
els (“best binned spectra”). We did not additionally investi-
gate the prediction domain for the models using all extracted
peaks and troughs (“best all peaks”) since these models had
no predictive advantage in comparison to the models using
binned spectra (Sect. 3.2).

2.4 Analyzing differences in predictions between the
original models and the improved models

We analyzed how predictions of the improved models (“best
all peaks” and “best binned spectra” defined in Sect. 2.2) dif-
fer from the original models. We found considerable differ-
ences, even within the spectral range of the training data, and
therefore analyzed what factors probably cause these differ-
ences.

In a first step, we were interested if the original or im-
proved models are biased. Hodgkins et al. (2018) provide no
plot of residuals against predicted values or measured values
against predicted values. Both plots are commonly used to
detect any biases in a model fit (e.g., Piñeiro et al., 2008).
We therefore plotted measured values against predicted val-
ues for the original model and the improved model and com-
pared indication of bias between both.

In a second step, we compared how predictions of the im-
proved models differ in practice from the original models. To
this end, we compared the models’ predictions for the peat
and vegetation data from Hodgkins et al. (2018), similarly
to how we compared the Gaussian and beta regression mod-
els. Since we found considerable differences, we conducted
a more targeted exploratory analysis to identify factors prob-
ably causing these differences.

2.5 Predicting holocellulose contents in samples with
mineral admixtures

In the introduction we mentioned that the original Hodgkins
et al. (2018) model for holocellulose excluded training sam-
ples with admixtures of clay minerals (old magazine sam-
ples) since these interfere with the carb peak. By including
more variables into the model than the carb peak (as de-
scribed in the previous section), we tried to compute models
that can also describe the holocellulose content in the train-
ing data samples with high clay content. For this, we fitted the
best models for holocellulose (the models in “best all peaks”
and “best binned spectra” defined in Sect. 2.2) from each of
the two approaches described in the previous section again,
but this time including the four old magazine samples previ-
ously left out. We interpreted the coefficients of these binned
models similarly to the versions not fitted with mineral-rich
samples (see Sect. 2.2).

3 Results and discussion

3.1 Is the normal distribution reasonable to predict
holocellulose and Klason lignin contents for peat
samples?

The original model for holocellulose indeed produced un-
realistic predictions: it had a negative point prediction for
one strongly decomposed sample from a tropical peat core.
Moreover, for 22 % of the peat samples in the data from
Hodgkins et al. (2018), the lower 90 % prediction interval
covered negative values (Supplement Fig. S3). No point pre-
diction or 90 % prediction interval was > 100 mass-%. The
original model for Klason lignin did not produce unrealistic
predictions for the peat samples (Supplement Fig. S3). Both
models did not produce unrealistic predictions for the vege-
tation samples.

Figure 2 shows predicted medians and prediction intervals
for both models across a potential range of the spectral pre-
dictor variables alongside the range covered by the peat and
vegetation samples. The model with normal distribution pro-
duces negative lower prediction interval limits whenever the
predicted median is lower than around 17 mass-% and upper
prediction interval limits > 100 mass-% whenever the pre-
dicted median is larger than around 86 mass-%. For Klason
lignin these values are around 9 mass-% and 87 mass-%, re-
spectively.

The beta regression models produce realistic predictions
across the complete range of the spectral predictor variables.
In addition, the beta regression model has smaller prediction
uncertainties for extreme values (Fig. 2). A consequence of
this is larger predicted holocellulose contents with narrower
prediction intervals for several (decomposed) peat samples
under the beta regression model in comparison to the original
normal model (Figs. 2 and S3).

Thus, whereas our results indicate little differences in
choosing a model distribution for Klason lignin, for holo-
cellulose contents of peat samples it is crucial to use a beta
regression model to avoid unrealistic predictions. Neverthe-
less, it is generally advisable to use a beta regression model
for mass contents. It may not be known in advance how
large holocellulose or Klason lignin contents are for a given
sample, and even for Klason lignin, contents may be low,
e.g., due to high contents of minerals.

3.2 Can the predictive accuracy of the models be
improved?

Our analysis shows that both strategies to include more vari-
ables result in on average more accurate predictions (Ta-
ble 1). This can be concluded based on the average esti-
mated ELPD values (larger values indicate a better estimated
predictive accuracy). Consequently, using the data available,
we could improve both the model for holocellulose and the
model for Klason lignin.
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Figure 2. Predicted holocellulose (a) and Klason lignin (b) contents using either the original Gaussian models or a beta regression model,
versus predictions of the original Gaussian model covering the entire interval [0, 100] mass-%. Colored lines within shaded regions are
median predictions. Shaded areas and boundaries are 90 % prediction intervals. Colored points are median point predictions for the peat
(round points) and vegetation (crosses) samples from Hodgkins et al. (2018). Colors differentiate predictions of the original Gaussian model
(blue) and the model with beta distribution (yellow). White filled points indicate the fitted values for which the 90 % prediction interval of
the Gaussian model contains unrealistic values.

Is one of the strategies to include more variables advanta-
geous? The models with the largest predictive accuracy are
models with small to moderate bin width (Table 1). These
are better than the respective models using all extracted
peaks: in addition to the ELPD, this can be derived from
the standard errors of the ELPD differences relative to the
best models (2 ·1SE is approximately the 95 % confidence
interval). In addition, the remaining binned models gener-
ally have a better average predictive accuracy than the mod-
els using all extracted peaks, except for the model with bin
width= 100 cm−1 for holocellulose. Summarized, this indi-
cates that – if a sufficiently high bin resolution (sufficiently
small bin width) is chosen – using binned spectra results in
an improved predictive accuracy over approach 1 to use all
extracted peaks for both holocellulose and Klason lignin.

To interpret the improved models using binned spectra,
we plotted the median coefficients for the best models us-
ing binned spectra (Fig. 3). From this plot, we identified
the bins with the largest absolute median coefficients (≥ 0.2,
marked with points and labeled). The reason for the (on aver-
age) improved performance is that the improved models can
use information contained in the complete spectra which is
not contained in the manually selected peaks for the original
models.

Similarly to the original model, a variable near the carb
peak is important to predict the holocellulose content (bin at
∼ 970 cm−1) since it is related to cellulose (Cocozza et al.,
2003; Stuart, 2004; Artz et al., 2008), but one peak related to
aromatic structures which is not extracted with the approach
from Hodgkins et al. (2018) is also important (∼ 1250 cm−1:
aromatic in plane C–H bending) (Stuart, 2004) (Fig. 3a). This

indicates that aromatics provide information on the holocel-
lulose content in the training samples and that extracting only
selected peaks may omit useful information. A plausible ex-
planation for the importance of this variable is that holocel-
lulose and Klason lignin together are the major mass frac-
tions in many OM types and both are controlled by the same
processes, but often in different directions (decomposition,
resource allocation trade-off during plant growth, selective
removal during processing) (Biester et al., 2014; Chen et al.,
2016) (supporting Fig. 4).

For Klason lignin, the improved model does not use bins
near to the arom15 and arom16 peaks, in contrast to the
original model. Instead, bins with large absolute coefficients
are located in the fingerprint region (600 to 1500 cm−1) and
probably related to aromatic in plane C–H bending (∼ 1150
and ∼ 1270 cm−1) (Stuart, 2004) (Fig. 3c). A plausible ex-
planation for the negative sign of the coefficient for the
1150 cm−1 bin is that absorbance in this range is partly
caused by syringyl units (S) (Kubo and Kadla, 2005) and that
training samples with higher S content have smaller Klason
lignin contents (Supplement Fig. S4, De la Cruz et al., 2016),
making this bin indicative of smaller Klason lignin contents.
Likewise, a plausible explanation for the positive sign of the
coefficient for the 1270 cm−1 bin is that absorbance in this
range is caused predominantly by guaiacyl units (G) (Kubo
and Kadla, 2005) and that training samples with higher G
content have smaller Klason lignin contents (Supplement
Fig. S4, De la Cruz et al., 2016), making this bin indicative
of larger Klason lignin contents. In Sect. 3.5, we provide a
mechanistic interpretation for why the selected variables are
important.
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The bins with especially large absolute coefficients in
the models using binned spectra are not represented in the
extracted peaks because these cover different wavenumber
ranges (compare Fig. 3 to Fig. 1). Consequently, models us-
ing all extracted peaks cannot use this information and tend
to underfit. Similarly, binning with a broad bin width may
result in a too coarse spectral resolution, as indicated by the
relatively weak predictive accuracy of the model for holo-
cellulose using binned spectra with a bin width of 100 cm−1

(Table 1).

3.3 Is the prediction domain of the training data
representative for peat samples?

The training data do not cover the range of the spectral vari-
ables relevant for predicting peat and peat-forming vegeta-
tion holocellulose contents (Fig. 4a and b). For the original
models, the training data carb and arom15arom16 peak
heights cover the range of the vegetation samples. However,
few peat samples have larger arom15arom16 and many
peat samples have smaller carb peak heights than covered
by the training data. This suggests that the original models
extrapolate holocellulose contents in peat samples with small
holocellulose contents and also extrapolate Klason lignin
contents in peat samples with large Klason lignin contents.

The same is true for the improved models using binned
spectra (Fig. 4c). Even though it is not possible to establish a
direct relation between extrapolation for individual spectral
variables and predicted contents, it is visible that for several
bins, peat samples, and – to a lesser extent – vegetation sam-
ples have mostly larger standardized predictor values than
covered by the training data set. This is also true for bins
with the largest absolute median coefficients (including the
model for holocellulose fitted with mineral-rich samples; see
Sect. 3.6 below).

Under what conditions does extrapolation occur? Samples
with small carb peak, or for the binned spectra, large ab-
sorbance at ∼ 1250 and 1590 cm−1, are outside the predic-
tion domain for holocellulose (Fig. 4). Since the carb peak
is small and absorbance at the selected wavenumbers is typ-
ically large in decomposed samples (Cocozza et al., 2003;
Tfaily et al., 2014; Hodgkins et al., 2018) (and the respective
coefficients are negative), this indicates that for holocellu-
lose, extrapolation occurs mainly for more decomposed peat.
This is also true for Klason lignin since extrapolation oc-
curs for samples with large arom15arom16 peak, or for the
binned spectra, large absorbance at ∼ 1150 and 1270 cm−1,
all of which are larger for more decomposed peat (Cocozza
et al., 2003; Tfaily et al., 2014; Hodgkins et al., 2018).

Overall, this indicates that the prediction domain formed
by the training data does not cover the range needed for peat
– particularly decomposed peat – and partly also does not
cover the range needed for peat-forming vegetation samples.
We assume that this is probably also true for non-peat SOM.
Therefore the models’ predictions can represent extrapola-

tions in practice; the training data are not in general repre-
sentative for peat and peat-forming vegetation.

3.4 How do predictions of the original and improved
models differ?

There were considerable differences in predictions of the
original and improved models using binned spectra for both
Klason lignin and holocellulose for the peat samples (Figs. 5
and S5). For holocellulose, the original model tends to pre-
dict larger contents for peat, especially for samples with
larger holocellulose contents (Fig. 5). Similar albeit less pro-
nounced patterns are visible for the vegetation and training
data. For Klason lignin, the improved model predicts up to
25 mass-% larger Klason lignin contents for some samples,
but for others up to 10 mass-% smaller contents than the orig-
inal model. This happens particularly in a region where the
original model predicts Klason lignin contents between 25
and 35 mass-% (Fig. 5).

This is surprising for two reasons: first, for the training
data, both models make quite similar predictions (Fig. 5).
The peat samples have aro15arom16 values similar to the
training data (Fig. 4), but nevertheless both models produce
contrasting predictions. The same is true for holocellulose for
a relatively large fraction of peat samples (Fig. 4). Second,
both models have comparatively small bias within the range
of the training data relevant to peat samples (Supplement
Fig. S6). Thus, predictions are different for the peat samples
even within the holocellulose and Klason lignin range cov-
ered by the training data, where the models actually make
similar predictions for the training data. And these differ-
ences are not due to misfit of either model to the training
data. This indicates that the spectra of the training data are
not entirely representative for the peat samples, even if they
are within the prediction domain (compare also with the pre-
vious section). What causes these differences?

3.5 What causes differences in predictions?

We hypothesize that both the original and the improved mod-
els are not unbiased for samples with other spectral proper-
ties, even if these differences occur in variables not directly
included in the models. For holocellulose, we could not find
indications of which model is better. For Klason lignin, we
provide mechanistic evidence for why the predictions of the
improved models probably are more correct. Therefore, a key
result of our analysis is that additional training and validation
data are required to compute models to accurately predict
SOM holocellulose and Klason lignin contents from MIRS.
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Figure 3. Coefficients of the best models using binned spectra for holocellulose (a, b, model trained without and with samples containing
minerals, respectively) and Klason lignin (c), plotted against the average wavenumber of the bins. Points are median coefficient estimates,
error bars are 90 % posterior intervals. Points with an absolute median coefficient ≥ 0.2 are labeled with the respective average wavenumber
value. The grey shaded region is a reference spectrum.

Figure 4. Prediction domain for the original models (a, b) and the improved models using binned spectra with a bin width of 20 cm−1

(c). The prediction domain is the range of values covered by the predictor variables. The original models use only one predictor variable,
and therefore the prediction domain can be shown as spread of the training samples across the x axis (standardized height of the carb and
arom15arom16 peak, respectively) of a histogram (a, b; blue bars). Extrapolation occurs if other samples (peat, vegetation) exceed this
range. Counts are number of samples in the respective datasets. The improved models include bins across the complete spectra (c). Therefore,
the range in standardized predictor variable values (y axis) covered by the training data for each bin is shown as orange shaded area for the
dataset with a bin width of 20 cm−1, as used by the (nearly) best improved models for holocellulose and Klason lignin. Extrapolation occurs
if other samples (blue shaded regions) exceed these areas. Dashed lines indicate the most important variables for the holocellulose and Klason
lignin model (compare with Fig. 3).

3.5.1 Holocellulose

In comparison to the training data, spectra for peat typically
have larger absorption values at around 1250 cm−1 and be-
tween (∼ 1250 to 1500 cm−1), but a smaller absorption in
the region of the “OH peak” (∼ 3400 cm−1) (Supplement
Fig. S13).

These spectral differences are directly related to the dif-
ferences in predicted values of the original and improved
model (Supplement Fig. S8): the smaller the OH peak is,
the larger are predicted values of the original model in com-

parison to the improved model using binned spectra, espe-
cially for larger carb peak heights. Similarly, the larger the
trough at 1250 cm−1 or the absorbance at 1590 cm−1 is, the
larger are predictions of the original model in comparison to
the improved model using binned spectra. This indicates that
both the delineation of the carb peak and predictions using
binned spectra are potentially sensitive to these differences
and that this causes the observed differences in the predic-
tions even in the range of the training data where both models
yield similar predictions for the training samples.
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Table 1. Overview on the relative predictive performance of the models for holocellulose and Klason lignin content as measured using PSIS-
LOO ELPD. For each variable, the model with the best average predictive performance (largest ELPD) is at the top and the other models
follow in descending order. Models ending in “.2” and “.3” are the models with the original model structure as developed by Hodgkins et al.
(2018). “Distribution” is the distribution assumed for the target variable. “Predictors” indicates if models were fitted with peaks extracted
using the procedure of Hodgkins et al. (2018) (“peaks”) or using binned spectra (“bins”). “Prior” scale indicates the standard deviation for
Gaussian coefficients (numeric values) or regularized horseshoe priors were used (“–”). “Bin width” is the width of bins (in wavenumber
units). “ELPD” is the PSIS-LOO expected log-predictive density, 1ELPD the difference in ELPD relative to the average ELPD of the
on-average best model, and 1SE the standard error in the average 1ELPD.

Model Distribution Predictors Prior scale Bin width ELPD 1ELPD 1SE

Holocellulose

m1.7 Beta bins – 10 79.5 0.0 0.0
m1.9 Beta bins – 30 79.3 −0.2 1.1
m1.8 Beta bins – 20 79.2 −0.3 0.4
m1.10 Beta bins – 50 77.2 −2.3 1.0
m1.11 Beta bins – 100 72.3 −7.2 2.4
m1.6 Beta peaks 0.5 – 69.5 −10.0 3.6
m1.5 Beta peaks 2.5 – 68.5 −11.0 3.7
m1.3 Beta peaks 2.5 – 55.9 −23.6 5.8
m1.2 Gaussian peaks 2.5 – 54.6 −24.9 5.9

Klason lignin

m2.8 Beta bins – 20 104.2 0.0 0.0
m2.10 Beta bins – 50 103.2 −1.0 2.0
m2.7 Beta bins – 10 102.3 −1.9 1.3
m2.9 Beta bins – 30 99.4 −4.8 1.8
m2.6 Beta peaks 0.5 – 88.2 −16.0 6.8
m2.5 Beta peaks 2.5 – 87.8 −16.5 6.9
m2.2 Gaussian peaks 2.5 – 84.3 −19.9 6.4
m2.3 Beta peaks 2.5 – 82.9 −21.3 6.7
m2.11 Beta bins – 100 74.3 −29.9 4.1

What causes this sensitivity? Peak heights – for the orig-
inal model – or spectral variables (bins) – for the improved
models using binned spectra – are normalized by the sum of
absorbance values in the complete spectra (Hodgkins et al.,
2018). This is necessary to make spectra comparable, but
also renders inferences sensitive to absorbance of other peaks
not directly considered or with low influence in the original
and improved models, respectively. Thus, if the OH peak is
smaller, the normalized height of the carb peak is larger
than for the same spectrum with a larger OH peak. Like-
wise, for the improved model using binned spectra a smaller
OH peak results in larger absorbances around ∼ 1200 to
1600 cm−1 where the most influential variables are located
(Supplement Figs. S7 and S2).

Why do peat samples have such different spectral prop-
erties? We hypothesize the following mechanistic explana-
tion for the differences: decomposition of peat results in dis-
tinct changes in the absorbance at specific wavenumbers,
e.g., the “OH peak” and the fingerprint region (e.g., Co-
cozza et al., 2003). For example, decomposition of phenols
and disruption of tissue structures with hydrogen bonds re-
sult in a smaller absorbance around the OH peak (Kubo and
Kadla, 2005; Schellekens et al., 2015). The training data con-

tain only undecomposed or industrially processed OM (De la
Cruz et al., 2016; Hodgkins et al., 2018) which do not reflect
such decomposition changes and therefore generally have a
larger OH peak (Supplement Fig. S7). For decomposed OM,
the same normalized carb peak height or absorbance at spe-
cific wavenumbers therefore represents different holocellu-
lose contents than for the training data, as the comparatively
broad OH peak strongly influences the normalization of the
spectra.

A consequence therefore is that it is questionable if the
models (both original and improved) can be applied to peat
and other SOM samples in general, without adapting the
training data by including more representative samples.

3.5.2 Klason lignin

For Klason lignin, whereas the original model is unbiased
across all samples (Supplement Fig. S6), it is not within two
classes of training samples. Samples of these classes differ in
the relative contribution of the arom15 and arom16 peaks
to arom15arom16 (the sum of their heights) (Fig. 6). The
first class (class 1) has high contributions of the arom15
peak (> 30 %) and typically smaller arom15arom16 val-
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Figure 5. Predicted values of the original model versus predicted values of the original model (first column), and the best improved models
using extracted peaks (second column) and binned spectra (last column), respectively, for holocellulose (a) and Klason lignin (b), respec-
tively. Colors differentiate the training, peat, and vegetation data from Hodgkins et al. (2018).

ues; the second class (class 2) a smaller contribution of the
arom15 peak and larger arom15arom16 values. Sam-
ples of both classes can have large or small actual Kla-
son lignin contents (Fig. 6). What we observed is that the
model makes biased predictions for both classes: for small
arom15arom16 values, it underestimates contents, but for
larger values, it increasingly overestimates Klason lignin
contents (Supplement Fig. S9). For the improved model, this
bias is much smaller (Figs. 6 and S9).

We suggest that it is this bias which causes most of the dif-
ference in predictions of the original and improved models.
Conditional on the relative contribution of the arom15 peak
to arom15arom16, peat samples have smaller and larger
arom15arom16 values than the training data (Supplement
Fig. S10). If one extrapolates the biased predictions of the
original model for the training data classes, this means larger
under- and overestimation for the peat samples than for the
training data using the original model (Fig. 6). This is sup-
ported by measured peat Klason lignin contents: peat from
temperate peatlands was reported to have Klason lignin con-
tents as high as ∼ 70 mass-% and ∼ 57 mass-% on average

(Hayes et al., 2015). Even though this was peat from extrac-
tion sites which probably is more decomposed (Hayes et al.,
2015), this indicates that peat Klason lignin contents can be
much larger, also in temperate regions, than predictions of
the original model for wood-rich tropical peat (Hodgkins
et al., 2018). In contrast, predictions under the improved
model most probably reflect more correct Klason lignin esti-
mates because the bias is much smaller and predicted values
are larger for deeper peat samples. Therefore, this bias very
likely is the reason why predictions of the original model
differ from that of the improved model. Moreover, our re-
sults indicate that the improved model makes more correct
predictions.

What causes this bias? We suggest that arom15arom16
is a poor indicator for Klason lignin content for samples with
varying contents of proteins. Protein C-N and C=O stretching
and N-H bending cause strong absorbance around 1560 and
1650 cm−1 (Stuart, 2004), and therefore it is not only aromat-
ics which contribute to the arom16 peak. Larger arom16
peak heights may be indicative for Klason lignin, but can also
be due to high protein contents.
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This is what distinguishes samples of class 1 and 2 in
the training data (Supplement Fig. S11): samples of class 1
are wood samples and paper product samples derived from
wood. Wood typically has smaller nitrogen contents, but
larger Klason lignin contents (Cowling and Merrill, 1966;
Aerts et al., 1999; De la Cruz et al., 2016) which explains the
large contribution of the arom15 peak, indicative for aro-
matic skeletal vibrations (but not for proteins) (Stuart, 2004)
to arom15arom16. Conversely, samples of class 2 are leaf
and needle samples which may contain both varying contents
of Klason lignin and proteins (Aerts et al., 1999; Reich and
Oleksyn, 2004; De la Cruz et al., 2016). Leaves and needles
typically have larger protein contents than wood (Cowling
and Merrill, 1966; Aerts et al., 1999; Reich and Oleksyn,
2004) and therefore a smaller contribution of the arom15
peak to arom15arom16. This is why the original model
predicts high Klason lignin contents for samples of class 2,
even though some of these actually have low Klason lignin
contents (Fig. 6). The original model balances this, but in
doing so it introduces the observed bias. As a consequence,
arom15arom16 alone is a poor predictor for Klason lignin
content of OM.

The improved model using binned spectra gives more
weight to variables related to aromatic skeletal structures and
not in a region where proteins cause large absorbances (Stu-
art, 2004) (Fig. 3). We suggest that these variables are better
predictors for Klason lignin because they are interfered less
by other molecular structures, such as proteins (Stuart, 2004).
Overall, this mechanistic explanation provides additional ev-
idence why the improved model using binned spectra proba-
bly makes more correct predictions.

3.6 Can holocellulose contents also be predicted for
samples with mineral interferences?

Our analysis shows that models with similar fit to the train-
ing data can be computed also if mineral-rich samples are
included. We see this as proof of concept that holocellulose
contents can also be predicted from MIRS for SOM samples
with mineral admixtures.

If the clay-rich old magazine samples are included, the
model using binned spectra had the best average predictive
performance. The model using extracted peaks had a worse
but similar performance (1ELPD=−17.24, 1SE= 8.82).
Moreover, the models trained on mineral-rich samples had a
similar fit to the remaining samples as our improved mod-
els not trained with the mineral-rich samples (Supplement
Fig. S12). In comparison to this, the original model con-
siderably overestimated the holocellulose content for these
samples, as observed by Hodgkins et al. (2018). This was
also the case for the improved models not trained with the
mineral rich samples (Supplement Fig. S12). We see this as
proof of concept that it is possible to predict holocellulose
contents from MIRS even for samples with high mineral con-
tents. Moreover, there is no trade-off in predictive accuracy

if mineral-rich samples are included, suggesting that general
purpose models can be developed.

How do coefficients for the model trained with old maga-
zine samples differ from the improved model trained without
old magazine samples? According to Fig. 3 (middle panel),
the “mineral-rich model” down-weights bins near the carb
peak, in contrast to the improved model not trained on old
magazine samples, and instead has a larger coefficient for
an additional peak related to aromatic C=C stretching and
amide N-H bending and C-N stretching (∼ 1590 cm−1) (Stu-
art, 2004) which corresponds to the arom15 peak. This pro-
vides further evidence that it is possible to infer holocellulose
contents via aromatics.

3.7 General implications of our results

Our validation analysis provides general lessons for validat-
ing models using spectral data. What can we learn from the
model validation? First, even though Hodgkins et al. (2018)
had a sensible rationale in including only selected peaks
into their models based upon causal knowledge, this strategy
has critical weaknesses. If predictive accuracy is the main
goal, pre-selecting variables triggers underfitting and bias
and therefore is ineffective. Instead, it is more effective to
include a larger set of variables in a model and to use regu-
larization to avoid overfitting and find relations between pre-
dictor variables and the target variable (Piironen and Vehtari,
2017a).

Second, a linear relation between the target variable being
predicted and a predictor variable is not sufficient validation
of a spectral prediction model if the training data are not rep-
resentative for the samples to which the model is applied.
Most importantly, due to spectral normalization, predictions
can be sensitive even to variables not included in the model.
Therefore, to assess if training data (the prediction domain)
are representative, whole spectra have to be compared.

Third, it is helpful to identify potential causal mechanisms
which may affect differently the MIRS the model will be
applied to than the MIRS it was trained on. As shown here
(Sect. 3.5), differences in the degree of decomposition or the
relative contribution of proteins and aromatic skeletal struc-
tures cause differences in MIRS which can result in biased
predictions. Consequently, providing a causal explanation as
to what causes the correlation between a target variable and
specific MIRS variables is a useful tool to assess if a model
may be applicable to new samples.

Fourth, our analysis also shows that re-evaluating existing
models with their original training data can be an effective
way to improve the models. Here, it was important that one
modification of the original models often addressed multiple
limitations at once due to interdependences between the lim-
itations: improving the models’ predictive performance did
not only address underfitting, but also reduced the bias in
the models (Fig. 6). Analyzing the prediction domain did not
only show that the models extrapolate, but we could use this
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Figure 6. Measured training data Klason lignin contents versus fitted values [mass-%] of the original model (a), the improved model using
extracted peaks (b), and the improved model using binned spectra (c). Points are scaled according to the relative contribution of the arom15
peak to arom15arom16. The color gradient represents arom15arom16 values. The diagonal line represents values where measured and
fitted values are identical.

knowledge to analyze the practical impact of the bias. Lastly,
including additional variables not only improved the predic-
tive performance, but allowed us also to compute a model
that probably is suitable for samples containing minerals.
We therefore suggest that continuous re-evaluation of exist-
ing models can be an effective way to develop better models
and should be part of a general model development workflow
(Gelman et al., 2020).

There are several problems we could not solve. The most
important problem is that also for the improved models, it is
unclear if predictions are correct outside the prediction do-
main of the training data and therefore if the models are ap-
plicable to SOM in general.

Further issues are the following: (1) the overall accuracy
of the models can certainly be improved with more training
samples. (2) It is unclear how robust the original models and
our improved models – especially models using binned spec-
tra – are in terms of calibration transfer (calibration transfer
is the application of a model to spectra measured differently
than the training data, e.g., with a different procedure, on a
different device, in a different laboratory Workman, 2018).
We assume that the binning and estimation procedure are
relatively robust since bin widths are comparatively broad
and all variables were standardized, meaning that only be-
tween sample variability in intensities are relevant. However,
this remains to be tested. (3) Even though we computed a
model that could fit and predict mineral-rich samples, it is
unclear whether this is possible in general. (4) Some of our
models had computational issues (holocellulose: one model
with maximally two divergent transitions, Klason lignin: two

models with maximally five divergent transitions) that we
could not resolve.

A further limitation is that, as the original models, the
modified beta regression models do not consider the con-
straint that the contents of holocellulose, Klason lignin, and
any remaining compounds should sum to 100 mass-%. This
also represents a further test of how realistic model predic-
tions are (compare with Sect. 2.1). In principle, this con-
straint could be considered by using a Dirichlet regression
model (e.g., Douma and Weedon, 2019). We have not used
this approach here due to higher computational costs, poten-
tial computational difficulties, keeping the present model val-
idation straightforward, and since the training data do not ful-
fill this condition for all samples (Supplement Fig. S4; indi-
cating that the measurement procedure needs to be improved
too).

In summary, our analysis opens concrete and promising di-
rections to further improve the models: we need training and
validation data that include peat, particularly highly decom-
posed peat. Such data make it possible to analyze the impact
of the bias and to compute models with less bias, higher rep-
resentativity for SOM and peat, and potentially larger predic-
tive accuracy. In addition to this, it is likely that an operative
model for prediction of holocellulose contents in SOM sam-
ples with mineral admixtures can be developed by including
such samples with more diverse minerals. Ideally, such im-
provements would be performed across multiple labs with an
archive of sample materials such that calibration transfer of
the models between different mid-infrared spectrometers can
be further explored.
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To support such developments, we implemented the best
models using binned spectra (for holocellulose, the model
which was also trained on mineral-rich samples) into the R
package irpeat (Teickner and Hodgkins, 2020). The other
models can be reproduced from the reproducible research
compendium (Teickner and Knorr, 2022).

4 Conclusions

Our aim was to validate the original models of Hodgkins
et al. (2018) to predict OM holocellulose and Klason lignin
contents, identify weaknesses, provide a concrete strategy of
how to tackle these problems, and provide first improvements
using the same data.

The main weakness of the original models is the underly-
ing training data: it is not in general representative for SOM,
peat, and peat-forming vegetation. This results in biased pre-
dictions for holocellulose and Klason lignin for SOM, such
as peat. Results from currently published studies using the
original models should be interpreted with caution (we are
currently preparing a manuscript, see Teickner and Knorr,
2022, which explores the implications of our results here for
the results of Hodgkins et al., 2018). Manual variable selec-
tion favored this bias because it excluded information critical
for better model fits. Finally, the original models can produce
unrealistic (smaller than 0 or larger than 100 mass-%) predic-
tions and prediction intervals.

Even though it was impossible to address the key problem
of unrepresentative training data using the original data, we
could address some of these issues, provide improved mod-
els, and develop a concrete strategy for future improvements.
The improved models have less bias, avoid unrealistic pre-
dictions, and use information from the complete spectra and
thus have a better predictive accuracy. Moreover, we provide
a proof of concept that it is possible to predict holocellulose
contents also for OM with mineral admixtures.

Our analysis thus opens concrete and promising directions
to further improve the models: a major opportunity is to col-
lect training and validation data representative for SOM, such
that the improved models can be extended and thoroughly
validated. In a next step, potential calibration transfer issues
can be addressed.

Improved models to predict SOM holocellulose and Kla-
son lignin contents can be of large importance in the long run
because they allow cost-efficient high-throughput analyses
of SOM. Detailed understanding of SOM chemistry across
large scales, and the processes that result in changes in SOM
chemistry, is only possible if such fast and effective tools are
available.
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Hance, D., Nüst, D., Uvesten, P., Campitelli, E., Muschelli,
J., Kamvar, Z. N., Ross, N., Cannoodt, R., Luguern, D., and
Kaplan, D. M.: rticles: Article Formats for R Markdown,
Version 0.14, CRAN, https://cran.r-project.org/web/packages/
rticles/index.html (last access: 7 March 2022), 2020.

Artz, R. R., Chapman, S. J., Jean Robertson, A., Potts, J. M.,
Laggoun-Défarge, F., Gogo, S., Comont, L., Disnar, J.-R.,
and Francez, A.-J.: FTIR Spectroscopy Can Be Used as
a Screening Tool for Organic Matter Quality in Regener-
ating Cutover Peatlands, Soil Biol. Biochem., 40, 515–527,
https://doi.org/10.1016/j.soilbio.2007.09.019, 2008.

Bauer, I. E.: Modelling Effects of Litter Quality and Environment
on Peat Accumulation over Different Time-Scales: Peat Ac-
cumulation over Different Time-Scales, J. Ecol., 92, 661–674,
https://doi.org/10.1111/j.0022-0477.2004.00905.x, 2004.

Baysinger, M. R., Wilson, R. M., Hanson, P. J., Kostka,
J. E., and Chanton, J. P.: Compositional Stability of Peat
in Ecosystem-Scale Warming Mesocosms, PLOS ONE, 17,
e0263994, https://doi.org/10.1371/journal.pone.0263994, 2022.

Bengtsson, F., Rydin, H., and Hájek, T.: Biochemical Determinants
of Litter Quality in 15 Species of Sphagnum, Plant Soil, 425,
161–176, https://doi.org/10.1007/s11104-018-3579-8, 2018.

Biester, H., Knorr, K.-H., Schellekens, J., Basler, A., and Hermanns,
Y.-M.: Comparison of Different Methods to Determine the De-
gree of Peat Decomposition in Peat Bogs, Biogeosciences, 11,
2691–2707, https://doi.org/10.5194/bg-11-2691-2014, 2014.

Bockheim, J. G.: Importance of Cryoturbation in Redistributing Or-
ganic Carbon in Permafrost-Affected Soils, Soil Sci. Soc. Am. J.,
71, 1335–1342, https://doi.org/10.2136/sssaj2006.0414N, 2007.

Broder, T., Blodau, C., Biester, H., and Knorr, K. H.:
Peat Decomposition Records in Three Pristine Ombrotrophic
Bogs in Southern Patagonia, Biogeosciences, 9, 1479–1491,
https://doi.org/10.5194/bg-9-1479-2012, 2012.

Bürkner, P.-C.: brms: An R Package for Bayesian Mul-
tilevel Models Using Stan, J. Stat. Softw., 80, 1–28,
https://doi.org/10.18637/jss.v080.i01, 2017.

Bürkner, P.-C.: Advanced Bayesian Multilevel Modeling with the
R Package brms, R J., 10, 395–411, https://doi.org/10.32614/RJ-
2018-017, 2018.

Chen, C., Duan, C., Li, J., Liu, Y., Ma, X., Zheng, L., Stavik, J.,
and Ni, Y.: Cellulose (Dissolving Pulp) Manufacturing Processes
and Properties: A Mini-Review, BioResources, 11, 5553–5564,
https://doi.org/10.15376/biores.11.2.Chen, 2016.

Cocozza, C., D’Orazio, V., Miano, T. M., and Shotyk, W.: Charac-
terization of Solid and Aqueous Phases of a Peat Bog Profile Us-
ing Molecular Fluorescence Spectroscopy, ESR and FT-IR, and
Comparison with Physical Properties, Organic Geochemistry, 34,
49–60, https://doi.org/10.1016/S0146-6380(02)00208-5, 2003.

Cong, J., Gao, C., Han, D., Li, Y., and Wang, G.: Stability of
the Permafrost Peatlands Carbon Pool under Climate Change
and Wildfires during the Last 150 Years in the Northern Great
Khingan Mountains, China, Sci. Total Environ., 712, 136476,
https://doi.org/10.1016/j.scitotenv.2019.136476, 2020.

Cong, J., Gao, C., Xing, W., Han, D., Li, Y., and Wang, G.: Histori-
cal Chemical Stability of Carbon Pool in Permafrost Peatlands in
Northern Great Khingan Mountains (China) during the Last Mil-
lennium, and Its Paleoenvironmental Implications, CATENA,

209, 105853, https://doi.org/10.1016/j.catena.2021.105853,
2022.

Cowling, E. B. and Merrill, W.: Nitrogen in Wood and Its
Role in Wood Deterioration, Can. J. Bot., 44, 1539–1554,
https://doi.org/10.1139/b66-167, 1966.

De la Cruz, F. B., Osborne, J., and Barlaz, M. A.: Determination of
Sources of Organic Matter in Solid Waste by Analysis of Phe-
nolic Copper Oxide Oxidation Products of Lignin, J. Environ.
Eng., 142, 04015076, https://doi.org/10.1061/(ASCE)EE.1943-
7870.0001038, 2016.

Douma, J. C. and Weedon, J. T.: Analysing Continuous Propor-
tions in Ecology and Evolution: A Practical Introduction to Beta
and Dirichlet Regression, Method. Ecol. Evol., 10, 1412–1430,
https://doi.org/10.1111/2041-210X.13234, 2019.

Elle, O., Richter, R., Vohland, M., and Weigelt, A.: Fine Root Lignin
Content Is Well Predictable with Near-Infrared Spectroscopy,
Sci. Rep., 9, 6396, https://doi.org/10.1038/s41598-019-42837-z,
2019.

Gabry, J. and Mahr, T.: bayesplot: Plotting for Bayesian Models,
CRAN, https://cran.r-project.org/web/packages/bayesplot/index.
html (last access: 7 March 2022), 2020.

Gelman, A., Vehtari, A., Simpson, D., Margossian, C. C., Carpen-
ter, B., Yao, Y., Kennedy, L., Gabry, J., Bürkner, P.-C., and Mod-
rák, M.: Bayesian Workflow, arXiv, arXiv:2011.01808 [stat],
https://doi.org/10.48550/arXiv.2011.01808, 2020.

Goodrich, B., Gabry, J., Ali, I., and Brilleman, S.: rstanarm:
Bayesian Applied Regression Modeling via Stan, CRAN, https:
//cran.r-project.org/web/packages/rstanarm/index.html (last ac-
cess: 7 March 2022), 2020.

Harris, L. I., Moore, T. R., Roulet, N. T., and Pinsonneault, A. J.:
Limited Effect of Drainage on Peat Properties, Porewater Chem-
istry, and Peat Decomposition Proxies in a Boreal Peatland, Bio-
geochemistry, 151, 43–62, https://doi.org/10.1007/s10533-020-
00707-1, 2020.

Hayes, D., Hayes, M., and Leahy, J.: Analysis of the Lignocellulosic
Components of Peat Samples with Development of near Infrared
Spectroscopy Models for Rapid Quantitative Predictions, Fuel,
150, 261–268, https://doi.org/10.1016/j.fuel.2015.01.094, 2015.

Hodgkins, S. B., Richardson, C. J., Dommain, R., Wang, H., Glaser,
P. H., Verbeke, B., Winkler, B. R., Cobb, A. R., Rich, V. I., Mis-
silmani, M., Flanagan, N., Ho, M., Hoyt, A. M., Harvey, C. F.,
Vining, S. R., Hough, M. A., Moore, T. R., Richard, P. J. H.,
De La Cruz, F. B., Toufaily, J., Hamdan, R., Cooper, W. T.,
and Chanton, J. P.: Tropical Peatland Carbon Storage Linked to
Global Latitudinal Trends in Peat Recalcitrance, Nat. Commun.,
9, 3640, https://doi.org/10.1038/s41467-018-06050-2, 2018.

Koven, C., Friedlingstein, P., Ciais, P., Khvorostyanov, D., Krinner,
G., and Tarnocai, C.: On the Formation of High-Latitude Soil
Carbon Stocks: Effects of Cryoturbation and Insulation by Or-
ganic Matter in a Land Surface Model, Geophys. Res. Lett., 36,
L21501, https://doi.org/10.1029/2009GL040150, 2009.

Kubo, S. and Kadla, J. F.: Hydrogen Bonding in Lignin: A
Fourier Transform Infrared Model Compound Study, Biomacro-
molecules, 6, 2815–2821, https://doi.org/10.1021/bm050288q,
2005.

Lehmann, J. and Kleber, M.: The Contentious Na-
ture of Soil Organic Matter, Nature, 528, 60–68,
https://doi.org/10.1038/nature16069, 2015.

https://doi.org/10.5194/soil-8-699-2022 SOIL, 8, 699–715, 2022

https://cran.r-project.org/web/packages/rticles/index.html
https://cran.r-project.org/web/packages/rticles/index.html
https://doi.org/10.1016/j.soilbio.2007.09.019
https://doi.org/10.1111/j.0022-0477.2004.00905.x
https://doi.org/10.1371/journal.pone.0263994
https://doi.org/10.1007/s11104-018-3579-8
https://doi.org/10.5194/bg-11-2691-2014
https://doi.org/10.2136/sssaj2006.0414N
https://doi.org/10.5194/bg-9-1479-2012
https://doi.org/10.18637/jss.v080.i01
https://doi.org/10.32614/RJ-2018-017
https://doi.org/10.32614/RJ-2018-017
https://doi.org/10.15376/biores.11.2.Chen
https://doi.org/10.1016/S0146-6380(02)00208-5
https://doi.org/10.1016/j.scitotenv.2019.136476
https://doi.org/10.1016/j.catena.2021.105853
https://doi.org/10.1139/b66-167
https://doi.org/10.1061/(ASCE)EE.1943-7870.0001038
https://doi.org/10.1061/(ASCE)EE.1943-7870.0001038
https://doi.org/10.1111/2041-210X.13234
https://doi.org/10.1038/s41598-019-42837-z
https://cran.r-project.org/web/packages/bayesplot/index.html
https://cran.r-project.org/web/packages/bayesplot/index.html
https://doi.org/10.48550/arXiv.2011.01808
https://cran.r-project.org/web/packages/rstanarm/index.html
https://cran.r-project.org/web/packages/rstanarm/index.html
https://doi.org/10.1007/s10533-020-00707-1
https://doi.org/10.1007/s10533-020-00707-1
https://doi.org/10.1016/j.fuel.2015.01.094
https://doi.org/10.1038/s41467-018-06050-2
https://doi.org/10.1029/2009GL040150
https://doi.org/10.1021/bm050288q
https://doi.org/10.1038/nature16069


714 H. Teickner and K.-H. Knorr: Improving models to predict holocellulose and Klason lignin contents

Leifeld, J., Steffens, M., and Galego-Sala, A.: Sensitivity of Peat-
land Carbon Loss to Organic Matter Quality, Geophys. Res. Lett.,
39, L14704, https://doi.org/10.1029/2012GL051856, 2012.

Loisel, J., Yu, Z., Beilman, D. W., Camill, P., Alm, J., Ames-
bury, M. J., Anderson, D., Andersson, S., Bochicchio, C., Bar-
ber, K., Belyea, L. R., Bunbury, J., Chambers, F. M., Charman,
D. J., De Vleeschouwer, F., Fiałkiewicz-Kozieł, B., Finkelstein,
S. A., Gałka, M., Garneau, M., Hammarlund, D., Hinchcliffe,
W., Holmquist, J., Hughes, P., Jones, M. C., Klein, E. S., Kok-
felt, U., Korhola, A., Kuhry, P., Lamarre, A., Lamentowicz, M.,
Large, D., Lavoie, M., MacDonald, G., Magnan, G., Mäkilä, M.,
Mallon, G., Mathijssen, P., Mauquoy, D., McCarroll, J., Moore,
T. R., Nichols, J., O’Reilly, B., Oksanen, P., Packalen, M., Peteet,
D., Richard, P. J., Robinson, S., Ronkainen, T., Rundgren, M.,
Sannel, A. B. K., Tarnocai, C., Thom, T., Tuittila, E.-S., Turet-
sky, M., Väliranta, M., van der Linden, M., van Geel, B., van
Bellen, S., Vitt, D., Zhao, Y., and Zhou, W.: A Database and Syn-
thesis of Northern Peatland Soil Properties and Holocene Car-
bon and Nitrogen Accumulation, The Holocene, 24, 1028–1042,
https://doi.org/10.1177/0959683614538073, 2014.

Moore, T. R., Knorr, K.-H., Thompson, L., Roy, C., and
Bubier, J. L.: The Effect of Long-Term Fertilization on
Peat in an Ombrotrophic Bog, Geoderma, 343, 176–186,
https://doi.org/10.1016/j.geoderma.2019.02.034, 2019.

Peltre, C., Thuriès, L., Barthès, B., Brunet, D., Morvan, T., Nico-
lardot, B., Parnaudeau, V., and Houot, S.: Near Infrared Re-
flectance Spectroscopy: A Tool to Characterize the Compo-
sition of Different Types of Exogenous Organic Matter and
Their Behaviour in Soil, Soil Biol. Biochem., 43, 197–205,
https://doi.org/10.1016/j.soilbio.2010.09.036, 2011.

Piironen, J. and Vehtari, A.: Comparison of Bayesian Predic-
tive Methods for Model Selection, Stat. Comput., 27, 711–735,
https://doi.org/10.1007/s11222-016-9649-y, 2017a.

Piironen, J. and Vehtari, A.: On the Hyperprior
Choice for the Global Shrinkage Parameter in the
Horseshoe Prior, arXiv, arXiv:1610.05559 [stat],
https://doi.org/10.48550/arXiv.1610.05559, 2017b.

Piironen, J., Paasiniemi, M., and Vehtari, A.: Projective Inference in
High-Dimensional Problems: Prediction and Feature Selection,
Electron. J. Stat., 14, 2155–2197, https://doi.org/10.1214/20-
EJS1711, 2020.

Piñeiro, G., Perelman, S., Guerschman, J. P., and Paruelo,
J. M.: How to Evaluate Models: Observed vs. Predicted
or Predicted vs. Observed?, Ecol. Model., 216, 316–322,
https://doi.org/10.1016/j.ecolmodel.2008.05.006, 2008.

R Core Team: R: A Language and Environment for Statistical Com-
puting, R Foundation for Statistical Computing, Vienna, Austria,
https://www.r-project.org/ (last access: 7 March 2022), 2020.

Raftery, A. E. and Zheng, Y.: Discussion: Performance of
Bayesian Model Averaging, J. Am. Stat. Assoc., 98, 931–938,
https://doi.org/10.1198/016214503000000891, 2003.

Reich, P. B. and Oleksyn, J.: Global Patterns of Plant Leaf N and P
in Relation to Temperature and Latitude, P. Natl. Acad. Sci. USA,
101, 11001–11006, https://doi.org/10.1073/pnas.0403588101,
2004.

Scharlemann, J. P., Tanner, E. V., Hiederer, R., and Kapos,
V.: Global Soil Carbon: Understanding and Managing the
Largest Terrestrial Carbon Pool, Carbon Manag., 5, 81–91,
https://doi.org/10.4155/cmt.13.77, 2014.

Schellekens, J., Bindler, R., Martínez-Cortizas, A., Mc-
Clymont, E. L., Abbott, G. D., Biester, H., Pontevedra-
Pombal, X., and Buurman, P.: Preferential Degradation
of Polyphenols from Sphagnum – 4-Isopropenylphenol as
a Proxy for Past Hydrological Conditions in Sphagnum-
dominated Peat, Geochim. Cosmochim. Ac., 150, 74–89,
https://doi.org/10.1016/j.gca.2014.12.003, 2015.

Shipley, B. and Tardif, A.: Causal Hypotheses Accounting
for Correlations between Decomposition Rates of Differ-
ent Mass Fractions of Leaf Litter, Ecology, 102, e03196,
https://doi.org/10.1002/ecy.3196, 2021.

Stan Development Team: RStan: The R Interface to Stan, 2020.
Stan Development Team: Stan Modeling Language Users

Guide and Reference Manual, Stan Development Team,
https://mc-stan.org/docs/stan-users-guide/index.html (last ac-
cess: 11 November 2022), 2021.

Stuart, B. H.: Infrared Spectroscopy: Fundamentals and Applica-
tions, Analytical Techniques in the Sciences, John Wiley & Sons,
Ltd, Chichester, UK, https://doi.org/10.1002/0470011149, 2004.

Sun, B., Liu, J., Liu, S., and Yang, Q.: Application of FT-NIR-
DR and FT-IR-ATR Spectroscopy to Estimate the Chemical
Composition of Bamboo (Neosinocalamus Affinis Keng), Holz-
forschung, 65, 689–696, https://doi.org/10.1515/hf.2011.075,
2011.

Teickner, H.: ir: A Simple Package to Handle
and Preprocess Infrared Spectra, Zenodo [code],
https://doi.org/10.5281/zenodo.5747170, 2020.

Teickner, H. and Hodgkins, S. B.: irpeat: Simple Functions to
Analyse Mid Infrared Spectra of Peat Samples, Zenodo [code],
https://doi.org/10.5281/zenodo.7262744, 2020.

Teickner, H. and Knorr, K.-H.: hklmirs: Reproducible Research
Compendium for “Improving Models to Predict Holocellulose
and Klason Lignin Contents for Peat Soil Organic Matter with
Mid Infrared Spectra” and “Comment on Hodgkins et al. (2018):
Predicting Absolute Holocellulose and Klason Lignin Con-
tents for Peat Remains Challenging” (v0.2.0), Zenodo [code],
https://doi.org/10.5281/zenodo.7255108, 2022.

Teickner, H., Estop-Aragonés, C., and Zając, K.: Elevated Nitrogen
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