Articles | Volume 11, issue 2
https://doi.org/10.5194/soil-11-975-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/soil-11-975-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Circular economy approach in phosphorus fertilization based on vivianite must be tailored to soil properties
Tolulope Ayeyemi
CORRESPONDING AUTHOR
Department of Agronomy, ETSIA, University of Seville, Seville, 41013, Spain
Ramiro Recena
Department of Aerospace Engineering and Fluid Mechanics, University of Seville, Seville, 41013, Spain
Ana María García-López
Department of Agronomy, ETSIA, University of Seville, Seville, 41013, Spain
José Manuel Quintero
Department of Agronomy, ETSIA, University of Seville, Seville, 41013, Spain
María Carmen del Campillo
Department of Agronomy, ETSIAM, University of Córdoba, Campus de Rabanales, 14071 Córdoba, Spain
Antonio Delgado
Department of Agronomy, ETSIA, University of Seville, Seville, 41013, Spain
Cited articles
Ayeyemi, T., Recena, R., García-López, A. M., and Delgado, A.: Circular Economy Approach to Enhance Soil Fertility Based on Recovering Phosphorus from Wastewater, Agronomy, 13, 1513, https://doi.org/10.3390/agronomy13061513, 2023.
Ayeyemi, T., Recena, R., García-López, A. M., Quintero, J. M., del Campillo, M. C., and Delgado, A.: Efficiency of Vivianite from Water Purification Depending on Its Mixing with Superphosphate and Application Method, Agronomy, 14, 2639, https://doi.org/10.3390/agronomy14112639, 2024.
Balemi, T. and Negisho, K.: Management of soil phosphorus and plant adaptation mechanisms to phosphorus stress for sustainable crop production: a review, J. Soil Sci. Plant Nutr., https://doi.org/10.4067/S0718-95162012005000015, 2012.
Bibi, S., Irshad, M., Ullah, F., Mahmood, Q., Shahzad, M., Tariq, M. A. U. R., Hussain, Z., Mohiuddin, M., An, P., Ng, A. W. M., Abbasi, A., Hina, A., and Gonzalez, N. C. T.: Phosphorus extractability in relation to soil properties in different fields of fruit orchards under similar ecological conditions of Pakistan, Front. Ecol. Evol., 10, 1077270, https://doi.org/10.3389/fevo.2022.1077270, 2023.
Bindraban, P. S., Dimkpa, C., Nagarajan, L., Roy, A., and Rabbinge, R.: Revisiting fertilisers and fertilisation strategies for improved nutrient uptake by plants, Biol. Fertil. Soils, 51, 897–911, https://doi.org/10.1007/s00374-015-1039-7, 2015.
Bueis, T., Bravo, F., Pando, V., Kissi, Y.-A., and Turrión, M.-B.: Phosphorus availability in relation to soil properties and forest productivity in Pinus sylvestris L. plantations, Annals of Forest Science, 76, 97, https://doi.org/10.1007/s13595-019-0882-3, 2019.
Cordell, D., Drangert, J.-O., and White, S.: The story of phosphorus: Global food security and food for thought, Global Environmental Change, 19, 292–305, https://doi.org/10.1016/j.gloenvcha.2008.10.009, 2009.
De Santiago, A. and Delgado, A.: Interaction between beet vinasse and iron fertilisers in the prevention of iron deficiency in lupins, J. Sci. Food Agric., 90, 2188–2194, https://doi.org/10.1002/jsfa.4068, 2010.
Dechassa, N. and Schenk, M. K.: Exudation of organic anions by roots of cabbage, carrot, and potato as influenced by environmental factors and plant age, Z. Pflanzenernähr. Bodenk., 167, 623–629, https://doi.org/10.1002/jpln.200420424, 2004.
Delgado, A. and Gómez, J. A.: The Soil. Physical, Chemical and Biological Properties, in: Principles of Agronomy for Sustainable Agriculture, edited by: Villalobos, F. J. and Fereres, E., Springer International Publishing, Cham, 15–26, https://doi.org/10.1007/978-3-319-46116-8_2, 2016.
Delgado, A. and Scalenghe, R.: Aspects of phosphorus transfer from soils in Europe, J. Plant Nutr. Soil. Sci., 171, 552–575. 2008.
Deinert, L., Ashekuzzaman, S. M., Forrestal, P., and Schmalenberger, A.: One-time application of struvites, ashes and superphosphate had no major impact on the microbial phosphorus mobilization capabilities over 15 months in a grassland field trial, Applied Soil Ecology, 212, 106198, https://doi.org/10.1016/j.apsoil.2025.106198, 2025.
Deubel, A. and Merbach, W.: Influence of Microorganisms on Phosphorus Bioavailability in Soils, in: Microorganisms in Soils: Roles in Genesis and Functions, edited by: Varma, A. and Buscot, F., Soil Biology, vol. 3, Springer, Berlin, Heidelberg, https://doi.org/10.1007/3-540-26609-7_9, 2005.
Díaz, I., Barrón, V., Del Campillo, M. C., and Torrent, J.: Vivianite (ferrous phosphate) alleviates iron chlorosis in grapevine, Vitis, 48, 107–113, 2009.
Dijkstra, N., Slomp, C. P., and Behrends, T.: Vivianite is a key sink for phosphorus in sediments of the Landsort Deep, an intermittently anoxic deep basin in the Baltic Sea, Chemical Geology, 438, 58–72, https://doi.org/10.1016/j.chemgeo.2016.05.025, 2016.
Egger, M., Jilbert, T., Behrends, T., Rivard, C., and Slomp, C. P.: Vivianite is a major sink for phosphorus in methanogenic coastal surface sediments, Geochimica et Cosmochimica Acta, 169, 217–235, 2015.
Eshun, L. E., García-López, A. M., Recena, R., Coker, V., Shaw, S., Lloyd, J., and Delgado, A.: Assessing microbially mediated vivianite as a novel phosphorus and iron fertilizer, Chem. Biol. Technol. Agric., 11, 47, https://doi.org/10.1186/s40538-024-00558-0, 2024.
Eynard, A., Del Campillo, M. C., Barron, V., and Torrent, J.: Use of vivianite (Fe3(PO4)2.8H20) to prevent iron chlorosis in calcareous soils, Fertilizer Research, 31, 61–67, https://doi.org/10.1007/BF01064228, 1992.
Faller, L., Kowalchuk, G. A., and Kuramae, E. E.: Phosphate-cycling activity of the soil microbiome in response to the recycled phosphates struvite and vivianite, Applied Soil Ecology, 213, 106296, https://doi.org/10.1016/j.apsoil.2025.106296, 2025.
Fodoué, Y., Nguetnkam, J. P., Tchameni, R., Basga, S. D., and Penaye, J.: Assessment of the fertilizing effect of vivianite on the growth and yield of the bean “Phaseolus vulgaris” on oxisoils from Ngaoundere (central north Cameroon), Int. Res. J. Earth Sci., 3, 18–26, 2015.
Frick, H., Bünemann, E. K., Hernandez-Mora, A., Eigner, H., Geyer, S., Duboc, O., and Ylivainio, K.: Bio-based fertilisers can replace conventional inorganic P fertilisers under European pedoclimatic conditions, Field Crops Research, 325, https://doi.org/10.1016/j.fcr.2025.109803, 2025.
Gee, G. W. and Bauder, J. W.: Particle-Size Analysis, in: Methods of Soil Analysis, Part 1. Physical and Mineralogical Methods, Agronomy Monograph No. 9, 2nd edn., edited by: Klute, A., American Society of Agronomy/Soil Science Society of America, Madison, WI, 383–411, https://doi.org/10.2136/sssabookser5.1.2ed.c15, 1986.
García-López, A. M., Avilés, M. and Delgado, A.: Effect of various microorganisms on phosphorus uptake from insoluble Ca-phosphates by cucumber plants, J. Plant Nutr. Soil Sci., 179, 454–465, https://doi.org/10.1002/jpln.201500024, 2016.
García-López, A. M., Recena, R., Avilés, M. and Delgado. A.: Effect of Bacillus subtilis QST713 and Trichoderma asperellum T34 on P uptake by wheat and how it is modulated by soil properties, J. Soils Sediments, 18, 727–738, https://doi.org/10.1007/s11368-017-1829-7, 2018.
García-López, A. M., Recena, R. and Delgado, A.: The adsorbent capacity of growing media does not constrain myo-inositol hexakiphosphate hydrolysis but its use as a phosphorus source by plants, Plant Soil, 459, 277–288, https://doi.org/10.1007/s11104-020-04764-1, 2021.
García-López, A. M., Recena, R., Quintero, J. M., and Delgado, A.: Phytate efficiency as a phosphorus source for wheat varies with soil properties, Geoderma, 457, 117291, 2025.
Heckenmüller, M., Narita, D., and Klepper, G.: Global availability of phosphorus and its implications for global food supply: An Economic Overview, Kiel Working Paper, (1897), 1–26, 2014.
Heiberg, L., Koch, C. B., Kjaergaard, C., Jensen, H. S., and Hansen, H. C. B.: Vivianite precipitation and phosphate sorption following iron reduction in anoxic soils, Journal of Environmental Quality, 41, 938–949, 2012.
Hernandez-Mora, A., Duboc, O., Lombi, E., Bünemann, E. K., Ylivainio, K., Symanczik, S., Delgado, A., Abu Zahra, N., Nikama, J., Zuin, L., Doolette, C.L., Eigner, H. and Santner, J.: Fertilization efficiency of thirty marketed and experimental recycled phosphorus fertilizers, Journal of Cleaner Production, 467, 142957, https://doi.org/10.1016/j.jclepro.2024.142957, 2024.
Hijbeek, R., Ten Berge, H. F. M., Whitmore, A. P., Barkusky, D., Schröder, J. J., and Van Ittersum, M. K.: Nitrogen fertiliser replacement values for organic amendments appear to increase with N application rates, Nutr. Cycl. Agroecosyst., 110, 105–115, https://doi.org/10.1007/s10705-017-9875-5, 2018.
Jiang, Y., Zhang, Y. G., Zhou, D., Qin, Y., and Liang, W. J.: Profile distribution of micronutrients in an aquic brown soil as affected by land use, Plant Soil Environ., 55, 468–476, https://doi.org/10.17221/57/2009-PSE, 2009.
Johnson, S. E. and Loeppert, R. H.: Role of Organic Acids in Phosphate Mobilization from Iron Oxide, Soil Science Soc. of Amer. J., 70, 222–234, https://doi.org/10.2136/sssaj2005.0012, 2006.
Johnston, A. E.: Principles of crop nutrition for sustainable food production, Proceedings of the International Fertiliser Society, 459, 39, 2001.
Johnston, A. E.: Phosphate nutrition of arable crops, in: Phosphorus: agriculture and the environment, Agronomy Series (46), edited by: Sims, J. T. and Sharpley, A. N., Madison, USA, ASA, CSSA, SSSA, 495–519, https://doi.org/10.2134/agronmonogr46.c15, 2005.
Jowett, C., Solntseva, I., Wu, L., James, C., and Glasauer, S.: Removal of sewage phosphorus by adsorption and mineral precipitation, with recovery as a fertilizing soil amendment, Water Sci. Technol., 77, 1967–1978, https://doi.org/10.2166/wst.2018.027, 2018.
Keyzer, M.: Towards a Closed Phosphorus Cycle, De Economist, 158, 411–425, https://doi.org/10.1007/s10645-010-9150-5, 2010.
Kpomblekou-A, K. and Tabatabai, M. A.: Effect of low-molecular weight organic acids on phosphorus release and phytoavailabilty of phosphorus in phosphate rocks added to soils, Agriculture, Ecosystems & Environment, 100, 275–284, https://doi.org/10.1016/S0167-8809(03)00185-3, 2003.
Lindsay, W. L. and Norvell, W. A.: Development of a DTPA Soil Test for Zinc, Iron, Manganese, and Copper, Soil Science Society of America Journal, 42, 421–428, 1978.
Liu, L., Gao, Y., Yang, W., Liu, J. and Wang, Z. : Community metagenomics reveals the processes of nutrient cycling regulated by microbial functions in soils with P fertilizer input, Plant Soil, 499, 139–154, https://doi.org/10.1007/s11104-023-05875-1, 2024.
López-Arredondo, D. L., Leyva-González, M. A., González-Morales, S. I., López-Bucio, J., and Herrera-Estrella, L.: Phosphate Nutrition: Improving Low-Phosphate Tolerance in Crops, Annu. Rev. Plant Biol., 65, 95–123, https://doi.org/10.1146/annurev-arplant-050213-035949, 2014.
Lynch, J. P.: Root Phenes for Enhanced Soil Exploration and Phosphorus Acquisition: Tools for Future Crops, Plant Physiology, 156, 1041–1049, https://doi.org/10.1104/pp.111.175414, 2011.
Mahdi, C. H. H. and Uygur, V.: Effect some soil properties (organic matter, soil texture, lime) on the geochemical phosphorus fractions, Bionatura, 3, https://doi.org/10.21931/RB/2018.03.04.7, 2018.
Metz, R., Kumar, N., Schenkeveld, W. D. C., and Kraemer, S. M.: Rates and Mechanism of Vivianite Dissolution under Anoxic Conditions, Environ. Sci. Technol., 57, 17266–17277, https://doi.org/10.1021/acs.est.3c04474, 2023.
Monreal, C., Derosa, M., Mallubhotla, S. C., Bindraban, P. S. and Dimkpa, C.: Nanotechnologies for increasing the crop use efficiency of fertilizer-micronutrients, Biol. Fertil. Soils, 52, 423–437, 2016.
Murphy, J. A. and Riley, J. P. A.: A Modified Single Solution Method for the Determination of Phosphate in Natural Waters, Analytica Chimica Act., 27, 31–36, 1962.
Muys, M., Phukan, R., Brader, G., Samad, A., Moretti, M., Haiden, B., Pluchon, S., Roest, K., Vlaeminck, S. E. and Spiller, M. A.: Systematic comparison of commercially produced struvite: Quantities, qualities and soil-maize phosphorus availability, Science of the Total Environment, 756, 143726, https://doi.org/10.1016/j.scitotenv.2020.143726, 2021.
Nanzyo, M., Onodera, H., Hasegawa, E., Ito, K., and Kanno, H.: Formation and dissolution of vivianite in paddy field soil, Soil Science Society of America Journal, 77, 1452–1459, 2013.
Neumann, G. and Römheld, V.: Root excretion of carboxylic acids and protons in phosphorus-deficient plants, Plant and Soil, 211, 121–130, https://doi.org/10.1023/A:1004380832118, 1999.
Olaniyan, J. O., Ogunkunle A. O., and Aduloju, M. O.: Response of soil types to fertilizer application as conditioned by precipitation in the Southern Guinea Savanna Ecology of Nigeria, Proceedings of the International Soil Tillage Research Organisation (ISTRO) Symposium), 419–428, 2011.
Or, D., Smets, B. F., Wraith, J. M., Dechesne, A. and Friedman, S. P: Physical constraints affecting bacterial habitats and activity in unsaturated porous media – a review, Adv. Water Resour., 30, 1505–1527, 2007.
Penn, C. J., Camberato, J. J. and Wiethorn, M. A.: How Much Phosphorus Uptake Is Required for Achieving Maximum Maize Grain Yield? Part 1: Luxury Consumption and Implications for Yield, Agronomy, 13, 95, https://doi.org/10.3390/agronomy13010095, 2022.
Peth, S., Horn, R., Beckmann, F., Donath, T., Fischer, J. and Smucker, A. J. M.: Three-dimensional quantification of intraaggregate pore-space features using synchrotron-radiation-based microtomography, Soil Sci. Soc. Am. J. 72, 897–907, https://doi.org/10.2136/sssaj2007.0130, 2008.
Pizzeghello, D., Berti, A., Nardi, S., and Morari, F.: Relationship between soil test phosphorus and phosphorus release to solution in three soils after long-term mineral and manure application, Agriculture, Ecosystems & Environment, 233, 214–223, https://doi.org/10.1016/j.agee.2016.09.015, 2016.
Raghothama, K. G. and Karthikeyan, A. S.: Phosphate Acquisition, Plant Soil, 274, 37–49, https://doi.org/10.1007/s11104-004-2005-6, 2005.
Recena, R., Torrent, J., del Campillo, M. C. and Delgado, A.: Accuracy of Olsen P to assess plant P uptake in relation to soil properties and P forms. Agronomy for Sustainable Development, 35, 4, 1571–1579, https://doi.org/10.1007/s13593-015-0332-z, 2015.
Recena, R., Díaz, I., Del Campillo, M. C., Torrent, J., and Delgado, A.: Calculation of threshold Olsen P values for fertilizer response from soil properties, Agron. Sustain. Dev., 36, 54, https://doi.org/10.1007/s13593-016-0387-5, 2016.
Recena, R., Díaz, I., and Delgado, A.: Estimation of total plant available phosphorus in representative soils from Mediterranean areas, Geoderma, 297, 10–18, https://doi.org/10.1016/j.geoderma.2017.02.016, 2017.
Recena, R., Cade-Menun, B. J., and Delgado, A.: Organic Phosphorus Forms in Agricultural Soils under Mediterranean Climate, Soil Science Society of America Journal, 82, 783–795, https://doi.org/10.2136/sssaj2017.10.0360, 2018.
Recena, R., García-López, A. M., Quintero, J. M., Skyttä, A., Ylivainio, K., Santner, J., Buenemann, E., and Delgado, A.: Assessing the phosphorus demand in European agricultural soils based on the Olsen method, Journal of Cleaner Production, 379, 134749, https://doi.org/10.1016/j.jclepro.2022.134749, 2022.
Richardson, A. E.: Making microorganisms mobilize soil phosphorus, in: First International Meeting on Microbial Phosphate Solubilization, vol. 102, edited by: Velázquez, E. and Rodríguez-Barrueco, C., Springer Netherlands, Dordrecht, 85–90, https://doi.org/10.1007/978-1-4020-5765-6_10, 2007.
Roldán, R., Barrón, V., and Torrent, J.: Experimental alteration of vivianite to lepidocrocite in a calcareous medium, Clay miner., 37, 709–718, https://doi.org/10.1180/0009855023740072, 2002.
Rombolà, A. D., Toselli, M., Carpintero, J., Ammari, T., Quartieri, M., Torrent, J.and Marangoni, B.: Prevention of iron-deficiency induced chlorosis in kiwifruit (Actinidia deliciosa) through soil application of synthetic vivianite in a calcareous soil, Journal of Plant Nutrition, 26, 2031–2041, https://doi.org/10.1081/PLN-120024262, 2003.
Rosado, R., Del Campillo, M. C., Martínez, M. A., Barrón, V., and Torrent, J.: [No title found], Plant and Soil, 241, 139–144, https://doi.org/10.1023/A:1016058713291, 2002.
Rothe, M., Frederichs, T., Eder, M., Kleeberg, A. and Hupfer, M.: Evidence for vivianite formation and its contribution to long-term phosphorus retention in a recent lake sediment: A novel analytical approach, Biogeosciences, 11, 5169–5180, https://doi.org/10.5194/bg-11-5169-2014, 2014.
Schröder, J. J., Cordell, D., Smit, A. L., and Rosemarin, A.: Sustainable Use of Phosphorus. Wageningen University and Research Centre, Stockholm Environment Institute, Report 357, 2010.
Schütze, E., Gypser, S., and Freese, D.: Kinetics of Phosphorus Release from Vivianite, Hydroxyapatite, and Bone Char Influenced by Organic and Inorganic Compounds, Soil Systems, 4, 15, https://doi.org/10.3390/soilsystems4010015, 2020.
Sharma, S. B., Sayyed, R. Z., Trivedi, M. H., and Gobi, T. A.: Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils, SpringerPlus, 2, 587, https://doi.org/10.1186/2193-1801-2-587, 2013.
Soil Survey Staff: Keys to Soil Taxonomy, 12th Edition, USDA-Natural Resources Conservation Service, Washington DC., 2014.
Soo, A. and Shon, H. K.: A nutrient circular economy framework for wastewater treatment plants, Desalination, 592, 118090, https://doi.org/10.1016/j.desal.2024.118090, 2024.
StatPoint Technologies: Statgraphics Centurion 18, StatPoint Technologies [software], https://www.statgraphics.com/centurion-xviii (last access: 21 November 2025), 2017.
Strong, D. T., Wever, H. D., Merckx, R. and Recous, S.: Spatial location of carbon decomposition in the soil pore system, Eur. J. Soil Sci., 55, 739–750, https://doi.org/10.1111/j.1365-2389.2004.00639.x, 2004.
Sumner, M. E. and Miller, W. P.: Cation Exchange Capacity and Exchange Coefficients, in: Methods of Soil Analysis Part 3: Chemical Methods, SSSA Book Series 5, edited by: Sparks, D. L., Soil Science Society of America, Madison, Wisconsin, 1201–1230, 1996.
Sun, T., Fei, K., Deng, L., Zhang, L., Fan, X., and Wu, Y.: Adsorption-desorption kinetics and phosphorus loss standard curve in erosive weathered granite soil: Stirred flow chamber experiments, Journal of Cleaner Production, 347, 131202, https://doi.org/10.1016/j.jclepro.2022.131202, 2022a.
Sun, R., Zhang, W., Liu, Y., Yun, W., Luo, B., Chai, R., Zhang, C., Xiang, X., and Su, X.: Changes in phosphorus mobilization and community assembly of bacterial and fungal communities in rice rhizosphere under phosphate deficiency, Front. Microbiol., 13, 953340, https://doi.org/10.3389/fmicb.2022.953340, 2022b.
Syers, J. K., Johnston, A. E. and Curtin, D.: Efficiency of soil and fertilizer phosphorus use: reconciling changing concepts of soil phosphorus behaviour with agronomic information (FAO Fertilizer and Plant Nutrition Bulletin 18), Food and Agriculture Organization of the United Nations (FAO), Rome, Italy, 2008.
Talboys, P. J., Heppell, J., Roose, T., Healey, J. R., Jones, D. L., and Withers, P. J. A.: Struvite: a slow-release fertiliser for sustainable phosphorus management?, Plant Soil, 401, 109–123, https://doi.org/10.1007/s11104-015-2747-3, 2016.
Tandy, S., Hawkins, J. M., Dunham, S. J., Hernandez-Allica, J., Granger, S. J., Yuan, H., McGrath, S.P. and Blackwell, M. S.: Investigation of the soil properties that affect Olsen P critical values in different soil types and impact on P fertiliser recommendations, European Journal of Soil Science, 72, 1802–1816, https://doi.org/10.1111/ejss.13082, 2021.
The Economist: A huge Norwegian phosphate rock find is a boon for Europe, https://www.economist.com/europe/2023/06/08/a-huge-norwegian-phosphate-rock-find-is-a-boon-for-europe (last access: 20 May 2024), 2023.
Thinnappan, V., Merrifield, C. M., Islam, F. S., Polya, D. A., Wincott, P., and Wogelius, R. A.: A combined experimental study of vivianite and As (V) reactivity in the pH range 2–11, Applied Geochemistry, 23, 3187–3204, https://doi.org/10.1016/j.apgeochem.2008.07.001, 2008.
United Nations, Department of Economic and Social Affairs, Population Division: World Population Prospects: The 2017 Revision, Key Findings and Advance Tables, Working Paper no. ESA/P/WP/248, 2017.
Walkley, A. J. and Black, I. A.: Estimation of soil organic carbon by the chromic acid titration method, Soil Sci., 37, 29–38, https://doi.org/10.1097/00010694-193401000-00003, 1934.
Weigh, K. V., Batista, B. D., Hoang, H., and Dennis, P. G.: Characterisation of Soil Bacterial Communities That Exhibit Chemotaxis to Root Exudates from Phosphorus-Limited Plants, Microorganisms, 11, 2984, https://doi.org/10.3390/microorganisms11122984, 2023.
Wilfert, P., Dugulan, A. I., Goubitz, K., Korving, L., Witkamp, G. J., and Van Loosdrecht, M. C. M.: Vivianite as the main phosphate mineral in digested sewage sludge and its role for phosphate recovery, Water Research, 144, 312–321, https://doi.org/10.1016/j.watres.2018.07.020, 2018.
Withers, P. J., Elser, J. J., Hilton, J., Ohtake, H., Schipper, W. J., and Van Dijk, K. C.: Greening the global phosphorus cycle: how green chemistry can help achieve planetary P sustainability, Green Chemistry, 17, 2087–2099, 2015.
Wu, Y., Luo, J., Zhang, Q., Aleem, M., Fang, F., Xue, Z., and Cao, J.: Potentials and challenges of phosphorus recovery as vivianite from wastewater: A review, Chemosphere, 226, 246–258, https://doi.org/10.1016/j.chemosphere.2019.03.138, 2019.
Xie, J., Zhuge, X., Liu, X., Zhang, Q., Liu, Y., Sun, P., Zhao, Y. and and Tong, Y.: Environmental sustainability opportunity and socio-economic cost analyses of phosphorus recovery from sewage sludge, Environmental Science and Ecotechnology, 16, 100258, https://doi.org/10.1016/j.ese.2023.100258, 2023.
Yadav, A. and Yadav, K.: Regulation of Plant-Microbe Interactions in the Rhizosphere for Plant Growth and Metabolism: Role of Soil Phosphorus, in: Phosphorus in Soils and Plants, edited by: A. Anjum, N., Masood, A., Umar, S., and A. Khan, N., IntechOpen, https://doi.org/10.5772/intechopen.112572, 2024.
Yang, S., Yang, X., Zhang, C., Deng, S., Zhang, X., Zhang, Y., and Cheng, X.: Significantly enhanced P release from vivianite as a fertilizer in rhizospheric soil: Effects of citrate, Environ. Res., 113567, https://doi.org/10.1016/j.envres.2022.113567, 2022.
Zhang, Y., Huang, S., Guo, D., Zhang, S., Song, X., Yue, K., Zhang, K., and Bao, D.: Phosphorus adsorption and desorption characteristics of different textural fluvo-aquic soils under long-term fertilization, J. Soils Sediments, 19, 1306–1318, https://doi.org/10.1007/s11368-018-2122-0, 2019.
Short summary
The study evaluated how soil properties affect vivianite efficiency as a phosphorus (P) fertilizer. With phosphate rock reserves declining, alternative P sources are crucial. Soil pH and P availability influence the effectiveness of vivianite as a P fertilizer. Higher solubility in acidic soils and low P availability can enhance plant and microbial mobilization, thereby improving its efficiency. Findings highlight the need to consider soil properties for optimal use of alternative P fertilizers.
The study evaluated how soil properties affect vivianite efficiency as a phosphorus (P)...