Articles | Volume 6, issue 2
https://doi.org/10.5194/soil-6-399-2020
https://doi.org/10.5194/soil-6-399-2020
Original research article
 | 
26 Aug 2020
Original research article |  | 26 Aug 2020

Short- and long-term temperature responses of soil denitrifier net N2O efflux rates, inter-profile N2O dynamics, and microbial genetic potentials

Kate M. Buckeridge, Kate A. Edwards, Kyungjin Min, Susan E. Ziegler, and Sharon A. Billings

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
ED: Publish subject to minor revisions (review by editor) (21 Jun 2020) by Steven Sleutel
ED: Reconsider after major revisions (01 Jul 2020) by Steven Sleutel
AR by Kate Buckeridge on behalf of the Authors (07 Jul 2020)  Author's response   Manuscript 
ED: Publish subject to technical corrections (14 Jul 2020) by Steven Sleutel
ED: Publish subject to technical corrections (14 Jul 2020) by Johan Six (Executive editor)
AR by Kate Buckeridge on behalf of the Authors (15 Jul 2020)  Author's response   Manuscript 
Download
Short summary
We do not understand the short- and long-term temperature response of soil denitrifiers, which produce and consume N2O. Boreal forest soils from a long-term climate gradient were incubated in short-term warming experiments. We found stronger N2O consumption at depth, inconsistent microbial gene abundance and function, and consistent higher N2O emissions from warmer-climate soils at warmer temperatures. Consideration of our results in models will contribute to improved climate projections.