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Abstract. The short-term dynamics of carbon and water fluxes across the soil–plant–atmosphere continuum
are still not fully understood. One important constraint is the lack of methodologies that enable simultaneous
measurements of soil CO2 concentration and respective isotopic composition at a high temporal resolution for
longer periods of time. δ13C of soil CO2 can be used to derive information on the origin and physiological history
of carbon, and δ18O in soil CO2 aids in inferring the interaction between CO2 and soil water. We established
a real-time method for measuring soil CO2 concentration, δ13C and δ18O values across a soil profile at higher
temporal resolutions (0.05–0.1 Hz) using an off-axis integrated cavity output spectroscopy (OA-ICOS). We also
developed a calibration method correcting for the sensitivity of the device against concentration-dependent shifts
in δ13C and δ18O values under highly varying CO2 concentration. The deviations of measured data were mod-
elled, and a mathematical correction model was developed and applied for correcting the shift. By coupling an
OA-ICOS with hydrophobic but gas-permeable membranes placed at different depths in acidic and calcareous
soils, we investigated the contribution of abiotic and biotic components to total soil CO2 release. We found that
in the calcareous Gleysol, CO2 originating from carbonate dissolution contributed to the total soil CO2 concen-
tration at detectable degrees, potentially due to CO2 evasion from groundwater. The 13C-CO2 of topsoil at the
calcareous soil site was found reflect δ13C values of atmospheric CO2, and the δ13C of topsoil CO2 at the acidic
soil site was representative of the biological respiratory processes. δ18O values of CO2 in both sites reflected the
δ18O of soil water across most of the depth profile, except for the 80 cm depth at the calcareous site where a
relative enrichment in 18O was observed.

1 Introduction

Global fluxes of CO2 and H2O are two major driving forces
controlling earth’s climatic systems. To understand the pre-
vailing climatic conditions and predict climate change, ac-
curate monitoring and modelling of these fluxes are essen-
tial (Barthel et al., 2014; Harwood et al., 1999; Schär et

al., 2004). Soil respiration, the CO2 flux released from the
soil surface to the atmosphere as a result of microbial and
root respiration (heterotrophic and autotrophic), is the second
largest terrestrial carbon flux (Bond-Lamberty and Thomson,
2010). The long-term dynamics of CO2 release on a sea-
sonal scale are reasonably well understood (Satakhun et al.,
2013), whereas less information on CO2 dynamics and iso-
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topic composition is available for short-term variations on
a diurnal scale (Werner and Gessler, 2011). The lack of a
proper understanding of the diurnal fluctuations in soil CO2
release might introduce uncertainty in estimating the soil car-
bon budget and the CO2 fluxes to the atmosphere. The iso-
topic composition of soil CO2 and its diel fluctuation can
be a critical parameter for the partitioning of ecosystem gas
exchange into its components (Bowling et al., 2003; Mor-
tazavi et al., 2004) and for disentangling plant and ecosys-
tem processes (Werner and Gessler, 2011). By assessing the
δ13C of soil CO2, it is possible to identify the source for
CO2 (Kuzyakov, 2006) and the coupling between photosyn-
thesis and soil respiration when taking into account post-
photosynthetic isotope fractionation (Werner et al., 2012;
Wingate et al., 2010). δ13C soil CO2 reflects, however, not
only microbial and root respiration but also abiotic sources
from carbonate weathering (Schindlbacher et al., 2015).

Soil water imprints its δ18O signature on soil CO2 as a
result of isotope exchange between H2O and CO2 (aque-
ous). The oxygen isotopic exchange between CO2 and soil
water is catalysed by microbial carbonic anhydrase (Sperber
et al., 2015; Wingate et al., 2009). Thus, soil CO2 can give
information on the isotopic composition of both soil water
resources and carbon sources. The oxygen isotope composi-
tion of plant-derived CO2 is both a tracer of photosynthetic
and respiratory CO2 and gives additional quantitative infor-
mation on the water cycle in terrestrial ecosystems (Francey
and Tans, 1987). To better interpret the δ13C and δ18O sig-
nals of atmospheric CO2, the isotopic composition and its
variability in the different sources need to be better under-
stood (Werner et al., 2012; Wingate et al., 2010).

The conventional method for estimating the δ13C and δ18O
of soil CO2 efflux is by using two end-member mixing mod-
els of atmospheric CO2 and CO2 produced in the soil (Keel-
ing, 1958). The conventional methods for sampling soil pro-
duced CO2 are chamber-based (Bertolini et al., 2006; Torn
et al., 2003), “mini-tower” (Kayler et al., 2010; Mortazavi
et al., 2004), and soil-gas-well-based (Breecker and Sharp,
2008; Oerter and Amundson, 2016) methods. In conventional
methods, air sampling is done at specific time intervals, and
δ13C and δ18O are analysed using isotope ratio mass spec-
trometry (IRMS; Ohlsson et al., 2005). Such offline meth-
ods have several disadvantages, like high sampling costs, ex-
cessive time consumption for sampling and analysis, and in-
creased sampling error and low temporal resolution. Kammer
et al. (2011), showed how error prone the conventional meth-
ods could be while calculating δ13C and δ18O (up to several
per mil when using chamber and mini-tower-based meth-
ods; Kammer et al., 2011). In chamber-based systems, non-
steady-state conditions may arise within the chamber due to
increased CO2 concentrations, which in turn hinders the dif-
fusion of 12CO2 more strongly than that of heavier 13CO2
(Risk and Kellman, 2008). Moreover, it has been found that
δ18O of the CO2 inside a chamber is significantly influenced
by the δ18O of the surface soil water, as an equilibrium iso-

topic exchange happens during the upward diffusive move-
ment of soil CO2 (Mortazavi et al., 2004). The advent of
laser-based isotope spectroscopy has enabled cost-effective,
simple, and high precision real-time measurements of δ13C
and δ18O in CO2 (Kammer et al., 2011; Kerstel and Gian-
frani, 2008). This technique opened up new possibilities for
faster and reliable measurements of stable isotopes in situ,
based on the principle of light absorption, using laser beams
of distinct wavelengths in the near- and mid-infrared range
(Bowling et al., 2003). Recently, several high-frequency on-
line measurements of δ13C and δ18O, of soil CO2 and 2H,
and of the 18O of soil water vapour across soil depth pro-
files were reported by coupling either hydrophobic but gas-
permeable membranes (installed at different depths in soil) or
automated chamber systems with laser spectrometers (Bowl-
ing et al., 2015; Jochheim et al., 2018; Stumpp et al., 2018).
Such approaches enable detection of vertical concentration
profiles, temporal dynamics of soil CO2 concentration, and
the isotopic signature of soil CO2 across different soil layers,
thus aiding in identifying and quantifying various sources of
CO2 across the depth profile.

In 1988, O’Keefe and Decon introduced cavity ring-down
spectroscopy (CRDS) for measuring the isotopic ratio of dif-
ferent gaseous species based on laser spectrometry (O’Keefe
and Deacon, 1988). With the laser-based spectrometry tech-
niques, measuring sensitivities up to parts per trillion (ppt)
concentrations is achieved (von Basum et al., 2004; Peltola
et al., 2012). In CRDS, the rate of change in the absorbed
radiation of the laser light that is temporarily “trapped”
within a highly reflective optical cavity is determined. This
is achieved using resonant coupling of a laser beam to the
optical cavity and active locking of laser frequency to cavity
length (Parameswaran et al., 2009). Another well-established
technique similar to CRDS is off-axis integrated cavity out-
put spectroscopy (OA-ICOS). It is based on directing nar-
rowband and continuous-wave lasers in an off-axis configu-
ration to the optical cavity (Baer et al., 2002).

Even though OA-ICOS can measure concentration and
isotope signature of various gaseous species at a high tem-
poral resolution, we found pronounced deviations in δ13C
and δ18O measurements from the absolute values when mea-
sured under changing CO2 concentrations. So far, to our
knowledge, no study detailing the calibration process of OA-
ICOS CO2 analysers correcting for fluctuations of both δ13C
and δ18O values under varying CO2 concentrations has been
made available. Most of the OA-ICOS CO2 analysers are
built for working under stable CO2 concentrations, so period-
ical calibration against in-house gas standards at a particular
concentration is sufficient. However, as there are pronounced
gradients in CO2 levels in soils (Maier and Schack-Kirchner,
2014), CO2-concentration-dependent shifts in measured iso-
topic values have to be addressed and corrected. Such cal-
ibration is, however, also relevant for any other OA-ICOS
application with varying levels of CO2 (e.g. in chamber mea-
surements). Hence the first part of this work comprises the
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establishment of a calibration method for OA-ICOS. The sec-
ond part describes a method for online measurement of CO2
concentrations and stable carbon and oxygen isotope compo-
sition of CO2 in different soil depths by coupling OA-ICOS
with gas-permeable hydrophobic tubes (membrane tubes,
Accurel®). The use of these tubes for measuring soil CO2
concentration (Gut et al., 1998) and the δ13C of soil CO2
(Parent et al., 2013) has already been established, but the cou-
pling to an OA-ICOS system has not been performed, yet.

We evaluated our measurement system by assessing and
comparing the concentration of the δ13C and δ18O of soil
CO2 for a calcareous and an acidic soil system. The primary
foci of this study are to (1) introduce OA-ICOS in online soil
CO2 concentration and isotopic measurements, (2) calibrate
the OA-ICOS to render it usable for isotopic analysis car-
ried out under varying CO2 concentrations, and (3) analyse
the dynamics of δ13C and δ18O of soil CO2 at different soil
depths in different soil types at a higher temporal resolution.

2 Materials and methods

2.1 Instrumentation

The concentration of δ13C and δ18O values of CO2 were
measured with an OA-ICOS, as described in detail by Baer
et al. (2002) and Jost et al. (2006). In this study, we used
an OA-ICOS, (LGR CCIA 36-d) manufactured by Los Gatos
Research Ltd in San Francisco, USA. The LGR CCIA 36-
d measures CO2 concentration and δ13C and δ18O values
at a frequency up to 1 Hz. The operational CO2 concentra-
tion range was 400 to 25 000 ppm. The operating temper-
ature range was +10–+35 ◦C, and the sample temperature
range (gas temperature) was between −20 and 50 ◦C. The
recommended inlet pressure was < 0.0689 MPa. The multi-
port inlet unit (MIU), an optional design that comes along
with LGR CCIA 36-d, had a manifold of eight digitally con-
trolled inlet ports and one outlet port. It presented the user
with an option of measuring eight different CO2 samples at
the desired time interval. Three standard gases with distinct
δ13C and δ18O values were used for calibration in this study
(see Table S1 in the Supplement). The standard gases used in
this study were analysed for absolute concentration and re-
spective δ13C and δ18O values. δ values are expressed based
on Vienna Pee Dee Belemnite (VPDB) CO2 scale and were
determined by high precision IRMS analysis.

2.2 Calibration set-up and protocol

We developed a two-step calibration procedure to (a) cor-
rect for concentration-dependent errors in isotopic data mea-
surements and (b) correct for deviations in measured δ

values from absolute values due to the offset (other than
concentration-dependent error) introduced by the laser spec-
trometer. Also, we used Allan variance curves for determin-
ing the time interval to average the data (Nelson et al., 2008)

in order to achieve the highest precision that can be offered
by the LGR CCIA 36-d (Allan et al., 1997).

The first part of our calibration methodology was devel-
oped to correct for the concentration-dependent error ob-
served in preliminary studies for δ13C and δ18O values mea-
sured using OA-ICOS. Such a calibration protocol was used
in addition to the routine three-point calibration performed
with in-house CO2 gas standards of known δ13C and δ18O
values. We developed a CO2 dilution set-up (see Fig. 1) in
which each of the three CO2 standard gases was diluted
with synthetic CO2-free air (synthetic air) to different CO2
concentrations. By applying a dilution series, we identified
the deviation of the measured (OA-ICOS) from the absolute
(IRMS) δ13C and δ18O values depending on CO2 concen-
tration (see Fig. 4). The δ13C and δ18O values of our in-
house calibration gas standards were measured via cryoex-
traction and dual-inlet IRMS. δ13C and δ18O of the standard
gases (see Table S1) across a wide range of CO2 concen-
trations are measured using OA-ICOS. The deviation of the
measured δ13C, and δ18O from absolute values with respect
to changing CO2 concentrations was mathematically mod-
elled and later used for data correction (see Fig. 5). A stan-
dard three-point calibration was then applied to correcting for
concentration-dependent errors (see Fig. 7). The standards
used covered a wide range of δ13C and δ18O values, includ-
ing the values observed in the field of application.

Standard gases were released to a mass flow controller
(ANALYT-MTC, series 358, MFC1) after passing through
a pressure controller valve (see Fig. 1) with safety bypass
(TESCOM, D43376-AR-00-X1-S, version 5). A Swagelok
filter, (Stainless Steel All-Welded In-Line Filter; Swagelok,
SS-4FWS-05, F1) was installed at the inlet of the flow
controller (ANALYT-MTC, series 358, MFC1). Synthetic
air was released and passed to another flow controller
(ANALYT-MTC, series 358, MFC2) through a Swagelok
filter (F2 in Fig. 1). CO2 and synthetic air leaving the
flow controllers (MFC1 and MFC2 respectively) were then
mixed and drawn through a Teflon tube (P8) with a 6.35 mm
outer diameter (OD), which was kept in a gas thermo-
stat unit (see Fig. 1). The thermostat unit contained (a) a
thermostat-controlled water bath (Kottermann, 3082) and
(b) an Isotherm flask containing liquid nitrogen. The water
bath was used to raise the temperature above room temper-
ature and also to bring the temperature down to +5 ◦C by
placing ice packs in the water bath. To reach low tempera-
tures (−20 ◦C), we immersed the tubes in the isotherm flask
filled with liquid N2. Leaving the thermostat unit, the gas
was directed to the multiport inlet unit of the OA-ICOS. By
using the thermostat unit, we introduced a shift in the ref-
erence gas temperature, and the aim was to test the tem-
perature sensitivity of the OA-ICOS in measuring δ13C and
δ18O values. The third CO2 standard gas (which is used for
validation) was produced by mixing the other two gas stan-
dards in equal molar proportions in a 10 L volume plastic
bag with an inner aluminum foil coating and welded seams

www.soil-journal.net/5/49/2019/ SOIL, 5, 49–62, 2019



52 J. Joseph et al.: Application of OA-ICOS for continuous in situ measurements of stable isotopes of CO2

Figure 1. Set-up made for calibration of OA-ICOS (LGR CCIA 36-d). I (1, 2) represents CO2 standards, CO2 mix denotes gas standards
mixed in equal molar proportion, I3 represents synthetic air, MFC (1, 2) denotes mass flow controller, F (1, 2) represents PTFE filter, V (1, 2,
3) denotes pressure-reducing valves, V4 shows three-way ball valve, V (5, 6) stands for pressure controller valve with safety bypass, P (1–7)
denotes steel pipes, and P (8–11) represents Teflon tubing.

(CO2 mix: Linde PLASTIGAS®) under 0.03 MPa pressure
by diluting to the required concentration using synthetic air.
The mixture was then temperature adjusted and delivered to
the MIU by using a 6.35 mm (OD) Teflon tube (P10). From
the multiport inlet unit, calibration gases were delivered into
the OA-ICOS for measurement using a 6.35 mm OD Teflon
tube (P9) at a pressure < 0.0689 MPa, with a flow rate of
500 mL min−1. The gas leaving the OA-ICOS through the
exhaust was fed back to the 6.35 mm (OD) Teflon tube (P8)
by using a Swagelok pipe tee (Stainless Steel Pipe Fitting,
Male Tee, 6.35 mm OD, Male NPT), intersecting the P8 line
before entering the thermostat unit. Thus, the gas fed was
looped in the system until steady values were reported by the
OA-ICOS based on CO2 (ppm), δ13C, and δ18O measure-
ments. CO2 gas standards were measured at 27 different CO2
concentration levels ranging between 400 and 25 000 ppm.
Every hour before sampling, synthetic air gas was flushed
through the system to remove CO2 to avoid memory effects.
The calibration gases were measured in a sequence, one after
the other, four times. During each round of measurement, ev-
ery calibration gas was diluted to different concentrations of
CO2 (400–25 000 ppm), and the respective isotopic signature
and concentration were determined. For each measurement
of δ13C and δ18O at a given concentration, the first 50 read-
ings were omitted to avoid possible memory effects of the

laser spectrometer, and the subsequent readings for the next
256 s were taken and averaged to get maximum precision for
δ13C and δ18O measurements. When switching between dif-
ferent calibration gases at the multiport inlet unit, synthetic
air was purged through the systems for 30 s to avoid cross
contamination.

2.3 Experimental sites

In situ experiments were conducted to measure δ13C, δ18O,
and concentrations of soil CO2 in two different soil types
(calcareous and acidic soil). The measurements in a calcare-
ous soil were conducted during June 2014 in cropland cul-
tivated with wheat (Triticum aestivum) in Neuried, a small
village in the upper Rhine Valley in Germany, situated at
48◦26′55.5′′ N, 7◦47′20.7′′ E, 150 m a.s.l. The soil type de-
scribed as calcareous Fluvic Gleysol IUSS Working Group
WRB (2015) developed on gravel deposits in the upper Rhine
Valley. Soil depth was medium to deep, with high contents
of coarse material (> 2 mm) up to 30 %–50 %. Mean soil
organic carbon (SOC) content was 1.2 %–2 %, and SOC
stock ranged between 50 and 90 t ha−1. The average pH was
found to be 8.6. The study site receives an annual rainfall of
810 mm and has a mean annual temperature of 12.1 ◦C.
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In situ measurements in an acidic soil were conducted
by the end of July 2014 in the model ecosystem fa-
cility (MODOEK) of the Swiss Federal Research In-
stitute WSL in Birmensdorf, Switzerland (47◦21′48′′ N,
8◦27′23′′ E; 545 m a.s.l.). The MODOEK facility comprises
16 model ecosystems, split below ground into two lysimeters
with an area of 3 m2 and a depth of 150 cm. The lysimeters
used for the present study were filled with acidic (Haplic Al-
isol) forest soil IUSS (2014) and planted with young beech
trees (Arend et al., 2016). The soil pH was 4.0, with a total
SOC content of 0.8 % (Kuster et al., 2013).

2.4 Experimental set-up

The OA-ICOS was connected to gas-permeable, hydropho-
bic membrane tubes (Accurel® tubing, 8 mm outer diame-
ter) of 2 m length, placed horizontally in the soil at different
depths. Tubes were laid in six different depths (4, 8, 12, 17,
35, and 80 cm) for calcareous soil and three depths (10, 30,
and 60 cm) for acidic soil.

Technical details of the measurement set-up are shown
in Fig. 2. Both ends of the membrane tubes were ex-
tended vertically upwards, reaching the soil top by connect-
ing them to gas impermeable Synflex® tubing (8 mm OD) us-
ing Swagelok tube fitting union (Swagelok: SS-8M0-6, 8 mm
tube OD). One end of the tubing system was connected to
a solenoid switching valve (Bibus: MX-758.8E3C3KK), by
using a stainless-steel reducing union (Swagelok: SS-8M0-6-
6M), to the outlet of the LGR CCIA 36-d by using 6.35 mm
(OD) Teflon tubing. The other end was connected via the
multiport inlet unit to the gas inlet of the LGR CCIA 36-d.

This way, a loop was created in which the soil CO2 drawn
into the OA-ICOS was circulated back through the tubes
and in and out of the OA-ICOS and measured until a steady
state was reached. We experienced no drop in cavity pressure
while maintaining a closed loop (see Fig. S2). Each depth
was selected and continuously measured for 6 min at speci-
fied time intervals by switching to defined depths at the mul-
tiport inlet unit and also at the solenoid valve.

3 Results and discussion

3.1 Instrument calibration and correction

The highest level of precision obtained for δ13C and δ18O
measurements at the maximum measuring frequency (1 Hz)
was determined by using Allan deviation curves (see Fig. 3).
The maximum precision of 0.022 ‰ for δ13C was obtained
when the data were averaged over 256 s, and the maximum
for δ18O, 0.077 ‰, was obtained for the same averaging in-
terval as for δ13C.

To correct for CO2 concentration-dependent errors in raw
δ13C and δ18O data, we analysed data obtained from the OA-
ICOS to determine the sensitivity of δ13C and δ18O measure-
ments against changing concentrations of CO2. We observed

Figure 2. Installation made for soil air CO2 (ppm), δ13C-CO2 and
δ18O−CO2 measurements using off-axis integrated cavity output
spectrometer (OA-ICOS). Hydrophobic membrane tubing was in-
stalled horizontally in soil at different depths. MIU: multiport inlet
unit.

a specific pattern of deviance in the measured isotopic data
from the absolute values (both for δ13C and δ18O) across
CO2 concentration ranging from 25 000 to 400 ppm (see
Fig. 4). Uncalibrated δ13C and δ18O measurements showed a
standard deviation of 6.44 ‰ and 6.80 ‰ respectively, when
measured under changing CO2 concentrations.

The dependency of δ13C and δ18O values on the CO2
concentration was compensated by using a non-linear
model. The deviations (Diff-δ) of the measured delta val-
ues (δ(OA-ICOS)) from the absolute value of the standard gas
(δ(IRMS)) at different concentrations of CO2 were calculated
(Diff-δ = δ(OA-ICOS)− δ(IRMS)). Several mathematical mod-
els were then fitted to Diff-δ as a function of changing CO2
concentration (see Fig. 5). The mathematical model with
the best fit for Diff-δ data was selected using the corrected
Akaike information criterion (AICC; Glatting et al., 2007;
Hurvich and Tsai, 1989; Yamaoka et al., 1978). The non-
linear model fits applied for Diff-δ13C and Diff-δ18O mea-
surements are given in Tables 1 and 2, respectively. For Diff-
δ13C, a three-parameter exponential model fitted best with
r2
= 0.99 (see Table 3 for the values of the parameters; see

Fig. S3a for model residuals), and a three-parameter power
function model (see Table 2) with r2

= 0.99 showed the best
fit for Diff-δ18O (see Table 3 for the values of the parame-
ters; see Fig. S3b for model residuals). The best fit was then
introduced into the measured isotopic data (δ13C and δ18O)
and corrected for concentration-dependent errors (see Fig. 6).
After correction, the standard deviation of δ13C was reduced
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Figure 3. Allan deviation curve for δ13C (a) and δ18O (b) measurements by OA-ICOS CO2 carbon isotope analyser (LGR CCIA-36d).

Figure 4. Variability observed in (a) δ13C and (b) δ18O measurements using OA-ICOS before calibration. δ13C and δ18O measured using
OA-ICOS for heavy standard and light standard are shown as red and blue circles respectively. Actual δ13C and δ18O values reported after
measuring by IRMS for heavy standard and light standard are shown as red and blue dashed lines respectively.

to 0.08 ‰, and the deviation of δ18O to 0.09 ‰, for all mea-
surements across the whole CO2 concentration range.

After correcting the measured δ13C and δ18O values for
the CO2 concentration-dependent deviations, a three-point
calibration (Sturm et al., 2012) was made by generating lin-
ear regressions with the concentration-corrected δ13C and
δ18O values against absolute δ13C and δ18O values (see
Fig. 7; see Fig. S4 for linear regression residuals). Using the
linear regression lines, we were able to measure the valida-
tion gas standard, with standard deviations of 0.0826 ‰ for
δ13C and 0.0941 ‰ for δ18O.

For the LGR CCIA 36-d, we found that routine calibra-
tion (correction for concentration-dependent error plus three-
point calibration) was necessary for obtaining the required
accuracy, in particular under fluctuating CO2 concentrations.
The LGR CCIA-36d offers an option for calibration against a
single standard, a feature which was already in place in a pre-
decessor model (CCIA DLT-100; Guillon et al., 2012). This
internal calibration is sufficient when LGR CCIA-36d is op-
erated only under stable CO2 concentrations. To correct for
the concentration dependency, we introduced mathematical
model fits, which corrected for the deviation pattern found
for both δ13C and δ18O. We assume that these deviations
are instrument specific and that the fitting parameters need to
be adjusted for every single device. Experiments conducted

to investigate the influence of external temperature fluctua-
tions on OA-ICOS measurements did not show any signifi-
cant changes in the temperature inside the optical cavity of
the OA-ICOS (see Fig. S1). The previous version of the Los
Gatos CCIA was strongly influenced by temperature fluctua-
tions during sampling (Guillon et al., 2012). The lack of tem-
perature dependency as observed here with the most recent
model can be mostly due to the heavy insulation provided
with the system, which was not found in the older models.

Guillon et al. (2012) found a linear correlation between
CO2 concentration and respective stable isotope signatures
with a previous version of the Los Gatos CCIA CO2 stable
isotope analyser. In our experiments with the OA-ICOS, the
best fitting correlations between CO2 concentration and δ13C
and δ18O measurements were exponential and power func-
tions, respectively. We assume that measurement accuracy is
influenced by the number of CO2 molecules present inside
the laser cavity of the particular laser spectrometer, as we
observed large standard deviation in isotopic measurements
at lower CO2 concentrations. This behaviour of an OA-ICOS
can be expected, as it functions by sweeping the laser along
an absorption spectrum, measuring the energy transmitted af-
ter passing through the sample. Therefore, energy transmit-
ted is proportional to the gas concentration in the cavity. The
laser absorbance is then determined by normalising against a
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Table 1. Correction factor models are fitted for Diff-δ13C, DF (degrees of freedom), AICC (Akaike information criterion), and [CO2] CO2
concentration in ppm.

Model fit Equation R2 AICC DF

Exponential Diff-δ13C= a× (b− exp(−c×[CO2])) 0.99 −294.6 54

Polynomial Diff-δ13C= a+
(
b×

[
CO2

])
+

(
c/[CO2]

2
)

0.98 −27.56 54

Logarithmic Diff-δ13C= a+ b× ln ([CO2]) 0.89 91.68 55
LOWESS – 0.99 −170.24 54

Table 2. Correction factor models are fitted for Diff-δ18O, DF (degrees of freedom), AICC (Akaike information criterion), and [CO2] CO2
concentration in ppm.

Model fit Equation R2 AICC DF

Power Diff-δ18O= a×
(
b[CO2]

)
×

(
[CO2]

c
)

0.99 −337.04 51

Polynomial Diff-δ18O= (a+ b× x)/
(

1+ c×[CO2] + d ×[CO2]
2
)

0.98 −19.34 50

Steinhart–Hart Diff-δ18O= 1/a+ (b× ln[CO2])+
(
c× (ln[CO2])3

)
0.96 29.77 51

LOWESS – 0.78 128.66 51

Table 3. Parameter values for correction factor model fit for Diff-
δ13C and Diff-δ18O.

Parameter Value SE 95 % confidence

a13C 31.007 0.2149 30.57–31.43
b13C 0.713 0.002376 0.708995–0.718522
c13C 0.000043 0.000000 0.000042–0.000043
a18O 0.85 0.003 0.8455–0.8576
b18O 0.99 0.00 0.999928–0.9999283
c18O 0.477 0.0047 0.476871–0.478767

reference signal, finally calculating the concentration of the
sample measured by integrating the whole spectrum of ab-
sorbance (O’Keefe et al., 1999).

3.2 Variation in soil CO2 concentration, carbon, and
oxygen isotope values

Figures 9 and 10 show the CO2 concentration and the δ13C
and δ18O measurements of soil CO2 in the calcareous as
well as in the acidic soil across the soil profile with a sub-
daily resolution and as averages for the day, respectively.
We observed an increase in the CO2 concentration across
the soil depth profile for both the calcareous and the acidic
soil. Moreover, there were rather contrasting δ13C values
across the profile for the two soil types. In the calcareous
soil, CO2 was relatively enriched in 13C in the surface soil
(4 cm) as compared to the 8 cm depth. Below 8 cm down to
80 cm depth, we found an increase in δ13C values. At 80 cm
depth, the δ13C in soil CO2 ranged between −7.15 ‰ and
−3.35 ‰ (see Fig. 9), with a daily average of−6.19±1.45 ‰

(see Fig. 10), hence being clearly above atmospheric values
(≈−8.0 ‰). For δ18O values of calcareous soil, the depth
profile showed no specific pattern, except for the δ18O val-
ues at 80 cm depth, which were found to be less negative
than the values at the other depths. The δ18O value in the
top 4 cm was found to be slightly more enriched that the
8 cm depth, and between 8–35 cm, δ18O values showed little
variation relative to each other. For the sub-daily measure-
ments, we observed a sharp decline in δ18O values at around
02:00 CET, which is also observed but less pronounced for
the δ13C signal. We assume that the reason for such aberrant
values is a technical issue rather than a biological process.
It could be due to the fact that the internal pump in the OA-
ICOS was not taking an adequate amount of gas into the op-
tical cavity, thereby creating a negative pressure inside the
cavity resulting in the observed aberrant values. The patterns
observed for the δ13C values of CO2 in the calcareous soil
with 13C enrichment in deeper soil layers can be explained
by a substantial contribution of CO2 from abiotic origin to
total soil CO2 release as a result of carbonate weathering and
subsequent outgassing from soil water (Schindlbacher et al.,
2015). According to Cerling (1984), the distinct oxygen and
carbon isotopic composition of soil carbonate depends pri-
marily on the isotopic signature of meteoric water and on the
proportion of C4 biomass present at the time of carbonate
formation (Cerling, 1984) but also on numerous other fac-
tors that determine the 13C value of soil CO2. CO2 released
as a result from carbonates in calcareous soil site have a dis-
tinct δ13C value of −9.3 (mean value across soil profile 0–
80 cm depth; Fig. 8c), while CO2 released during biological
respiratory processes has δ13C values around −24 ‰, as ob-
served in the acidic soil (Fig. 10e). The δ13C values of soil
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Figure 5. Mathematical models for concentration dependent drift in OA-ICOS measurements of stable isotopes of carbon (a) and oxygen (b)
in CO2 from IRMS measurements. Blue circles show Diff-δ13C (a) and Diff-δ18O (b) data points, and lines represent different mathematical
models fitted on the measured data.

Figure 6. Corrected (a, c) δ13C and (b, d) δ18O measurements by OA-ICOS CO2 carbon isotope analyser. δ13C and δ18O measured for
heavy standard and light standard are shown as red and blue circles respectively. Actual δ13C and δ18O values reported after measuring by
IRMS are shown as black dashed lines, and 95 % confidence intervals are shown as coloured dashed lines, respectively.

CO2 observed in the deepest soil layer in the calcareous soil
site most likely indicate the presence of carbonate sources of
a pedogenic and geologic origin. Even though the contribu-
tion of CO2 from abiotic sources to soil CO2 is often con-
sidered to be low, several studies have reported significant
proportions ranging between (10 %–60 %), emanating from
abiotic sources (Emmerich, 2003; Plestenjak et al., 2012;
Ramnarine et al., 2012; Serrano-Ortiz et al., 2010; Steven-

son and Verburg, 2006; Tamir et al., 2011). Bowen and Beer-
ling (2004) showed that isotope effects associated with soil
organic matter (SOM) decomposition can cause a strong gra-
dient in δ values of soil organic matter with depth but are
not always reflected in the δ13C values of soil CO2. We have
measured soil samples for bulk soil δ13C, carbonate δ13C,
and δ18O values and have also determined the percentage of
total carbon in the soil across a depth profile of (0–80 cm; see
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Figure 7. Three-point calibration lines for (a) δ13C and (b) δ18O measurements using OA-ICOS with 95 % confidence interval.

Figure 8. Depth profile of (a) δ13C, (b) carbon content, (c) δ13C of soil carbonate, and (d) δ18O of soil carbonate in calcareous soil.

Fig. 8). We observed an increase in δ13C values for bulk soil
in deeper soil layers (see Fig. 8a, c). Moreover, the carbon-
ate δ13C values also got more positive in the 60–80 cm layer.
Since total organic carbon content decreases with depth, it
can be assumed that the CO2 derived from carbonate weath-
ering, having less negative δ13C values, more strongly con-
tributed to the soil CO2 (especially since we see an increase
in soil CO2 concentration with depth). This is accordance
with the laser-based measurements which showed a strong
increase in the δ13C of soil CO2 in the deepest soil layer,
leading us to the hypothesis that this signal indicates a strong
contribution of carbonate-derived CO2. Water content, soil
CO2 concentration, and the presence of organic acids or any
other source of H+ are the major factors influencing carbon-
ate weathering, and variations in soil CO2 partial pressure,
moisture, temperature, and pH can cause degassing of CO2
which contributes to the soil CO2 efflux (Schindlbacher et
al., 2015; Zamanian et al., 2016). CaCO3 solubility in pure
H2O at 25 ◦C is 0.013 g L−1, but in weak acids like carbonic
acid, the solubility is increased up to 5 fold (Zamanian et
al., 2016). The production of carbonic acid due to CO2 dis-
solution will convert carbonate to bicarbonates, resulting in
exchange of carbon atoms between carbonates and dissolved
CO2.We assume that at our study site, the topsoil is decar-

bonated due to intensive agriculture for a longer period, thus
the soil CO2 there originates primarily from autotrophic and
heterotrophic respiratory activity. In contrast to the deeper
soil layers, where the carbonate content is high, CO2 from
carbonate weathering is assumed to be a dominating source
of soil CO2. Also, outgassing of CO2 from the large ground-
water body underneath the calcareous Gleysol might con-
tribute to the inorganic CO2 sources in the deeper soil, as
we found the groundwater table to be 1–2 m below the soil
surface. Relative 13C enrichment of the CO2 in the topsoil
(4 cm) compared to that at 8 cm depth is probably due to
the invasive diffusion of atmospheric CO2, which has a δ13C
value close to −8 ‰ (e.g. Levin et al., 1995). The δ18O pat-
terns for CO2 between 4 and 35 cm might reflect the δ18O
of soil water with stronger evaporative enrichment at the top
and 18O depletion towards deeper soil layers. In compari-
son, the strong 18O enrichment of soil CO2 towards 80 cm in
the calcareous Gleysol very likely reflects the 18O values of
groundwater lending further support to the high contribution
of CO2 originating from the outgassing of groundwater. We,
however, need then to assume that the oxygen in the CO2 is
not in full equilibrium with the precipitation-influenced soil
water. Since mainly microbial carbonic anhydrase mediates
the fast equilibrium between CO2, and water in the soil and
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Figure 9. Time course of the evolution of soil gas CO2 (ppm), δ13C, and δ18O in calcareous (a, c, e) and acidic (b, d, f) soils. Data collected
continuously over a 12 h time frame for the calcareous soil and a 14 h time window with intermittent data collection for the acidic soil.

the microbial activity is low in deeper soil layers (Schmidt et
al., 2011), we speculate that in deep layers with a significant
contribution of groundwater derived CO2 to the CO2 pool, a
lack of full equilibration with soil water might be the reason
for the observed δ18O values.

Soil CO2 concentration in the acidic soil showed a pos-
itive relationship with soil depth as CO2 concentration in-
creased along with increasing soil depth (Figs. 9 and 10).
CO2 concentrations were distinctly higher than in the cal-
careous soil, very likely due to the finer texture than in the
gravel-rich calcareous soil. δ13C values amounted to approx-
imately −26 ‰ in 30 and 60 cm depth, indicating the biotic
origin from (autotrophic and heterotrophic) soil respiration
(Schönwitz et al., 1986). In the topsoil, δ13C values did not
strongly increase, pointing towards a less pronounced inward
diffusion of CO2 in the acidic soil site, most likely due to
more extensive outward diffusion of soil CO2, as indicated
by the still very high CO2 concentration at 10 cm creating
a sharp gradient between soil and atmosphere. Moreover, the
acidic soil was rather dense and contained no stones, strongly
suggesting that gas diffusivity was rather small. δ18O depth
patterns of soil CO2 in the acidic soil most likely reflected
δ18O values of soil water as CO2 became increasingly 18O
depleted from top to bottom. The δ18O of deeper soil lay-
ers CO2 (30–60 cm) was close to the values expected when

full oxygen exchange between soil water and CO2 occurred
(Kato et al., 2004). Assuming an 18O fractionation of 41 ‰
between CO2 and water (Brenninkmeijer et al., 1983), this
would result in an expected value for CO2 of ≈−10± 2 ‰
vs. VPDB CO2. Corresponding results have been shown for
δ18O of soil CO2 using similar hydrophobic gas-permeable
membrane tubes used when measuring δ18O of soil CO2 and
soil water in situ (Gangi et al., 2015).

4 Conclusions

During our preliminary tests with the OA-ICOS, we found
that the equipment was highly sensitive to changes in CO2
concentrations. We found a non-linear response of the δ13C
and δ18O values against changes in CO2 concentration.
Given the fact that laser-based CO2 isotope analysers are
deployed on site in combination with different gas sam-
pling methods like automated chambers systems (Bowling
et al., 2015) and hydrophobic gas-permeable membranes
(Jochheim et al., 2018) for tracing various ecosystem pro-
cesses, it is important to address this issue. Therefore, we
developed a calibration strategy for correcting errors intro-
duced in δ13C and δ18O measurements due to the sensitiv-
ity of the device against changing CO2 concentrations. We
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Figure 10. Daily average data of soil CO2 (ppm), δ13C, and δ18O in calcareous (a, b, c) and acidic (d, e, f) soils across soil depth profiles.

found that the OA-ICOS measures stable isotopes of CO2 gas
samples with a precision comparable to conventional IRMS.
The method described in this work for measuring CO2 con-
centration and δ13C and δ18O values in soil air profiles us-
ing an OA-ICOS and hydrophobic gas-permeable tubes is
promising and can be applied for soil CO2 flux studies. As
this set-up is capable of measuring continuously for longer
time periods at a higher temporal resolution (0.05–0.1 Hz), it
offers greater potential to investigate the isotopic identity of
CO2 and the interrelation between soil CO2 and soil water.
By using our measurement set-up, we could identify abiotic
as well as biotic contributions to the soil CO2 in the calcare-
ous soil. We infer that degassing of CO2 from carbonates due
to weathering and evasion of CO2 from groundwater may
leave the soil CO2 with a specific and distinct δ13C signa-
ture, especially when the biotic activity is rather low.
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