Articles | Volume 7, issue 1
https://doi.org/10.5194/soil-7-1-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/soil-7-1-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Altitude and management affect soil fertility, leaf nutrient status and Xanthomonas wilt prevalence in enset gardens
Sabura Shara
Department of Earth and Environmental Sciences, KU Leuven, Geel and Leuven, Belgium
College of Agricultural Sciences, Arba Minch University, Arba Minch, Ethiopia
Rony Swennen
Department of Biosystems, KU Leuven, Leuven, Belgium
International Institute of Tropical Agriculture, Arusha, Tanzania
Jozef Deckers
Department of Earth and Environmental Sciences, KU Leuven, Geel and Leuven, Belgium
Fantahun Weldesenbet
Ethiopian Biotechnology Institute, Industrial Biotechnology Directorate, Addis Ababa, Ethiopia
Laura Vercammen
Department of Earth and Environmental Sciences, KU Leuven, Geel and Leuven, Belgium
Fassil Eshetu
College of Agricultural Sciences, Arba Minch University, Arba Minch, Ethiopia
Feleke Woldeyes
Ethiopian Biodiversity Institute, Addis Ababa, Ethiopia
Guy Blomme
Bioversity International, c/o International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
Roel Merckx
Department of Earth and Environmental Sciences, KU Leuven, Geel and Leuven, Belgium
Karen Vancampenhout
CORRESPONDING AUTHOR
Department of Earth and Environmental Sciences, KU Leuven, Geel and Leuven, Belgium
Related authors
No articles found.
Gerard Govers, Roel Merckx, Bas van Wesemael, and Kristof Van Oost
SOIL, 3, 45–59, https://doi.org/10.5194/soil-3-45-2017, https://doi.org/10.5194/soil-3-45-2017, 2017
Short summary
Short summary
We discuss pathways towards better soil protection in the 21st century. The efficacy of soil conservation technology is not a fundamental barrier for a more sustainable soil management. However, soil conservation is generally not directly beneficial to the farmer. We believe that the solution of this conundrum is a rapid, smart intensification of agriculture in the Global South. This will reduce the financial burden and will, at the same time, allow more effective conservation.
Marijn Van de Broek, Stijn Temmerman, Roel Merckx, and Gerard Govers
Biogeosciences, 13, 6611–6624, https://doi.org/10.5194/bg-13-6611-2016, https://doi.org/10.5194/bg-13-6611-2016, 2016
Short summary
Short summary
The results of this study on the organic carbon (OC) stocks of tidal marshes show that variations in OC stocks along estuaries are important and should be taken into account to make accurate estimates of the total amount of OC stored in these ecosystems. Moreover, our results clearly show that most studies underestimate the variation in OC stocks along estuaries due to a shallow sampling depth, neglecting the variation in OC decomposition after burial along estuaries.
Related subject area
Soils and plants
Soil bacterial communities triggered by organic matter inputs associates with a high-yielding pear production
Soil nitrogen and water management by winter-killed catch crops
Rhizodeposition efficiency of pearl millet genotypes assessed on a short growing period by carbon isotopes (δ13C and F14C)
Inducing banana Fusarium wilt disease suppression through soil microbiome reshaping by pineapple–banana rotation combined with biofertilizer application
Soil δ15N is a better indicator of ecosystem nitrogen cycling than plant δ15N: A global meta-analysis
Hydrological soil properties control tree regrowth after forest disturbance in the forest steppe of central Mongolia
Effects of application of biochar and straw on sustainable phosphorus management
Nitrogen availability determines the long-term impact of land use change on soil carbon stocks in grasslands of southern Ghana
Time-lapse monitoring of root water uptake using electrical resistivity tomography and mise-à-la-masse: a vineyard infiltration experiment
Distribution of phosphorus fractions with different plant availability in German forest soils and their relationship with common soil properties and foliar P contents
Bone char effects on soil: sequential fractionations and XANES spectroscopy
Leaf waxes in litter and topsoils along a European transect
Paleosols can promote root growth of recent vegetation – a case study from the sandy soil–sediment sequence Rakt, the Netherlands
Lime and zinc application influence soil zinc availability, dry matter yield and zinc uptake by maize grown on Alfisols
Switchgrass ecotypes alter microbial contribution to deep-soil C
Tree species and functional traits but not species richness affect interrill erosion processes in young subtropical forests
Integrated soil fertility management in sub-Saharan Africa: unravelling local adaptation
Evaluation of vineyard growth under four irrigation regimes using vegetation and soil on-the-go sensors
Functional homogeneous zones (fHZs) in viticultural zoning procedure: an Italian case study on Aglianico vine
Predicting soil water repellency using hydrophobic organic compounds and their vegetation origin
An overview of the recent approaches to terroir functional modelling, footprinting and zoning
The use of soil electrical resistivity to monitor plant and soil water relationships in vineyards
The fate of seeds in the soil: a review of the influence of overland flow on seed removal and its consequences for the vegetation of arid and semiarid patchy ecosystems
Influence of long-term mineral fertilization on metal contents and properties of soil samples taken from different locations in Hesse, Germany
Li Wang, Xiaomei Ye, Hangwei Hu, Jing Du, Yonglan Xi, Zongzhuan Shen, Jing Lin, and Deli Chen
SOIL, 8, 337–348, https://doi.org/10.5194/soil-8-337-2022, https://doi.org/10.5194/soil-8-337-2022, 2022
Short summary
Short summary
Yield-invigorating soils showed a higher content of organic matter and harbored unique bacterial communities with greater diversity than yield-debilitating soils. In addition, Chloroflexi was served as a keystone taxon in manipulating the interaction of bacterial communities. Our findings help elucidate the role of soil microbiome in maintaining crop production and factors controlling the assembly of soil microbiome.
Norman Gentsch, Diana Heuermann, Jens Boy, Steffen Schierding, Nicolaus von Wirén, Dörte Schweneker, Ulf Feuerstein, Robin Kümmerer, Bernhard Bauer, and Georg Guggenberger
SOIL, 8, 269–281, https://doi.org/10.5194/soil-8-269-2022, https://doi.org/10.5194/soil-8-269-2022, 2022
Short summary
Short summary
This study focuses on the potential of catch crops as monocultures or mixtures to improve the soil water management and reduction of soil N leaching losses. All catch crop treatments preserved soil water for the main crop and their potential can be optimized by selecting suitable species and mixture compositions. Mixtures can compensate for the individual weaknesses of monocultures in N cycling by minimizing leaching losses and maximizing the N transfer to the main crop.
Papa Mamadou Sitor Ndour, Christine Hatté, Wafa Achouak, Thierry Heulin, and Laurent Cournac
SOIL, 8, 49–57, https://doi.org/10.5194/soil-8-49-2022, https://doi.org/10.5194/soil-8-49-2022, 2022
Short summary
Short summary
Unravelling relationships between plant rhizosheath, root exudation and soil C dynamic may bring interesting perspectives in breeding for sustainable agriculture. Using four pearl millet lines with contrasting rhizosheaths, we found that δ13C and F14C of root-adhering soil differed from those of bulk and control soil, indicating C exudation in the rhizosphere. This C exudation varied according to the genotype, and conceptual modelling performed with data showed a genotypic effect on the RPE.
Beibei Wang, Mingze Sun, Jinming Yang, Zongzhuan Shen, Yannan Ou, Lin Fu, Yan Zhao, Rong Li, Yunze Ruan, and Qirong Shen
SOIL, 8, 17–29, https://doi.org/10.5194/soil-8-17-2022, https://doi.org/10.5194/soil-8-17-2022, 2022
Short summary
Short summary
Pineapple–banana rotation combined with bio-organic fertilizer application is effective in Fusarium wilt suppression. Bacterial and fungal communities are changed. Large changes in the fungal community and special Burkholderia functions in the network are likely the most responsible factors for soil-borne disease suppression. Pineapple–banana rotation combined with bio-organic fertilizer application has strong potential for the sustainable management of banana Fusarium wilt disease.
Kaihua Liao, Xiaoming Lai, and Qing Zhu
SOIL, 7, 733–742, https://doi.org/10.5194/soil-7-733-2021, https://doi.org/10.5194/soil-7-733-2021, 2021
Short summary
Short summary
Since the 20th century, human beings have released a large amount of reactive nitrogen by excessive application of nitrogen fertilizer, which resulted in enhanced greenhouse effect. It is not clear how the ecosystem nitrogen cycle evolves during global warming. In this study, we collected global data and used meta-analysis to reveal the response of nitrogen cycle to climate warming. The results show that the future climate warming can accelerate the process of ecosystem nitrogen cycle.
Florian Schneider, Michael Klinge, Jannik Brodthuhn, Tino Peplau, and Daniela Sauer
SOIL, 7, 563–584, https://doi.org/10.5194/soil-7-563-2021, https://doi.org/10.5194/soil-7-563-2021, 2021
Short summary
Short summary
The central Mongolian forest steppe underlies a recent decline of forested area. We analysed the site and soil properties in the Khangai Mountains to identify differences between disturbed forest areas with and without regrowth of trees. More silty soils were found under areas with tree regrowth and more sandy soils under areas without tree regrowth. Due to the continental, semi-arid climate, soil properties which increase the amount of available water are decisive for tree regrowth in Mongolia.
Xue Li, Na Li, Jinfeng Yang, Yansen Xiang, Xin Wang, and Xiaori Han
SOIL Discuss., https://doi.org/10.5194/soil-2021-49, https://doi.org/10.5194/soil-2021-49, 2021
Preprint withdrawn
Short summary
Short summary
The application of biochar in soil not only solves the problem of resource waste and environmental pollution caused by agricultural and forestry wastes but also improves the soil environment. In this study, the basic properties of the soil, P fractions, change in P forms, the relationship between Hedley-P, and distribution of different P forms in the soil were studied.
John Kormla Nyameasem, Thorsten Reinsch, Friedhelm Taube, Charles Yaw Fosu Domozoro, Esther Marfo-Ahenkora, Iraj Emadodin, and Carsten Stefan Malisch
SOIL, 6, 523–539, https://doi.org/10.5194/soil-6-523-2020, https://doi.org/10.5194/soil-6-523-2020, 2020
Short summary
Short summary
Long-term studies on the impact of land use change and crop selection on soil organic carbon (SOC) stocks in sub-Saharan Africa are scarce. Accordingly, this study analysed the impact of converting natural grasslands to a range of low-input production systems in a tropical savannah on SOC stocks. Apart from the cultivation of legume tree and/or shrub species, all land management techniques were detrimental. Grazed grasslands in particular had almost 50 % less SOC than natural grasslands.
Benjamin Mary, Luca Peruzzo, Jacopo Boaga, Nicola Cenni, Myriam Schmutz, Yuxin Wu, Susan S. Hubbard, and Giorgio Cassiani
SOIL, 6, 95–114, https://doi.org/10.5194/soil-6-95-2020, https://doi.org/10.5194/soil-6-95-2020, 2020
Short summary
Short summary
The use of non-invasive geophysical imaging of root system processes is of increasing interest to study soil–plant interactions. The experiment focused on the behaviour of grapevine plants during a controlled infiltration experiment. The combination of the mise-à-la-masse (MALM) method, a variation of the classical electrical tomography map (ERT), for which the current is transmitted directly into the stem, holds the promise of being able to image root distribution.
Jörg Niederberger, Martin Kohler, and Jürgen Bauhus
SOIL, 5, 189–204, https://doi.org/10.5194/soil-5-189-2019, https://doi.org/10.5194/soil-5-189-2019, 2019
Short summary
Short summary
Phosphorus (P) seems to be a limiting factor for forest nutrition. At many German forest sites, trees show a deficiency in P nutrition. However, total soil P is an inadequate predictor to explain this malnutrition. We examined if soil properties such as pH, SOC, and soil texture may be used to predict certain P pools in large forest soil inventories. Models using soil properties and P pools with different bioavailability are not yet adequate to explain the P nutrition status in tree foliage.
Mohsen Morshedizad, Kerstin Panten, Wantana Klysubun, and Peter Leinweber
SOIL, 4, 23–35, https://doi.org/10.5194/soil-4-23-2018, https://doi.org/10.5194/soil-4-23-2018, 2018
Short summary
Short summary
We investigated how the composition of bone char (BC) particles altered in soil and affected the soil P speciation by fractionation and X-ray absorption near-edge structure spectroscopy. Bone char particles (BC from pyrolysis of bone chips and BCplus, a BC enriched with S compounds) were collected at the end of incubation-leaching and ryegrass cultivation trials. Soil amendment with BCplus led to elevated P concentrations and maintained more soluble P species than BC even after ryegrass growth.
Imke K. Schäfer, Verena Lanny, Jörg Franke, Timothy I. Eglinton, Michael Zech, Barbora Vysloužilová, and Roland Zech
SOIL, 2, 551–564, https://doi.org/10.5194/soil-2-551-2016, https://doi.org/10.5194/soil-2-551-2016, 2016
Short summary
Short summary
For this study we systematically investigated the molecular pattern of leaf waxes in litter and topsoils along a European transect to assess their potential for palaeoenvironmental reconstruction. Our results show that leaf wax patterns depend on the type of vegetation. The vegetation signal is not only found in the litter; it can also be preserved to some degree in the topsoil.
Martina I. Gocke, Fabian Kessler, Jan M. van Mourik, Boris Jansen, and Guido L. B. Wiesenberg
SOIL, 2, 537–549, https://doi.org/10.5194/soil-2-537-2016, https://doi.org/10.5194/soil-2-537-2016, 2016
Short summary
Short summary
Investigation of a Dutch sandy profile demonstrated that buried soils provide beneficial growth conditions for plant roots in terms of nutrients. The intense exploitation of deep parts of the soil profile, including subsoil and soil parent material, by roots of the modern vegetation is often underestimated by traditional approaches. Potential consequences of deep rooting for terrestrial carbon stocks, located to a relevant part in buried soils, remain largely unknown and require further studies.
Sanjib K. Behera, Arvind K. Shukla, Brahma S. Dwivedi, and Brij L. Lakaria
SOIL Discuss., https://doi.org/10.5194/soil-2016-41, https://doi.org/10.5194/soil-2016-41, 2016
Revised manuscript not accepted
Short summary
Short summary
Zinc (Zn) deficiency is widespread in all types of soils of world including acid soils affecting crop production and nutritional quality of edible plant parts. The present study was carried out to assess the effects of lime and farmyard manure addition to two acid soils of India on soil properties, extractable zinc by different extractants, dry matter yield, Zn concentration and uptake by maize. Increased level of lime application led to enhancement of soil pH and reduction in extractable Zn in
Damaris Roosendaal, Catherine E. Stewart, Karolien Denef, Ronald F. Follett, Elizabeth Pruessner, Louise H. Comas, Gary E. Varvel, Aaron Saathoff, Nathan Palmer, Gautam Sarath, Virginia L. Jin, Marty Schmer, and Madhavan Soundararajan
SOIL, 2, 185–197, https://doi.org/10.5194/soil-2-185-2016, https://doi.org/10.5194/soil-2-185-2016, 2016
Short summary
Short summary
Switchgrass is a deep-rooted perennial grass bioenergy crop that can sequester soil C. Although switchgrass ecotypes vary in root biomass and architecture, little is known about their effect on soil microbial communities throughout the soil profile. By examining labeled root-C uptake in the microbial community, we found that ecotypes supported different microbial communities. The more fungal community associated with the upland ecotype could promote C sequestration by enhancing soil aggregation.
S. Seitz, P. Goebes, Z. Song, H. Bruelheide, W. Härdtle, P. Kühn, Y. Li, and T. Scholten
SOIL, 2, 49–61, https://doi.org/10.5194/soil-2-49-2016, https://doi.org/10.5194/soil-2-49-2016, 2016
Short summary
Short summary
Different tree species affect interrill erosion, but a higher tree species richness does not mitigate soil losses in young subtropical forest stands. Different tree morphologies and tree traits (e.g. crown cover or tree height) have to be considered when assessing erosion in forest ecosystems. If a leaf litter cover is not present, the remaining soil surface cover by stones and biological soil crusts is the most important driver for soil erosion control.
B. Vanlauwe, K. Descheemaeker, K. E. Giller, J. Huising, R. Merckx, G. Nziguheba, J. Wendt, and S. Zingore
SOIL, 1, 491–508, https://doi.org/10.5194/soil-1-491-2015, https://doi.org/10.5194/soil-1-491-2015, 2015
Short summary
Short summary
The "local adaptation" component of integrated soil fertility management operates at field and farm scale. At field scale, the application of implements other than improved germplasm, fertilizer, and organic inputs can enhance the agronomic efficiency (AE) of fertilizer. Examples include the application of lime, secondary and micronutrients, water harvesting, and soil tillage practices. At farm scale, targeting fertilizer within variable farms is shown to significantly affect AE of fertilizer.
J. M. Terrón, J. Blanco, F. J. Moral, L. A. Mancha, D. Uriarte, and J. R. Marques da Silva
SOIL, 1, 459–473, https://doi.org/10.5194/soil-1-459-2015, https://doi.org/10.5194/soil-1-459-2015, 2015
A. Bonfante, A. Agrillo, R. Albrizio, A. Basile, R. Buonomo, R. De Mascellis, A. Gambuti, P. Giorio, G. Guida, G. Langella, P. Manna, L. Minieri, L. Moio, T. Siani, and F. Terribile
SOIL, 1, 427–441, https://doi.org/10.5194/soil-1-427-2015, https://doi.org/10.5194/soil-1-427-2015, 2015
Short summary
Short summary
This paper aims to test a new physically oriented approach to viticulture zoning at the farm scale which is strongly rooted in hydropedology and aims to achieve a better use of environmental features with respect to plant requirement and wine production. The physics of our approach are defined by the use of soil-plant-atmosphere simulation models which apply physically based equations to describe the soil hydrological processes and solve soil-plant water status.
J. Mao, K. G. J. Nierop, M. Rietkerk, and S. C. Dekker
SOIL, 1, 411–425, https://doi.org/10.5194/soil-1-411-2015, https://doi.org/10.5194/soil-1-411-2015, 2015
Short summary
Short summary
In this study we show how soil water repellency (SWR) is linked to the quantity and quality of SWR markers in soils mainly derived from vegetation. To predict the SWR of topsoils, we find the strongest relationship with ester-bound alcohols, and for subsoils with root-derived ω-hydroxy fatty acids and α,ω-dicarboxylic acids. From this we conclude that, overall, roots influence SWR more strongly than leaves and subsequently SWR markers derived from roots predict SWR better.
E. Vaudour, E. Costantini, G. V. Jones, and S. Mocali
SOIL, 1, 287–312, https://doi.org/10.5194/soil-1-287-2015, https://doi.org/10.5194/soil-1-287-2015, 2015
Short summary
Short summary
Terroir chemical and biological footprinting and geospatial technologies are promising for the management of terroir units, particularly remote and proxy data in conjunction with spatial statistics. In practice, the managed zones will be updatable and the effects of viticultural and/or soil management practices might be easier to control. The prospect of facilitated terroir spatial monitoring makes it possible to address the issue of terroir sustainability.
L. Brillante, O. Mathieu, B. Bois, C. van Leeuwen, and J. Lévêque
SOIL, 1, 273–286, https://doi.org/10.5194/soil-1-273-2015, https://doi.org/10.5194/soil-1-273-2015, 2015
Short summary
Short summary
The available soil water (ASW) is a major contributor to the viticulture "terroir". Electrical resistivity tomography (ERT) allows for measurements of soil water accurately and with low disturbance. This work reviews the use of ERT to spatialise soil water and ASW. A case example is also presented: differences in water uptake (as evaluated by fraction of transpirable soil water variations) depending on grapevine water status (as measured by leaf water potential) are evidenced and mapped.
E. Bochet
SOIL, 1, 131–146, https://doi.org/10.5194/soil-1-131-2015, https://doi.org/10.5194/soil-1-131-2015, 2015
Short summary
Short summary
Since seeds are the principle means by which plants move across the landscape, the final fate of seeds plays a fundamental role in the origin, maintenance, functioning and dynamics of plant communities. In arid and semiarid patchy ecosystems, where seeds are scattered into a heterogeneous environment and intense rainfalls occur, the transport of seeds by runoff to new sites represents an opportunity for seeds to reach more favourable sites for seed germination and seedling survival.
S. Czarnecki and R.-A. Düring
SOIL, 1, 23–33, https://doi.org/10.5194/soil-1-23-2015, https://doi.org/10.5194/soil-1-23-2015, 2015
Short summary
Short summary
This study covers both aspects of understanding of soil system and soil contamination after 14 years of fertilizer application and residual effects of the fertilization 8 years after cessation of fertilizer treatment. Although many grassland fertilizer experiments have been performed worldwide, information about residual effects of fertilizer applications on grassland ecosystem functioning is still rare. This study reports the importance of monitoring of the long-term impact of fertilization.
Cited articles
Abdala, D. B., da Silva, I. R., Vergütz, L., and Sparks, D. L.: Long-term manure
application effects on phosphorus speciation, kinetics and distribution in highly weathered
agricultural soils, Chemosphere, 119, 504–514, https://doi.org/10.1016/j.chemosphere.2014.07.029, 2015.
Agbede, T. M. and Adekiya, A. O.: Effect of wood ash, poultry manure and NPK fertilizer
on soil and leaf nutrient composition, growth and yield of okra (Abelmoschus esculentus),
Emirates J. Food Agric., 24, 314–321, 2012.
Allemann, J., Laurie, S. M., Thiart, S., Vorster, H. J., and Bornman, C. H.: Sustainable
production of root and tuber crops (potato, sweet potato, indigenous potato, cassava) in southern
Africa, S. Afr. J. Bot., 70, 60–66, https://doi.org/10.1016/S0254-6299(15)30307-0, 2004.
Amede, T. and Taboge, E.: Optimizing soil fertility gradients in the Enset
(Ensete ventricosum) systems of the Ethiopian Highlands: Trade-offs and local
innovations, in: Advances in Integrated Soil Fertility management in Sub-Saharan Africa:
Challenges and Opportunities, Springer, Dordrecht,
289–297, 2007.
Andeta, A. F., Vandeweyer, D., Woldesenbet, F., Eshetu, F., Hailemicael, A., Woldeyes,
S., Crauwels., B, Lievens., J, Ceusters., K, Vancampenhout and Van Campenhout, L.: Fermentation of
enset (Ensete ventricosum) in the Gamo highlands of Ethiopia: physicochemical and
microbial community dynamics, Food Microbiol., 73, 342–350, https://doi.org/10.1016/j.fm.2018.02.011, 2018.
Assefa, E. and Bork, H.-R.: Indigenous resource management practices in the Gamo
Highlands of Ethiopia: challenges and prospects for sustainable resource management,
Sustain. Sci., 12, 695–709, https://doi.org/10.1007/s11625-017-0468-7, 2017.
Atim, M., Beed, F., Tusiime, G., Tripathi, L., and van Asten, P.: High potassium,
calcium, and nitrogen application reduce susceptibility to banana Xanthomonas wilt caused by
Xanthomonas campestris pv. musacearum, Plant Disease, 97, 123–130,
https://doi.org/10.1094/PDIS-07-12-0646-RE, 2013.
Atlabachew, M. and Chandravanshi, B. S.: Levels of major, minor and trace elements in
commercially available enset (Ensete ventricosum (Welw.), Cheesman) food products (kocho
and bulla) in Ethiopia, J. Food Compos. Anal., 21, 545–552, https://doi.org/10.1016/j.jfca.2008.05.001,
2008.
Ayalew, D., Barbey, P., Marty, B., Reisberg, L., Yirgu, G., and Pik, R.: Source,
genesis, and timing of giant ignimbrite deposits associated with Ethiopian continental flood
basalts, Geochim. Cosmochim. Acta, 66, 1429–1448, https://doi.org/10.1016/S0016-7037(01)00834-1, 2002.
Ayenew, B., Tadesse, A. M., Kibret, K., and Melese, A.: Phosphorus status and
adsorption characteristics of acid soils from Cheha and Dinsho districts, southern highlands of
Ethiopia, Environ. Syst. Res., 7, 1–14, https://doi.org/10.1186/s40068-018-0121-1, 2018.
Barker, A. V. and Pilbeam, D. J.: Handbook of plant nutrition, CRC Press, Taylor and
Francis Group, Boca Raton, Florida, 613, 2007.
Berhanu, B., Melesse, A. M., and Seleshi, Y.: GIS-based hydrological zones and soil
geodatabase of Ethiopia, Catena, 104, 21–31, https://doi.org/10.1016/j.catena.2012.12.007, 2013.
Blomme, G., Sebuwufu, G., Addis, T., and Turyagyenda, L. F.: Relative performance of
root and shoot development in enset and east African highland bananas, Afr. Crop Sci. J., 16,
51–57, https://doi.org/10.4314/acsj.v16i1.54339, 2008.
Borrell, J. S., Biswas, M. K., Goodwin, M., Blomme, G., Schwarzacher, T.,
Heslop-Harrison, Wendawek, A. M., Berhanu, A., Kallow, S., Janssens, S., Molla, E. L., Davis,
A. P., Woldeyes, F., Willis, K., Demissew, S., and Wilkin, P.: Enset in Ethiopia: a poorly
characterized but resilient starch staple, Ann. Bot., XX, 1–20, https://doi.org/10.1093/aob/mcy214, 2019.
Brandt, S. A., Spring, A., Hiebsch, C., McCabe, J. T., Tabogie, E., Diro, M., and
Tesfaye, S.: The tree against hunger. Enset-based agricultural systems in Ethiopia, American
Association for the Advancement of Science, Washington DC, 56, 1997.
Cartledge, D. M.: The management of Ensete ventricosum in the Gamo Highlands
of southwest Ethiopia, Cult. Agric., 21, 35–38, https://doi.org/10.1525/cag.1999.21.1.35, 1999.
Coltorti, M., Pieruccini, P., Arthur, K. J., Arthur, J., and Curtis, M.: Geomorphology,
soils and palaeosols of the Chencha area (Gamo Gofa, southwestern Ethiopian highlands),
J. Afr. Earth Sci., 151, 225–240, https://doi.org/10.1016/j.jafrearsci.2018.12.018, 2019.
Date, A. R. and Gray, A. L.: Development progress in plasma source mass spectrometry,
Analyst, 108, 159–165, https://doi.org/10.1039/AN9830800159, 1983.
Dordas, C.: Role of nutrients in controlling plant diseases in sustainable
agriculture. A review, Agron. Sustain. Dev., 28, 33–46, https://doi.org/10.1051/agro:2007051, 2008.
Egner, H., Riehm, H., and Domingo, W. R.: Investigations of the chemical soil analysis
as a basis for the evaluation of nutrient status in soil. II. Chemical extraction methods for
phosphorus and potassium determination, Kungliga Lantbrukshügskolans Annaler, 26, 199–215, 1960.
Elias, E., Morse, S., and Belshaw, D. G. R.: Nitrogen and phosphorus balances of Kindo
Koisha farms in southern Ethiopia, Agric. Ecosyst. Environ., 71, 93–113,
https://doi.org/10.1016/S0167-8809(98)00134-0, 1998.
Elias, E.: Characteristics of Nitisol profiles as affected by land use type and slope
class in some Ethiopian highlands, Environ. Syst. Res., 6, 1–20, https://doi.org/10.1186/s40068-017-0097-2,
2017.
Elorrieta, M. A., Suarez-Estrella, F., Lopez, M. J., Vargas-Garcııa, M. C., and
Moreno, J.: Survival of phytopathogenic bacteria during waste composting,
Agric. Ecosyst. Environ., 96, 141–146, https://doi.org/10.1016/S0167-8809(02)00170-6, 2003.
Freitas, A. S., Pozza, E. A., Pozza, A. A. A., Oliveira, M. G. F., Silva, H. R.,
Rocha, H. S., and Galv ao, L. R,: Impact of nutritional deficiency on Yellow Sigatoka of
banana, Australasian Plant Pathol., 44, 583–590, 2015.
Freitas, A. S., Pozza, E. A., Alves, M. C., Coelho, G., Rocha, H. S., and Pozza,
A. A. A.: Spatial distribution of Yellow Sigatoka Leaf Spot correlated with soil fertility and
plant nutrition, Precis. Agric., 17, 93–107, 2016.
Garedew, B. and Ayiza, A.: Major Constraints of Enset (Ensete ventricosum)
production and management in Masha district, southwest Ethiopia, Int. J. Agric. Res., 13, 87–94,
https://doi.org/10.3923/ijar.2018.87.94, 2018.
Ghorbani, R., Wilcockson, S., Koocheki, A., and Leifert, C.: Soil management for
sustainable crop disease control: a review. In Organic farming, pest control and remediation of
soil pollutants, Springer, Dordrecht, 177–201, 2009.
Graham, R. D.: Effects of nutrient stress on the susceptibility of plants to disease
with particular reference to the trace elements, in: Advances in botanical research, vol. 10,
Academic Press, Cambridge, Massachusetts, 221–276,
https://doi.org/10.1016/S0065-2296(08)60261-X, 1983.
Haileslassie, A., Priess, J. A., Veldkamp, E., and Lesschen, J. P.: Smallholders' soil
fertility management in the central highlands of Ethiopia: implications for nutrient stocks,
balances and sustainability of agroecosystems, Nutr. Cycl. Agroecosyst., 75, 135–146,
https://doi.org/10.1007/s10705-006-9017-y, 2006.
Handoro, F. and Michael, G. W.: Evaluation of enset clone meziya against enset
bacterial wilt, in: 8th African Crop Science Society Conference, El-Minia, Egypt, 27–31 October
2007, 887–890, 2007.
Hecht-Buchholz, C., Borges-Pérez, A., Fernandez Falcon, M., and Borges, A. A.:
Influence of zinc nutrition on Fusarium wilt of banana-an electron microscopic investigation, Acta
Horticult., 490, 277–284, https://doi.org/10.17660/ActaHortic.1998.490.27, 1998.
Hengl, T., Leenaars, J. G. B, Shepherd, K. D., Walsh, M. G., Heuvelink, G. B. M, Mamo,
T., Tilahun, H., Berkhout, E., Cooper, M., Fegraus, E., Wheeler, I., and Kwabena, N. A.: Soil
nutrient maps of Sub-Saharan Africa: assessment of soil nutrient content at 250 m spatial
resolution using machine learning, Nutr. Cycl. Agroecosyst., 109, 77–102,
https://doi.org/10.1007/s10705-017-9870-x, 2017.
Hiltunen, L. H. and White, J. G.: Cavity spot of carrot (Daucus carota),
Ann. Appl. Biol., 141, 201–223, https://doi.org/10.1111/j.1744-7348.2002.tb00213.x, 2002.
Huang, C., Barker, S. J., Langridge, P., Smith, F. W., and Graham, R. D.: Zinc
deficiency up-regulates the expression of high-affinity phosphate transporter genes in both
phosphate-sufficient and deficient barley roots, Plant Physiol., 124, 415–422,
https://doi.org/10.1104/pp.124.1.415, 2000.
Huber, D. M. and Graham, R. D.: The role of nutrition in crop resistance and tolerance
to diseases, in: Mineral nutrition of crops: fundamental mechanisms and implications, Food Product
Press, New York, 169–204, 1999.
Huber, D. M. and Haneklaus, S.: Managing nutrition to control plant disease,
Landbauforschung Volkenröde, 57, 313–322,
2007.
Huber, D., Römheld, V., and Weinmann, M.: Relationship between nutrition, plant
diseases and pests, in: Marschner's mineral nutrition of higher plants, Academic
Press, Cambridge, Massachusetts, 283–298,
https://doi.org/10.1016/B978-0-12-384905-2.00010-8, 2012.
ISRIC: Procedures for soil analysis, 6th ed., Wageningen, the Netherlands, 2002.
IUSS Working Group WRB. 2015. World Reference Base for Soil Resources 2014, update
2015: International soil classification system for naming soils and creating legends for soil
maps. World Soil Resources Reports No. 106. 192. FAO, Rome.
Jury, M. R.: Southern Ethiopia rift valley lake fluctuations and climate,
Sci. Res. Essays, 9, 794–805, https://doi.org/10.5897/SRE2014.6062, 2014.
Kirsten, W. J. and Hesselius, G. U.: Rapid, automatic, high capacity Dumas
determination of nitrogen, Microchem. J., 28, 529–547, https://doi.org/10.1016/0026-265X(83)90011-5, 1983.
Lahav, E. and Turner, D. W.: Fertilizing for high yield banana, International Potash
Institute, Berne/Switzerland, IPI Bulletin, 62, 1989.
Lal, R.: Soil erosion and the global carbon budget, Environ. Int., 29, 437–450,
https://doi.org/10.1016/S01604120(02)00192-7, 2003.
Mamo, T., Karltun, E., and Bekele, T.: Soil fertility status and fertilizer
recommendation atlas for Tigray Regional State, Ethiopia, Ministry of Agriculture and Ethiopian
Agricultural Transformation Agency, Addis Abeba, 91, 2014.
Mamo, T., Richter, C., and Heiligtag, B.: Phosphorus availability studies on ten
Ethiopian Vertisols, J. Agric. Rural Dev. Trop. Subtrop., 103, 177–183, 2002.
Manners R. and van Etten, J.: Are agricultural researchers working on the right crops
to enable food and nutrition security under future climates?, Global Environ. Change, 53,
182–194, https://doi.org/10.1016/j.gloenvcha.2018.09.010, 2018.
Mariño, R. and Banga, R. S.: UN sustainable development goals (SDGs): A time to
act, J. Oral Res., 5, 5–6, https://doi.org/10.17126/joralres.2016.002, 2016.
Martin-Prével, P.: Sampling of banana for foliar analysis: Consequences of
differences in techniques, Fruits, 32, 151–166, 1977.
Mburu, K., Oduor, R., Mgutu, A., and Tripathi, L.: Silicon application enhances
resistance to Xanthomonas wilt disease in banana, Plant Pathol., 65, 807–818,
https://doi.org/10.1111/ppa.12468, 2016.
Merga, I. F., Tripathi, L., Hvoslef-Eide, A. K., and Gebre, E.: Application of genetic
engineering for control of bacterial wilt disease of enset, Ethiopia's sustainability crop,
Front. Plant Sci., 10, 1–8, https://doi.org/10.3389/fpls.2019.00133, 2019.
Minda, T. T., Van Der Molen, M. K., Struik, P. C., Combe, M., Jiménez, P. A., Khan,
M. S., and De Arellano, J. V. G.: The combined effect of altitude and meteorology on potato crop
dynamics: A 10-year study in the Gamo Highlands, Ethiopia, Agric. For. Meteorol., 262, 166–177,
https://doi.org/10.1016/j.agrformet.2018.07.009, 2018.
Moges, A. and Holden, N. M.: Soil fertility in relation to slope position and
agricultural land use: A case study of Umbulo catchment in southern Ethiopia, Environ. Manage.,
42, 753–763, https://doi.org/10.1007/s00267-008-9157-8, 2008.
Mohammed, B., Gabel, M., and Karlsson, L. M.: Nutritive values of the drought-tolerant
food and fodder crop enset, Afr. J. Agric. Res., 8, 2326–2333, https://doi.org/10.5897/AJAR12.1296, 2013.
Mokolobate, M. and R. Haynes.: Comparative liming effect of four organic residues
applied to an acid soil, Biol. Fert. Soils, 35, 79–85, https://doi.org/10.1007/s00374-001-0439-z, 2002.
Mwebaze, J. M., Tusiime, G., Teshemereirwe, W. K., and Kubiriba, J.: The survival of
Xanthomonas campestris pv. musacearum in soil and plant debris, Afr. Crop Sci. J., 14, 121–127, 2006.
Nabhan, H., Mashali, A. M., and Mermut, A. R.: Integrated soil management for
sustainable agriculture and food security in Southern and East Africa, Proceedings of the expert
consultation, Harare, Zimbabwe, Food and Agriculture Organization of the United Nations, Rome,
Italy, 415, 1999.
Nayar, N. M.: The contribution of tropical tuber crops towards food security, J. Root Crops, 40, 3–14, 2014.
Naylor, R. L., Falcon W. P., Goodman, R. M., Jahn, M. M., Sengooba, T., Tefera, H.,
Nelson R. J.: Biotechnology in the developing world: a case for increased investments in orphan
crops, Food Policy, 29, 15–44, https://doi.org/10.1016/j.foodpol.2004.01.002, 2004.
Ndabamenye, T., Van Asten, P. J., Blomme, G., Vanlauwe, B., Uzayisenga, B., Annandale,
J. G., and Barnard, R. O.: Nutrient imbalance and yield limiting factors of low input East African
highland banana (Musa spp. AAA-EA) cropping systems, Field Crops Res., 147, 68–78,
https://doi.org/10.1016/j.fcr.2013.04.001, 2013.
Negash, A., Puite, K., Schaart, J., Visser, B., and Krens, F.: In vitro regeneration
and micro-propagation of enset from southwestern Ethiopia, Plant Cell, Tissue and Organ Culture, 62, 153–158,
https://doi.org/10.1023/A:1026701419739, 2000.
Negash, M., Starr, M., and Kanninen, M.: Allometric equations for biomass estimation of
Enset (Ensete ventricosum) grown in indigenous agroforestry systems in the Rift Valley escarpment
of southern-eastern Ethiopia, Agroforest. Syst., 87, 571–581, https://doi.org/10.1007/s10457-012-9577-6,
2013.
Nurfeta, A., Tolera, A., Eik, L. O., and Sundstøl, F.: Yield and mineral content of
ten enset (Ensete ventricosum) varieties, Trop. Anim. Health Prod., 40, 299–309,
https://doi.org/10.1007/s11250-007-9095-0, 2008.
Nurfeta, A., Tolera, A., Eik, L. O., and Sundstøl, F.: Feeding value of enset
(Ensete ventricosum), Desmodium intortum hay and untreated or urea and calcium
oxide treated wheat straw for sheep, J. Anim. Physiol. Anim. Nutr., 93, 94–104,
https://doi.org/10.1111/j.1439-0396.2007.00784.x, 2009.
Nyombi, K., Van Asten, P. J., Corbeels, M., Taulya, G., Leffelaar, P. A., and Giller,
K. E.: Mineral fertilizer response and nutrient use efficiencies of East African highland banana
(Musa spp., AAA-EAHB, cv. Kisansa), Field Crops Res., 117, 38–50,
https://doi.org/10.1016/j.fcr.2010.01.011, 2010.
Ocimati, W., Bouwmeester, H., Groot, J. C., Tittonell, P., Brown, D., and Blomme, G.:
The risk posed by Xanthomonas wilt disease of banana: Mapping of disease hotspots, fronts and
vulnerable landscapes, PLOS One, 14, 1–19, https://doi.org/10.1371/journal.pone.0213691, 2019.
Okumu, M. O., van Asten, P. J., Kahangi, E., Okech, S. H., Jefwa, J., and Vanlauwe, B.:
Production gradients in smallholder banana (cv. Giant Cavendish) farms in Central Kenya, Sci.
Horticult., 127, 475–481, https://doi.org/10.1016/j.scienta.2010.11.005, 2011.
Olmstead, J.: The versatile ensete plant: Its use in the Gamo highlands,
J. Ethiop. Stud., 12, 147–158, 1974.
Quimio, A. J. and Tessera, M.: Diseases of enset, in: Enset-based sustainable
agriculture in Ethiopia, edited by: Tsedeke, A., Clifton, H., Steven, B. A., Gebre-Mariam, S., in:
Proceedings of the International Workshop on enset. Ethiopian Institute of Agricultural Research,
Addis Ababa, Ethiopia, 188–203, 1996.
Renard, D. and Tilman, D.: National food production stabilisation by crop diversity,
Nature, 571, 257–260, https://doi.org/10.1038/s41586-019-1316-y, 2019.
Reuter, D. J. and Robinson, J. B.: Fruits, vines and nuts, in: Plant analysis: an
interpretation manual, CSIRO Publishing, Collingwood, 354–355, 1997.
Roy, R. N., Finck, A., Blair, G. J., and Tandon H. L. S.: Plant nutrition for food
security. A guide for integrated nutrient management, Exp. Agric., 43, 132–132,
https://doi.org/10.1017/S0014479706394537, 2006.
Rosegrant, M. W. and Cline, S. A.: Global food security: challenges and policies,
Science, 302, 1917–1919, https://doi.org/10.1126/science.1092958, 2003.
Sabura, S., Rony, S., Jozef, D., Fantahun, W., Laura, V., Fassil, E., Feleke, W., Guy, B., Roeland, M., and Karen, V.: Reconnaissance study on ecological niche of Ensete ventricosum, Data set, International Institute of Tropical Agriculture (IITA), https://doi.org/10.25502/APCE-NG55/D, 2019.
SAS Institute Inc.: JMP Pro 14 software, SAS Institute Inc., Cary, North Carolina, USA,
2018.
Shigaki, F., Sharpley, A., and Prochnow, L. I.: Rainfall intensity and phosphorus
source effects on phosphorus transport in surface runoff from soil trays, Sci. Total Environ.,
373, 334–343, https://doi.org/10.1016/j.scitotenv.2006.10.048, 2007.
Silva, A. M. F., de Menezes, E. F., de Souza, E. B., de Melo, N. F., and Mariano, R.:
Survival of Xanthomonas campestris pv. viticola in infected tissues of
grapevine, Rev. Brasil. Fruticult., 34, 757–765, https://doi.org/10.1590/S0100-29452012000300015, 2012.
Singh, J. P., Karamanos, R. E., and Stewart, J. W. B.: The mechanism of
phosphorus-induced zinc deficiency in bean (Phaseolus vulgaris L.), Can. J. Soil Sci.,
68, 345–358, https://doi.org/10.4141/cjss88-032, 1988.
Soltangheisi, A., Ishak, C. F., Musa, H. M., Zakikhani, H., and Rahman, Z. A.:
Phosphorus and zinc uptake and their interaction effect on dry matter and chlorophyll content of
sweet corn (Zea mays var. saccharata), J. Agron., 12, 187–192,
https://doi.org/10.3923/ja.2013.187.192, 2013.
Spann, T. M. and Schumann, A. W.: The role of plant nutrients in disease development
with emphasis on citrus and huanglongbing, in: Proceedings of the Florida State Horticultural
Society, 122, 169–171, 2009.
Tadesse, M., Bobosha, K., Diro, M., and Gizachew, W. M.: Enset bacterial wilt sanitary
control in Gurage zone. Research Report No. 53, Ethiopian Agricultural Research Organization,
Ethiopia, 23, 2003.
Tamire, C. and Argaw, M.: Role of Enset (Ensete ventricosum (Welw.) Cheesman)
in soil rehabilitation in different agro-ecological zones of Hadiya, Southern Ethiopia,
Am. J. Environ. Protect., 4, 285–291, https://doi.org/10.11648/j.ajep.20150406.14, 2015.
Tefera, M., Chernet, T., and Haro, W.: Explanation of the geological map of Ethiopia,
Geological Survey Ethiopia, Addis Ababa, Ethiopia, 79, 1996.
Tensaye, A. W., Lindén, B., and Ohlander, L.: Enset farming in Ethiopia: Soil
nutrient status in Shoa and Sidamo regions, Commun. Soil Sci. Plant Anal., 29, 193–210,
https://doi.org/10.1080/00103629809369938, 1998.
Tesfaye, B. and Lüdders, P.: Diversity and distribution patterns of enset landraces
in Sidama, Southern Ethiopia, Genetic Resour. Crop Evol., 50, 359–371,
https://doi.org/10.1023/A:1023918919227, 2003.
Thongbai, P., Hannam, R. J., Graham, R. D., and Webb, M. J.: Interaction between zinc
nutritional status of cereals and Rhizoctonia root rot severity, Plant Soil, 153, 207–214,
https://doi.org/10.1007/BF00012994, 1993.
Tsegaye, A. and Struik, P. C.: Influence of repetitive transplanting and leaf pruning
on dry matter and food production of enset (Ensete ventricosum Welw.(Cheesman)), Field Crops Res.,
68, 61–74, https://doi.org/10.1016/S0378-4290(00)00111-8, 2000.
Tsegaye, A. and Struik, P. C.: Enset (Ensete ventricosum (Welw.) Cheesman)
kocho yield under different crop establishment methods as compared to yields of other
carbohydrate-rich food crops, Netherlands J. Agric. Sci., 49, 81–94,
https://doi.org/10.1016/S1573-5214(01)80017-8, 2001.
Tsegaye, A. and Struik, P. C.: Analysis of enset (Ensete ventricosum)
indigenous production methods and farm-based biodiversity in major enset-growing regions of
southern Ethiopia, Exp. Agric., 38, 291–315, https://doi.org/10.1017/S0014479702003046, 2002.
Turner, D. W. and Barkus, B.: Nutrient concentrations in a range of banana varieties
grown in the subtropics, Fruits, 36, 217–222, 1981.
Uloro, Y. and Mengel, K.: Response of ensete (Ensete ventricosum W.) to
mineral fertilizers in southwest Ethiopia, Fertil. Res., 37, 107–113, https://doi.org/10.1007/BF00748551,
1994.
Vancampenhout, K., Nyssen, J., Gebremichael, D., Deckers, J., Poesen, J., Haile, M.,
and Moeyersons, J.: Stone bunds for soil conservation in the northern Ethiopian highlands: Impacts
on soil fertility and crop yield, Soil Tillage Res., 90, 1–15, https://doi.org/10.1016/j.still.2005.08.004,
2006.
Whalen, J. K., Chang, C., Clayton, G. W., and Carefoot, J. P.: Cattle manure amendments
can increase the pH of acid soils, Soil Sci. Soc. Am. J., 64, 962–966,
https://doi.org/10.2136/sssaj2000.643962x, 2000.
Winge, R. K., Peterson, V. J., and Fassel, V. A.: Inductively coupled plasma-atomic
emission spectroscopy: prominent lines, Appl. Spectrosc., 33, 206–219,
https://doi.org/10.1366/0003702794925895, 1979.
Welde-Michael, G., Bobosha, K., Blomme, G., Addis, T., Mengesha, T., and Mekonnen, S.:
Evaluation of enset clones against enset bacterial wilt, Afr. Crop Sci. J., 16, 89–95,
https://doi.org/10.4314/acsj.v16i1.54348, 2008a.
Welde-Michael, G., Bobosha, K., Addis, T., Blomme, G., Mekonnen, S., and Mengesha, T.:
Mechanical transmission and survival of bacterial wilt on enset, Afr. Crop Sci. J., 16, 97–102,
https://doi.org/10.4314/acsj.v16i1.54349, 2008b.
Wolde, M., Ayalew, A., and Chala, A.: Assessment of bacterial wilt (Xanthomonas campestris pv. musacearum) of enset in southern Ethiopia, Afr. J. Agric. Res., 11,
1724–1733, https://doi.org/10.5897/AJAR2015.9959, 2016.
Wichuk, K. M., Tewari, J. P., and McCartney, D.: Plant pathogen eradication during
composting: a literature review, Compost Sci. Util., 19, 244–266,
https://doi.org/10.1080/1065657X.2011.10737008, 2011.
Yemataw, Z., Mohamed, H., Diro, M., Addis, T., and Blomme, G.: Enset (Ensete ventricosum) clone selection by farmers and their cultural practices in southern Ethiopia,
Genet. Resour. Crop Evol., 61, 1091–1104, https://doi.org/10.1007/s10722-014-0093-6, 2014.
Yemataw, Z., Tesfaye, K., Zeberga, A., and Blomme, G.: Exploiting indigenous knowledge
of subsistence farmers for the management and conservation of Enset (Ensete ventricosum
(Welw.) cheesman) (Musaceae family) diversity on-farm, J. Ethnobiol. Ethnomed., 12, 1–25,
https://doi.org/10.1186/s13002-016-0109-8, 2016.
Yemataw, Z., Mekonen, A., Chala, A., Tesfaye, K., Mekonen, K., Studholme, D. J., and
Sharma, K.: Farmers' knowledge and perception of enset Xanthomonas wilt in southern Ethiopia,
Agric. Food Secur., 6, 1–12, https://doi.org/10.1186/s40066-017-0146-0, 2017.
Yirgou, D. and Bradbury, J. F.: Bacterial wilt of Enset (Ensete ventricosum)
incited by Xanthomonas musacearum sp., Phytopathology, 58, 111–112, 1968.
Zelleke, G., Getachew, A., Abera, D., and Rashid, S.: Fertilizer and soil fertility
potential in Ethiopia: Constraints and opportunities for enhancing the system,
IFPRI, Ethiopian Institute of Agricultural Research, Addis Ababa, Ethiopia, 63, 2010.
Zerfu, A., Gebre, S. L., Berecha, G., and Getahun, K.: Assessment of spatial
distribution of enset plant diversity and enset bacteria wilt using geostatistical techniques in
Yem special district, Southern Ethiopia, Environ. Syst. Res., 7, 1–13,
https://doi.org/10.1186/s40068-018-0126-9, 2018.
Zewdie, S., Fetene, M., and Olsson, M.: Fine root vertical distribution and temporal
dynamics in mature stands of two enset (Ensete ventricosum Welw Cheesman) clones, Plant Soil, 305,
227–236, https://doi.org/10.1007/s11104-008-9554-z, 2008.
Short summary
Nicknamed the
tree against hunger, enset (Ensete ventricosum) is an important multipurpose crop for the farming systems of the densely populated Gamo highlands in Ethiopia. Its high productivity and tolerance to droughts are major assets. Nevertheless, enset production is severely threatened by a wilting disease. This observational study aims to assess soil and leaf nutrients in enset gardens at different altitudes to see if fertility management can be linked to disease prevalence.
Nicknamed the
tree against hunger, enset (Ensete ventricosum) is an important multipurpose crop...