Articles | Volume 5, issue 1
SOIL, 5, 49–62, 2019
https://doi.org/10.5194/soil-5-49-2019
SOIL, 5, 49–62, 2019
https://doi.org/10.5194/soil-5-49-2019

Original research article 31 Jan 2019

Original research article | 31 Jan 2019

Application of a laser-based spectrometer for continuous in situ measurements of stable isotopes of soil CO2 in calcareous and acidic soils

Jobin Joseph et al.

Related authors

Technical note: Unresolved aspects of the direct vapor equilibration method for stable isotope analysis (δ18O, δ2H) of matrix-bound water: unifying protocols through empirical and mathematical scrutiny
Benjamin Gralher, Barbara Herbstritt, and Markus Weiler
Hydrol. Earth Syst. Sci., 25, 5219–5235, https://doi.org/10.5194/hess-25-5219-2021,https://doi.org/10.5194/hess-25-5219-2021, 2021
Short summary
Diel patterns in stream nitrate concentration produced by in-stream processes
Jan Greiwe, Markus Weiler, and Jens Lange
Biogeosciences, 18, 4705–4715, https://doi.org/10.5194/bg-18-4705-2021,https://doi.org/10.5194/bg-18-4705-2021, 2021
Short summary
Temporal dynamics of tree xylem water isotopes: in situ monitoring and modeling
Stefan Seeger and Markus Weiler
Biogeosciences, 18, 4603–4627, https://doi.org/10.5194/bg-18-4603-2021,https://doi.org/10.5194/bg-18-4603-2021, 2021
Short summary
Leaching of inorganic and organic phosphorus and nitrogen in contrasting beech forest soils – seasonal patterns and effects of fertilization
Jasmin Fetzer, Emmanuel Frossard, Klaus Kaiser, and Frank Hagedorn
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-188,https://doi.org/10.5194/bg-2021-188, 2021
Preprint under review for BG
Short summary
Event controls on intermittent streamflow in a temperate climate
Nils Hinrich Kaplan, Theresa Blume, and Markus Weiler
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-357,https://doi.org/10.5194/hess-2021-357, 2021
Preprint under review for HESS
Short summary

Related subject area

Soils and atmosphere
Nutrient limitations regulate soil greenhouse gas fluxes from tropical forests: evidence from an ecosystem-scale nutrient manipulation experiment in Uganda
Joseph Tamale, Roman Hüppi, Marco Griepentrog, Laban Frank Turyagyenda, Matti Barthel, Sebastian Doetterl, Peter Fiener, and Oliver van Straaten
SOIL, 7, 433–451, https://doi.org/10.5194/soil-7-433-2021,https://doi.org/10.5194/soil-7-433-2021, 2021
Short summary
Oxygen isotope exchange between water and carbon dioxide in soils is controlled by pH, nitrate and microbial biomass through links to carbonic anhydrase activity
Sam P. Jones, Aurore Kaisermann, Jérôme Ogée, Steven Wohl, Alexander W. Cheesman, Lucas A. Cernusak, and Lisa Wingate
SOIL, 7, 145–159, https://doi.org/10.5194/soil-7-145-2021,https://doi.org/10.5194/soil-7-145-2021, 2021
Short summary
Microbial community responses determine how soil–atmosphere exchange of carbonyl sulfide, carbon monoxide, and nitric oxide responds to soil moisture
Thomas Behrendt, Elisa C. P. Catão, Rüdiger Bunk, Zhigang Yi, Elena Schweer, Steffen Kolb, Jürgen Kesselmeier, and Susan Trumbore
SOIL, 5, 121–135, https://doi.org/10.5194/soil-5-121-2019,https://doi.org/10.5194/soil-5-121-2019, 2019
Short summary
Mitigating N2O emissions from soil: from patching leaks to transformative action
C. Decock, J. Lee, M. Necpalova, E. I. P. Pereira, D. M. Tendall, and J. Six
SOIL, 1, 687–694, https://doi.org/10.5194/soil-1-687-2015,https://doi.org/10.5194/soil-1-687-2015, 2015
Short summary

Cited articles

Allan, D. W., Ashby, N., and Hodge, C. C.: The Science of Timekeeping, Hewlett-Packard, 88, available at: http://www.allanstime.com/Publications/DWA/Science_Timekeeping/TheScienceOfTimekeeping.pdf (last access: 16 March 2018), 1997. 
Arend, M., Gessler, A., and Schaub, M.: The influence of the soil on spring and autumn phenology in European beech, Tree Physiol., 36, 78–85, https://doi.org/10.1093/treephys/tpv087, 2016. 
Baer, D. S., Paul, J. B., Gupta, M., and O'Keefe, A.: Sensitive absorption measurements in the near-infrared region using off-axis integrated-cavity-output spectroscopy, Appl. Phys. B-Lasers O., 75, 261–265, https://doi.org/10.1007/s00340-002-0971-z, 2002. 
Barthel, M., Sturm, P., Hammerle, A., Buchmann, N., Gentsch, L., Siegwolf, R., and Knohl, A.: Soil H218O labelling reveals the effect of drought on C18OO fluxes to the atmosphere, J. Exp. Bot., 65, 5783–5793, https://doi.org/10.1093/jxb/eru312, 2014. 
Bertolini, T., Inglima, I., Rubino, M., Marzaioli, F., Lubritto, C., Subke, J.-A., Peressotti, A., and Cotrufo, M. F.: Sampling soil-derived CO2 for analysis of isotopic composition: a comparison of different techniques, Isot. Environ. Healt. S., 42, 57–65, https://doi.org/10.1080/10256010500503312, 2006. 
Download
Short summary
By coupling an OA-ICOS with hydrophobic but gas-permeable membranes placed at different depths in acidic and calcareous soils, we investigated the contribution of abiotic and biotic components to total soil CO2 release. In calcareous Gleysol, CO2 originating from carbonate dissolution contributed to total soil CO2 concentration at detectable degrees, probably due to CO2 evasion from groundwater. Inward diffusion of atmospheric CO2 was found to be pronounced in the topsoil layers at both sites.