Articles | Volume 11, issue 1
https://doi.org/10.5194/soil-11-267-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/soil-11-267-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Assessing soil fertilization effects using time-lapse electromagnetic induction
Manuela S. Kaufmann
Agrosphere (IBG-3), Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
Agrosphere (IBG-3), Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
Jan van der Kruk
Agrosphere (IBG-3), Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
Anke Langen
Agrosphere (IBG-3), Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
Harry Vereecken
Agrosphere (IBG-3), Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
Lutz Weihermüller
Agrosphere (IBG-3), Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
Related authors
No articles found.
Shiao Feng, Wenhong Wang, Yonggen Zhang, Zhongwang Wei, Jianzhi Dong, Lutz Weihermüller, and Harry Vereecken
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-410, https://doi.org/10.5194/essd-2025-410, 2025
Preprint under review for ESSD
Short summary
Short summary
Soil moisture is key for weather, farming, and ecosystems, but global datasets have gaps and biases. We compared three products against 1,615 stations with more than 1.9 million measured moisture, finding ERA5-Land highly correlated but biased high, and SMAP-L4 accurate but short-term. Fusing them created an enhanced dataset, improving correlation by 5%, reducing errors by 20%, and enhancing overall fit by 15%. This seamless resource aids drought tracking, water planning, and climate adaptation.
Jordan Bates, Carsten Montzka, Harry Vereecken, and François Jonard
EGUsphere, https://doi.org/10.5194/egusphere-2025-3919, https://doi.org/10.5194/egusphere-2025-3919, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
We used unmanned aerial vehicles (UAVs) with advanced cameras and laser scanning to measure crop water use and detect early signs of plant stress. By combining 3D views of crop structure with surface temperature and reflectance data, we improved estimates of water loss, especially in dense crops like wheat. This approach can help farmers use water more efficiently, respond quickly to stress, and support sustainable agriculture in a changing climate.
Heye Reemt Bogena, Frank Herrmann, Andreas Lücke, Thomas Pütz, and Harry Vereecken
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-185, https://doi.org/10.5194/essd-2025-185, 2025
Preprint under review for ESSD
Short summary
Short summary
The Wüstebach catchment in Germany’s TERENO network underwent partial deforestation in 2013 to support natural regrowth in Eifel National Park. This data paper presents 16 years (2010–2024) of estimated hourly stream-water flux data for nine macro- and micronutrients, dissolved ionic aluminum, and dissolved organic carbon, along with measured solute concentrations and discharge rates from two stations—one affected by clear-cutting and one unaffected.
Bamidele Oloruntoba, Stefan Kollet, Carsten Montzka, Harry Vereecken, and Harrie-Jan Hendricks Franssen
Hydrol. Earth Syst. Sci., 29, 1659–1683, https://doi.org/10.5194/hess-29-1659-2025, https://doi.org/10.5194/hess-29-1659-2025, 2025
Short summary
Short summary
We studied how soil and weather data affect land model simulations over Africa. By combining soil data processed in different ways with weather data of varying time intervals, we found that weather inputs had a greater impact on water processes than soil data type. However, the way soil data were processed became crucial when paired with high-frequency weather inputs, showing that detailed weather data can improve local and regional predictions of how water moves and interacts with the land.
Salar Saeed Dogar, Cosimo Brogi, Dave O'Leary, Ixchel Hernández-Ochoa, Marco Donat, Harry Vereecken, and Johan Alexander Huisman
EGUsphere, https://doi.org/10.5194/egusphere-2025-827, https://doi.org/10.5194/egusphere-2025-827, 2025
Short summary
Short summary
Farmers need precise information about their fields to use water, fertilizers, and other resources efficiently. This study combines underground soil data and satellite images to create detailed field maps using advanced machine learning. By testing different ways of processing data, we ensured a balanced and accurate approach. The results help farmers manage their land more effectively, leading to better harvests and more sustainable farming practices.
Paolo Nasta, Günter Blöschl, Heye R. Bogena, Steffen Zacharias, Roland Baatz, Gabriëlle De Lannoy, Karsten H. Jensen, Salvatore Manfreda, Laurent Pfister, Ana M. Tarquis, Ilja van Meerveld, Marc Voltz, Yijian Zeng, William Kustas, Xin Li, Harry Vereecken, and Nunzio Romano
Hydrol. Earth Syst. Sci., 29, 465–483, https://doi.org/10.5194/hess-29-465-2025, https://doi.org/10.5194/hess-29-465-2025, 2025
Short summary
Short summary
The Unsolved Problems in Hydrology (UPH) initiative has emphasized the need to establish networks of multi-decadal hydrological observatories to tackle catchment-scale challenges on a global scale. This opinion paper provocatively discusses two endmembers of possible future hydrological observatory (HO) networks for a given hypothesized community budget: a comprehensive set of moderately instrumented observatories or, alternatively, a small number of highly instrumented supersites.
Christian Poppe Terán, Bibi S. Naz, Harry Vereecken, Roland Baatz, Rosie A. Fisher, and Harrie-Jan Hendricks Franssen
Geosci. Model Dev., 18, 287–317, https://doi.org/10.5194/gmd-18-287-2025, https://doi.org/10.5194/gmd-18-287-2025, 2025
Short summary
Short summary
Carbon and water exchanges between the atmosphere and the land surface contribute to water resource availability and climate change mitigation. Land surface models, like the Community Land Model version 5 (CLM5), simulate these. This study finds that CLM5 and other data sets underestimate the magnitudes of and variability in carbon and water exchanges for the most abundant plant functional types compared to observations. It provides essential insights for further research into these processes.
Thuy Huu Nguyen, Thomas Gaiser, Jan Vanderborght, Andrea Schnepf, Felix Bauer, Anja Klotzsche, Lena Lärm, Hubert Hüging, and Frank Ewert
Biogeosciences, 21, 5495–5515, https://doi.org/10.5194/bg-21-5495-2024, https://doi.org/10.5194/bg-21-5495-2024, 2024
Short summary
Short summary
Leaf water potential was at certain thresholds, depending on soil type, water treatment, and weather conditions. In rainfed plots, the lower water availability in the stony soil resulted in fewer roots with a higher root tissue conductance than the silty soil. In the silty soil, higher stress in the rainfed soil led to more roots with a lower root tissue conductance than in the irrigated plot. Crop responses to water stress can be opposite, depending on soil water conditions that are compared.
Ying Zhao, Mehdi Rahmati, Harry Vereecken, and Dani Or
Hydrol. Earth Syst. Sci., 28, 4059–4063, https://doi.org/10.5194/hess-28-4059-2024, https://doi.org/10.5194/hess-28-4059-2024, 2024
Short summary
Short summary
Gao et al. (2023) question the importance of soil in hydrology, sparking debate. We acknowledge some valid points but critique their broad, unsubstantiated views on soil's role. Our response highlights three key areas: (1) the false divide between ecosystem-centric and soil-centric approaches, (2) the vital yet varied impact of soil properties, and (3) the call for a scale-aware framework. We aim to unify these perspectives, enhancing hydrology's comprehensive understanding.
Tobias Karl David Weber, Lutz Weihermüller, Attila Nemes, Michel Bechtold, Aurore Degré, Efstathios Diamantopoulos, Simone Fatichi, Vilim Filipović, Surya Gupta, Tobias L. Hohenbrink, Daniel R. Hirmas, Conrad Jackisch, Quirijn de Jong van Lier, John Koestel, Peter Lehmann, Toby R. Marthews, Budiman Minasny, Holger Pagel, Martine van der Ploeg, Shahab Aldin Shojaeezadeh, Simon Fiil Svane, Brigitta Szabó, Harry Vereecken, Anne Verhoef, Michael Young, Yijian Zeng, Yonggen Zhang, and Sara Bonetti
Hydrol. Earth Syst. Sci., 28, 3391–3433, https://doi.org/10.5194/hess-28-3391-2024, https://doi.org/10.5194/hess-28-3391-2024, 2024
Short summary
Short summary
Pedotransfer functions (PTFs) are used to predict parameters of models describing the hydraulic properties of soils. The appropriateness of these predictions critically relies on the nature of the datasets for training the PTFs and the physical comprehensiveness of the models. This roadmap paper is addressed to PTF developers and users and critically reflects the utility and future of PTFs. To this end, we present a manifesto aiming at a paradigm shift in PTF research.
Joschka Neumann, Nicolas Brüggemann, Patrick Chaumet, Normen Hermes, Jan Huwer, Peter Kirchner, Werner Lesmeister, Wilhelm August Mertens, Thomas Pütz, Jörg Wolters, Harry Vereecken, and Ghaleb Natour
EGUsphere, https://doi.org/10.5194/egusphere-2024-1598, https://doi.org/10.5194/egusphere-2024-1598, 2024
Short summary
Short summary
Climate change in combination with a steadily growing world population and a simultaneous decrease in agricultural land is one of the greatest global challenges facing mankind. In this context, Forschungszentrum Jülich established an "agricultural simulator" (AgraSim), which enables research into the effects of climate change on agricultural ecosystems and the optimization of agricultural cultivation and management strategies with the aid of combined experimental and numerical simulation.
Lukas Strebel, Heye Bogena, Harry Vereecken, Mie Andreasen, Sergio Aranda-Barranco, and Harrie-Jan Hendricks Franssen
Hydrol. Earth Syst. Sci., 28, 1001–1026, https://doi.org/10.5194/hess-28-1001-2024, https://doi.org/10.5194/hess-28-1001-2024, 2024
Short summary
Short summary
We present results from using soil water content measurements from 13 European forest sites in a state-of-the-art land surface model. We use data assimilation to perform a combination of observed and modeled soil water content and show the improvements in the representation of soil water content. However, we also look at the impact on evapotranspiration and see no corresponding improvements.
Denise Degen, Daniel Caviedes Voullième, Susanne Buiter, Harrie-Jan Hendricks Franssen, Harry Vereecken, Ana González-Nicolás, and Florian Wellmann
Geosci. Model Dev., 16, 7375–7409, https://doi.org/10.5194/gmd-16-7375-2023, https://doi.org/10.5194/gmd-16-7375-2023, 2023
Short summary
Short summary
In geosciences, we often use simulations based on physical laws. These simulations can be computationally expensive, which is a problem if simulations must be performed many times (e.g., to add error bounds). We show how a novel machine learning method helps to reduce simulation time. In comparison to other approaches, which typically only look at the output of a simulation, the method considers physical laws in the simulation itself. The method provides reliable results faster than standard.
Theresa Boas, Heye Reemt Bogena, Dongryeol Ryu, Harry Vereecken, Andrew Western, and Harrie-Jan Hendricks Franssen
Hydrol. Earth Syst. Sci., 27, 3143–3167, https://doi.org/10.5194/hess-27-3143-2023, https://doi.org/10.5194/hess-27-3143-2023, 2023
Short summary
Short summary
In our study, we tested the utility and skill of a state-of-the-art forecasting product for the prediction of regional crop productivity using a land surface model. Our results illustrate the potential value and skill of combining seasonal forecasts with modelling applications to generate variables of interest for stakeholders, such as annual crop yield for specific cash crops and regions. In addition, this study provides useful insights for future technical model evaluations and improvements.
Benjamin Guillaume, Hanane Aroui Boukbida, Gerben Bakker, Andrzej Bieganowski, Yves Brostaux, Wim Cornelis, Wolfgang Durner, Christian Hartmann, Bo V. Iversen, Mathieu Javaux, Joachim Ingwersen, Krzysztof Lamorski, Axel Lamparter, András Makó, Ana María Mingot Soriano, Ingmar Messing, Attila Nemes, Alexandre Pomes-Bordedebat, Martine van der Ploeg, Tobias Karl David Weber, Lutz Weihermüller, Joost Wellens, and Aurore Degré
SOIL, 9, 365–379, https://doi.org/10.5194/soil-9-365-2023, https://doi.org/10.5194/soil-9-365-2023, 2023
Short summary
Short summary
Measurements of soil water retention properties play an important role in a variety of societal issues that depend on soil water conditions. However, there is little concern about the consistency of these measurements between laboratories. We conducted an interlaboratory comparison to assess the reproducibility of the measurement of the soil water retention curve. Results highlight the need to harmonize and standardize procedures to improve the description of unsaturated processes in soils.
Jordan Bates, Francois Jonard, Rajina Bajracharya, Harry Vereecken, and Carsten Montzka
AGILE GIScience Ser., 3, 23, https://doi.org/10.5194/agile-giss-3-23-2022, https://doi.org/10.5194/agile-giss-3-23-2022, 2022
Wei Qu, Heye Bogena, Christoph Schüth, Harry Vereecken, Zongmei Li, and Stephan Schulz
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-131, https://doi.org/10.5194/gmd-2022-131, 2022
Publication in GMD not foreseen
Short summary
Short summary
We applied the global sensitivity analysis LH-OAT to the integrated hydrology model ParFlow-CLM to investigate the sensitivity of the 12 parameters for different scenarios. And we found that the general patterns of the parameter sensitivities were consistent, however, for some parameters a significantly larger span of the sensitivities was observed, especially for the higher slope and in subarctic climatic scenarios.
Nicholas Jarvis, Jannis Groh, Elisabet Lewan, Katharina H. E. Meurer, Walter Durka, Cornelia Baessler, Thomas Pütz, Elvin Rufullayev, and Harry Vereecken
Hydrol. Earth Syst. Sci., 26, 2277–2299, https://doi.org/10.5194/hess-26-2277-2022, https://doi.org/10.5194/hess-26-2277-2022, 2022
Short summary
Short summary
We apply an eco-hydrological model to data on soil water balance and grassland growth obtained at two sites with contrasting climates. Our results show that the grassland in the drier climate had adapted by developing deeper roots, which maintained water supply to the plants in the face of severe drought. Our study emphasizes the importance of considering such plastic responses of plant traits to environmental stress in the modelling of soil water balance and plant growth under climate change.
Heye Reemt Bogena, Martin Schrön, Jannis Jakobi, Patrizia Ney, Steffen Zacharias, Mie Andreasen, Roland Baatz, David Boorman, Mustafa Berk Duygu, Miguel Angel Eguibar-Galán, Benjamin Fersch, Till Franke, Josie Geris, María González Sanchis, Yann Kerr, Tobias Korf, Zalalem Mengistu, Arnaud Mialon, Paolo Nasta, Jerzy Nitychoruk, Vassilios Pisinaras, Daniel Rasche, Rafael Rosolem, Hami Said, Paul Schattan, Marek Zreda, Stefan Achleitner, Eduardo Albentosa-Hernández, Zuhal Akyürek, Theresa Blume, Antonio del Campo, Davide Canone, Katya Dimitrova-Petrova, John G. Evans, Stefano Ferraris, Félix Frances, Davide Gisolo, Andreas Güntner, Frank Herrmann, Joost Iwema, Karsten H. Jensen, Harald Kunstmann, Antonio Lidón, Majken Caroline Looms, Sascha Oswald, Andreas Panagopoulos, Amol Patil, Daniel Power, Corinna Rebmann, Nunzio Romano, Lena Scheiffele, Sonia Seneviratne, Georg Weltin, and Harry Vereecken
Earth Syst. Sci. Data, 14, 1125–1151, https://doi.org/10.5194/essd-14-1125-2022, https://doi.org/10.5194/essd-14-1125-2022, 2022
Short summary
Short summary
Monitoring of increasingly frequent droughts is a prerequisite for climate adaptation strategies. This data paper presents long-term soil moisture measurements recorded by 66 cosmic-ray neutron sensors (CRNS) operated by 24 institutions and distributed across major climate zones in Europe. Data processing followed harmonized protocols and state-of-the-art methods to generate consistent and comparable soil moisture products and to facilitate continental-scale analysis of hydrological extremes.
Lukas Strebel, Heye R. Bogena, Harry Vereecken, and Harrie-Jan Hendricks Franssen
Geosci. Model Dev., 15, 395–411, https://doi.org/10.5194/gmd-15-395-2022, https://doi.org/10.5194/gmd-15-395-2022, 2022
Short summary
Short summary
We present the technical coupling between a land surface model (CLM5) and the Parallel Data Assimilation Framework (PDAF). This coupling enables measurement data to update simulated model states and parameters in a statistically optimal way. We demonstrate the viability of the model framework using an application in a forested catchment where the inclusion of soil water measurements significantly improved the simulation quality.
Veronika Forstner, Jannis Groh, Matevz Vremec, Markus Herndl, Harry Vereecken, Horst H. Gerke, Steffen Birk, and Thomas Pütz
Hydrol. Earth Syst. Sci., 25, 6087–6106, https://doi.org/10.5194/hess-25-6087-2021, https://doi.org/10.5194/hess-25-6087-2021, 2021
Short summary
Short summary
Lysimeter-based manipulative and observational experiments were used to identify responses of water fluxes and aboveground biomass (AGB) to climatic change in permanent grassland. Under energy-limited conditions, elevated temperature actual evapotranspiration (ETa) increased, while seepage, dew, and AGB decreased. Elevated CO2 mitigated the effect on ETa. Under water limitation, elevated temperature resulted in reduced ETa, and AGB was negatively correlated with an increasing aridity.
Yafei Huang, Jonas Weis, Harry Vereecken, and Harrie-Jan Hendricks Franssen
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-569, https://doi.org/10.5194/hess-2021-569, 2021
Manuscript not accepted for further review
Short summary
Short summary
Trends in agricultural droughts cannot be easily deduced from measurements. Here trends in agricultural droughts over 31 German and Dutch sites were calculated with model simulations and long-term observed meteorological data as input. We found that agricultural droughts are increasing although precipitation hardly decreases. The increase is driven by increase in evapotranspiration. The year 2018 was for half of the sites the year with the most extreme agricultural drought in the last 55 years.
Bernd Schalge, Gabriele Baroni, Barbara Haese, Daniel Erdal, Gernot Geppert, Pablo Saavedra, Vincent Haefliger, Harry Vereecken, Sabine Attinger, Harald Kunstmann, Olaf A. Cirpka, Felix Ament, Stefan Kollet, Insa Neuweiler, Harrie-Jan Hendricks Franssen, and Clemens Simmer
Earth Syst. Sci. Data, 13, 4437–4464, https://doi.org/10.5194/essd-13-4437-2021, https://doi.org/10.5194/essd-13-4437-2021, 2021
Short summary
Short summary
In this study, a 9-year simulation of complete model output of a coupled atmosphere–land-surface–subsurface model on the catchment scale is discussed. We used the Neckar catchment in SW Germany as the basis of this simulation. Since the dataset includes the full model output, it is not only possible to investigate model behavior and interactions between the component models but also use it as a virtual truth for comparison of, for example, data assimilation experiments.
Jan Vanderborght, Valentin Couvreur, Felicien Meunier, Andrea Schnepf, Harry Vereecken, Martin Bouda, and Mathieu Javaux
Hydrol. Earth Syst. Sci., 25, 4835–4860, https://doi.org/10.5194/hess-25-4835-2021, https://doi.org/10.5194/hess-25-4835-2021, 2021
Short summary
Short summary
Root water uptake is an important process in the terrestrial water cycle. How this process depends on soil water content, root distributions, and root properties is a soil–root hydraulic problem. We compare different approaches to implementing root hydraulics in macroscopic soil water flow and land surface models.
Youri Rothfuss, Maria Quade, Nicolas Brüggemann, Alexander Graf, Harry Vereecken, and Maren Dubbert
Biogeosciences, 18, 3701–3732, https://doi.org/10.5194/bg-18-3701-2021, https://doi.org/10.5194/bg-18-3701-2021, 2021
Short summary
Short summary
The partitioning of evapotranspiration into evaporation from soil and transpiration from plants is crucial for a wide range of parties, from farmers to policymakers. In this work, we focus on a particular partitioning method, based on the stable isotopic analysis of water. In particular, we aim at highlighting the challenges that this method is currently facing and, in light of recent methodological developments, propose ways forward for the isotopic-partitioning community.
Cosimo Brogi, Johan A. Huisman, Lutz Weihermüller, Michael Herbst, and Harry Vereecken
SOIL, 7, 125–143, https://doi.org/10.5194/soil-7-125-2021, https://doi.org/10.5194/soil-7-125-2021, 2021
Short summary
Short summary
There is a need in agriculture for detailed soil maps that carry quantitative information. Geophysics-based soil maps have the potential to deliver such products, but their added value has not been fully investigated yet. In this study, we compare the use of a geophysics-based soil map with the use of two commonly available maps as input for crop growth simulations. The geophysics-based product results in better simulations, with improvements that depend on precipitation, soil, and crop type.
Theresa Boas, Heye Bogena, Thomas Grünwald, Bernard Heinesch, Dongryeol Ryu, Marius Schmidt, Harry Vereecken, Andrew Western, and Harrie-Jan Hendricks Franssen
Geosci. Model Dev., 14, 573–601, https://doi.org/10.5194/gmd-14-573-2021, https://doi.org/10.5194/gmd-14-573-2021, 2021
Short summary
Short summary
In this study we were able to significantly improve CLM5 model performance for European cropland sites by adding a winter wheat representation, specific plant parameterizations for important cash crops, and a cover-cropping and crop rotation subroutine to its crop module. Our modifications should be applied in future studies of CLM5 to improve regional yield predictions and to better understand large-scale impacts of agricultural management on carbon, water, and energy fluxes.
Mirjam Schaller, Igor Dal Bo, Todd A. Ehlers, Anja Klotzsche, Reinhard Drews, Juan Pablo Fuentes Espoz, and Jan van der Kruk
SOIL, 6, 629–647, https://doi.org/10.5194/soil-6-629-2020, https://doi.org/10.5194/soil-6-629-2020, 2020
Short summary
Short summary
In this study geophysical observations from ground-penetrating radar with pedolith physical and geochemical properties from pedons excavated in four study areas of the climate and ecological gradient in the Chilean Coastal Cordillera are combined. Findings suggest that profiles with ground-penetrating radar along hillslopes can be used to infer lateral thickness variations in pedolith horizons and to some degree physical and chemical variations with depth.
Cited articles
Binley, A., Hubbard, S. S., Huisman, J. A., Revil, A., Robinson, D. A., Singha, K., and Slater, L. D.: The emergence of hydrogeophysics for improved understanding of subsurface processes over multiple scales, Water Resour. Res., 51, 3837–3866, 2015.
Blanchy, G., Watts, C. W., Richards, J., Bussell, J., Huntenburg, K., Sparkes, D. L., Stalham, M., Hawkesford, M. J., Whalley, W. R., and Binley, A.: Time-lapse geophysical assessment of agricultural practices on soil moisture dynamics, Vadose Zone J., 19, e20080, https://doi.org/10.1002/vzj2.20080, 2020.
Bogena, H. R., Montzka, C., Huisman, J. A., Graf, A., Schmidt, M., Stockinger, M., von Hebel, C., Hendricks-Franssen, H. J., van der Kruk, J., Tappe, W., Lücke, A., Baatz, R., Bol, R., Groh, J., Pütz, T., Jakobi, J., Kunkel, R., Sorg, J., and Vereecken, H.: The TERENO-Rur Hydrological Observatory: A Multiscale Multi-Compartment Research Platform for the Advancement of Hydrological Science, Vadose Zone J., 17, 180055, https://doi.org/10.2136/vzj2018.03.0055, 2018.
Bouwman, A. F., Van Drecht, G., and Van der Hoek, K. W.: Global and regional surface nitrogen balances in intensive agricultural production systems for the period 1970–2030, Pedosphere, 15, 137–155, 2005.
Brogi, C., Huisman, J. A., Pätzold, S., von Hebel, C., Weihermüller, L., Kaufmann, M., van der Kruk, J., and Vereecken, H.: Large-scale soil mapping using multi-configuration EMI and supervised image classification, Geoderma, 335, 133–148, https://doi.org/10.1016/j.geoderma.2018.08.001, 2019.
Brogi, C., Huisman, J. A., Weihermüller, L., Herbst, M., and Vereecken, H.: Added value of geophysics-based soil mapping in agro-ecosystem simulations, SOIL, 7, 125–143, https://doi.org/10.5194/soil-7-125-2021, 2021.
Busch, S., van der Kruk, J., and Vereecken, H.: Improved characterization of fine-texture soils using on-ground GPR full-waveform inversion, IEEE T. Geosci. Remote, 52, 3947–3958, https://doi.org/10.1109/TGRS.2013.2278297, 2014.
Butterbach-Bahl, K., Baggs E. M., Dannenmann, M., Kiese, R., and Zechmeister-Boltenstern, S.: Nitrous oxide emissions from soils: how well do we understand the processes and their controls?, Philos. T. R. Soc. B, 368, 20130122, https://doi.org/10.1098/rstb.2013.0122, 2013.
Corwin, D. L. and Lesch, S. M.: Application of soil electrical conductivity to precision agriculture: theory, principles, and guidelines, Agron. J., 95, 455–471, 2003.
Corwin, D. L. and Lesch, S. M.: Apparent soil electrical conductivity measurements in agriculture, Comput. Electron. Agr., 46, 11–43, 2005.
Dal Bo, I., Klotzsche, A., Schaller, M., Ehlers, T. A., Kaufmann, M. S., Fuentes Espoz, J. P., Vereecken, H., and van der Kruk, J.: Geophysical imaging of regolith in landscapes along a climate and vegetation gradient in the Chilean coastal cordillera, Catena, 180, 146–159, 2019.
Deutsches Institut für Normung: DIN 38405-9, Deutsche Einheitsverfahren zur Wasser-, Abwasser- und Schlammuntersuchung – Anionen (Gruppe D) – Teil 9: Photometrische Bestimmung von Nitrat (D 9), DIN's publishing house, https://www.dinmedia.de/de/norm/din-38405-9/144185708 (last access: 1 December 2018), 2011.
Drücker, H.: Precision Farming. Sensorgestützte Stickstoffdüngung, 113. Aufl., Hg. v. Kuratorium für Technik und Bauwesen in der Landwirtschaft e.V. (KTBL), Darmstadt, 2016.
Eigenberg, R., Doran, J. W., Nienaber, J. A., Ferguson, R. B., and Woodbury, B.: Electrical conductivity monitoring of soil condition and available N with animal manure and a cover crop, Agr. Ecosyst. Environ., 88, 183–193, 2002.
Eigenberg, R. A. and Nienaber, J. A.: Electromagnetic induction methods applied to an abandoned manure handling site to determine nutrient buildup, J. Environ. Qual., 32, 1837–1843, 2003.
Ellsworth, T. R. and Jury, W. A.: A three-dimensional field study of solute transport through unsaturated, layered, porous media: 2. Characterization of vertical dispersion, Water Resour. Res., 27, 967–981, https://doi.org/10.1029/91WR00190, 1991.
Galloway, J. N., Dentener, F. J., Capone, D. G., Boyer, E. W., Howarth, R. W., Seitzinger, S. P., Asner, G. P., Cleveland, C. C., Green, P. A., Holland, E. A., Karl, D. M., Michaels, A. F., Porter, J. H., Townsend, A. R., and Vörösmarty, C. J.: Nitrogen Cycles: Past, Present, and Future, Biogeochemistry, 70, 153–226, 2004.
Garré, S., Javaux, M., Vanderborght, J., Pages, L., and Vereecken, H.: Three-dimensional electrical resistivity tomography to monitor root zone water dynamics, Vadose Zone J., 10, 412–424. 2011.
Gebbers, R., Lück, E., Dabas, M., and Domsch, H.: Comparison of instruments for geoelectrical soil mapping at the field scale, Near Surf. Geophys., 7, 179–190, 2009.
Hedley, C. B., Yule, I. J., Eastwood, C. R., Shepherd, T. G., and Arnold, G.: Rapid identification of soil textural and management zones using electromagnetic induction sensing of soils, Soil Res., 42, 389–400, https://doi.org/10.1071/SR03149, 2004.
Hinck, S., Kloepfer, F., and Schuchmann, G.: Precision Farming. Bodeneigenschaften erfassen, 111. Aufl., Hg. v. Kuratorium für Technik und Bauwesen in der Landwirtschaft e.V. (KTBL), Darmstadt, 2016,.
Huang, J., Monteiro Santos, F. A., and Triantafilis, J.: Mapping soil water dynamics and a moving wetting front by spatiotemporal inversion of electromagnetic induction data, Water Resour. Res., 52, 9131–9145, 2016.
Jeřábek, J., Zumr, D., and Dostál, T.: Identifying the plough pan position on cultivated soils by measurements of electrical resistivity and penetration resistance, Soil Till. Res., 174, 231–240, 2017.
Jol, H. M.: Ground penetrating radar theory and applications, Elsevier, https://doi.org/10.1016/B978-0-444-53348-7.X0001-4,2009.
Jonard, F., Weihermüller, L., Jadoon, K. Z., Schwank, M., Vereecken, H., and Lambot, S.: Mapping field scale soil moisture with L-band radiometer and ground penetrating radar over bare soil, IEEE T. Geosci. Remote, 49, 2863–2875, 2011.
Kachanoski, R. G., Gregorisch, E. G., and van Wesenbeeck, I. J.: Estimating spatial variations of soil water content using noncontacting electromagnetic inductive methods, Can. J. Soil Sci., 68, 715–722, 1988.
Kaufmann, M. S., von Hebel, C., Weihermüller, L., Baumecker, M., Döring, T., Schweitzer, K., Hobley, E., Amelung, W., Vereecken, H., and van der Kruk, J.: Effect of fertilizers and irrigation on multi-configuration electromagnetic induction measurements, Soil Use Manage., 36, 104–116, 2019.
Kaufmann, M. S., Klotzsche, A., Vereecken, H., and van der Kruk, J.: Simultaneous multichannel multi-offset ground-penetrating radar measurements for soil characterization, Vadose Zone J., 19, e20017, https://doi.org/10.1002/vzj2.20017, 2020.
Keller, G. and Frischknecht, F.: Electrical methods in geophysical prospecting, international series of monographs in electromagnetic waves, 10, Pergamon Press, New York, NY, ISBN 978-0080115252, 1966.
Kemna, A., Vanderborght, J., Kulessa, B., and Vereecken, H.: Imaging and characterisation of subsurface solute transport using electrical resistivity tomography (ERT) and equivalent transport models, J. Hydrol., 267, 125–146, 2002.
King, J. A., Dampney, P. M. R., Lark, R. M., Wheeler, H. C., Bradley, R. I., and Mayr, T. R.: Mapping Potential Crop Management Zones within Fields: Use of Yield-map Series and Patterns of Soil Physical Properties Identified by Electromagnetic Induction Sensing, Precis. Agric, 6, 167–181, https://doi.org/10.1007/s11119-005-1033-4, 2005.
Klotzsche, A.: Data for Publication “Assessing soil fertilization effects using time-lapse electromagnetic induction”, Jülich DATA [code and data set], https://doi.org/10.26165/JUELICH-DATA/QMB0VB, 2025.
Koch, T., Deumlich, D., Chifflard, P., Panten, K., and Grahmann, K.: Using model simulation to evaluate soil loss potential in diversified agricultural landscapes, Eur. J. Soil Sci., 74, e13332, https://doi.org/10.1111/ejss.13332, 2023.
Kuang, B., Mahmood, H. S., Quraishi, M. Z., Hoogmoed, W. B., Mouazen, A. M., and van Henten, E. J.: Sensing Soil Properties in the Laboratory, In Situ, and On-Line, A Review, in: Advances in Agronomy, edited by: Sparks, D. L., Academic Press, 114, 155–223, https://doi.org/10.1016/B978-0-12-394275-3.00003-1, 2012.
Liu, T., Klotzsche, A., Pondkule, M., Vereecken, H., Su, Y., and van der Kruk, J.: Radius estimation of subsurface cylindrical object from GPR data using full-waveform inversion, Geophysics, 83, H43–H54, 2018.
McNeill, J.: Electromagnetic terrain conductivity measurement at low induction numbers. Geonics Limited Ontario, Canada, Technical Note TN-6, https://geonics.com/pdfs/technicalnotes/tn6.pdf (last access: 21 March 2024), 1980.
McNeill, J.: Why doesn't Geonics Limited build a multi-frequency EM31 or EM38?, Geonics, https://geonics.com/pdfs/technicalnotes/tn30.pdf (last access: 26 March 2024), 1996.
Nüsch, A.-K., Dietrich, P., Werban, U., Behrens, T., and Prakongkep, N.: Acquisition and reliability of geophysical data in soil science, in: 19th World Congress of Soil Science, Brisbane, Queensland, Australia, 1–6 August 2010, 21–24, https://old.iuss.org/19th%20WCSS/Symposium/pdf/1122.pdf (last access: 21 March 2024), 2010.
Ochs, J. and Klitzsch, N.: Considerations regarding small-scale surface and borehole-to-surface electrical resistivity tomography, J. Appl. Geophys., 172, 103862, https://doi.org/10.1016/j.jappgeo.2019.103862, 2020.
Olatuyi S. O., Akinremi, O. O., Flaten, D. N., and Lobb D. A.: Solute transport in a hummocky landscape: I. Two-dimensional redistribution of bromide, Can. J. Soil Sci., 92, 609–629, 2012.
O'Leary, D., Brogi, C., Brown, C., Tuohy, P., and Daly, E.: Linking electromagnetic induction data to soil properties at field scale aided by neural network clustering, Frontiers in Soil Science, 4, 1346028, https://doi.org/10.3389/fsoil.2024.1346028, 2024.
Pütz, T., Kiese, R., Wollschläger, U., Groh, J., Rupp, H., Zacharias, S., Priesack, E., Gerke, H. H., Gasche, R., Bens, O., Borg, E., Baessler, C., Kaiser, K., Herbrich, M., Munch, J.-C., Sommer, M., Vogel, H.-J., Vanderborght, J., and Vereecken, H.: TERENO-SOILCan: a lysimeter-network in Germany observing soil processes and plant diversity influenced by climate change, Environ. Earth Sci., 75, 1242, https://doi.org/10.1007/s12665-016-6031-5, 2016.
Robinson, D. A., Abdu, H., Lebron, I., and Jones, S. B.: Imaging of hill-slope soil moisture wetting patterns in a semi-arid oak savanna catchment using time-lapse electromagnetic induction, J. Hydrol., 416–417, 39–49, 2012.
Rudolph, S., van der Kruk, J., von Hebel, C., Ali, M., Herbst, M., Montzka, C., Pätzold, S., Robinson, D. A., Vereecken, H., and Weihermüller, L.: Linking satellite derived LAI patterns with subsoil heterogeneity using large-scale ground-based electromagnetic induction measurements, Geoderma, 241–242, 262–271, 2015.
Rudolph, S., Wongleecharoen, C., Lark, R. M., Marchant, B. P., Garré, S., Herbst, M., Vereecken, H., and Weihermüller, L..: Soil apparent conductivity measurements for planning and analysis of agricultural experiments: A case study from Western-Thailand, Geoderma, 267, 220–229, 2016.
Rücker, C., Günther, T., and Wagner, F. M.: pyGIMLi: An open-source library for modelling and inversion in geophysics, Comput. Geosci., 109, 106–123, https://doi.org/10.1016/j.cageo.2017.07.011, 2017.
Saey, T., Simpson, D., Vermeersch, H., Cockx, L., and van Meirvenne, M.: Comparing the EM38DD and DUALEM-21S sensors for depth-to-clay mapping, Soil Sci. Soc. Am. J., 73, 7–12, 2009.
Saey, T., De Smedt, P., De Clercq, W., Meerschman, E., Monirul Islam, M., and Van Meirvenne, M.: Identifying soil patterns at different spatial scales with a multi-receiver EMI sensor, Soil Sci. Soc. Am. J., 77, 382–390, 2013.
Schmäck, J., Weihermüller, L., Klotzsche, A., von Hebel, C., Pätzold, S., Welp, G., and Vereecken, H.: Large-scale detection and quantification of harmful soil compaction in a post-mining landscape using multi-configuration electromagnetic induction, Soil Use Manage., 38, 212–228, 2022.
Serrano, J., Shahidian, S., Paixão, L., Marques da Silva, J., and Moral, F.: Management Zones in Pastures Based on Soil Apparent Electrical Conductivity and Altitude: NDVI, Soil and Biomass Sampling Validation, Agronomy, 12, 778, https://doi.org/10.3390/agronomy12040778, 2022.
Shah, F. and Wu, W.: Soil and crop management strategies to ensure higher crop productivity within sustainable environments, Sustainability, 11, 1485, https://doi.org/10.3390/su11051485, 2019.
Triantafilis, J. and Lesch, S. M.: Mapping clay content variation using electromagnetic induction techniques, Comput. Electron. Agr., 46, 203–237, 2005.
Triantafilis, J., Laslett, G. M., and McBratney A. B.: Calibrating an electromagnetic induction instrument to measure salinity in soil under irrigated cotton, Soil Sci. Soc. Am. J., 64, 1009–1017, 2003.
Upadhyay, S. and Raghubanshi, A. S.: Determinants of soil carbon dynamics in urban ecosystems, in: Urban Ecology, edited by: Verma, P., Singh, P., Singh, R., and Raghubanshi, A. S., Elsevier, https://doi.org/10.1016/B978-0-12-820730-7.00016-1, 299–314, 2020.
von Hebel, C., Rudolph, S., Mester, A., Huisman, J. A., Kumbhar, P., Vereecken, H., and van der Kruk, J.: Three-dimensional imaging of subsurface structural patterns using quantitative large-scale multiconfiguration electromagnetic induction data, Water Resour. Res., 50, 2732–2748, 2014.
von Hebel, C, Reynaert, S, Pauly, K, Janssens, P., Piccard, I., Vanderborght, J., van der Kruk, J., Vereecken, H., and Garré, S.: Toward high-resolution agronomic soil information and management zones delineated by ground-based electromagnetic induction and aerial drone data, Vadose Zone J., 20, e20099, https://doi.org/10.1002/vzj2.20099, 2021.
Weihermüller L., Huisman, J. A., Lambot, S., Herbst, M., and Vereecken, H.: Mapping the spatial variation of soil water content at the field scale with different ground penetrating radar techniques, J. Hydrol., 340, 205–216, 2007.
Short summary
To use fertilizers more effectively, non-invasive geophysical methods can be used to understand nutrient distributions in the soil. We utilize, in a long-term field study, geophysical techniques to study soil properties and conditions under different fertilizer treatments. We compared the geophysical response with soil samples and soil sensor data. In particular, electromagnetic induction and electrical resistivity tomography were effective in monitoring changes in nitrate levels over time.
To use fertilizers more effectively, non-invasive geophysical methods can be used to understand...
Special issue